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ABSTRACT

Through recent advances in processing power, physical
modelling using finite-difference time-domain (FDTD)
methods has gained popularity. Many different musical in-
strument models based on these methods exist, and nearly
all are based on the same underlying systems and inter-
actions between them. This paper presents an applica-
tion where individual resonator modules, such as strings,
bars, membranes and plates, can be connected in a mod-
ular fashion and interacted with in real time. Various ex-
citations, including the bow, hammer and pluck, are im-
plemented as well, allowing for expressive control and a
wide sonic palette. Existing and non-existing model con-
figurations can easily be implemented, modified and exper-
imented with, as well as the parameters describing them.

1. INTRODUCTION

Any acoustic musical instrument can be considered as the
combination of a resonator and an exciter component [1].
Examples of resonator-exciter combinations are the violin
and the bow, and the guitar and the pick. Many resonators,
such as those mentioned here, can be further subdivided
into basic components, i.e., a set of individual strings, a
bridge and a wooden body. As many instruments consist
of the same basic resonators ± with different geometries
or made from different materials ± one can imagine some
application that can implement many musical instruments
based on the same fundamental resonator components in a
modular fashion. Using physical modelling to implement
these resonators allows for accurate implementation of the
resonators, as well as the interactions between them.

Modularity in physical modelling sound synthesis is by
no means a new concept. The earliest example of a modu-
lar system for sound synthesis was due to Cadoz et al. [2],
with the CORDIS system. CORDIS allows complex in-
struments to be created using simple mass-spring interac-
tions. Later, modular systems based on mass-spring sys-
tems appeared in various publications [3±5]. Morrison and
Adrien created Mosaic [6], a modular environment using
modal synthesis [7], more recently used by van Walstijn et
al. in [8] and the Sound Design Toolkit [9]. Rabenstein et
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al. presented block-based modular physical models using
wave digital filters [10] and digital waveguides [11].

Finite-difference time-domain (FDTD) methods, first
used in a musical context by Ruiz [12], Hiller and Ruiz
[13, 14] and later by Chaigne [15], also lend themselves
to modularity. In [16], Bilbao presents a modular envi-
ronment where bars and plates are connected by nonlinear
springs, and in [17] Bilbao et al. propose a modular envi-
ronment including higher dimensional systems.

Due to recent increase in computational power, FDTD
methods have gained popularity in real-time applications
[18]. A real-time modular environment using strings and
lumped objects is presented in [19], and SÈudholt et al.
present a real-time implementation of connected strings
and bars using the FAUST programming language in [20].

The main goal of the aforementioned literature on FDTD-
based modular environments is to create arbitrary sound-
generators based on physical equations of motion, rather
than modelling existing instruments. Furthermore, those
able to run in real time only include systems spatially dis-
tributed over a maximum of one dimension. Many instru-
ments require higher-dimensional structures to more accu-
rately reproduce their sound. As done in e.g., [21, 22], the
body of stringed instruments can be simplified to a thin
plate, which is a system distributed over two dimensions.

This work presents an interactive modular environment
in a real-time application where FDTD implementations of
strings, bars, membranes and plates can be connected and
played by the user. Although it is still possible to create
arbitrary configurations to build non-existing instruments,
the focus of this contribution is to allow for the possibility
of modelling existing instruments. The current work aims
to generalise previous work done on musical instruments
modelled using FDTD methods (see e.g. [21, 22]), such
that these can all be easily implemented as ‘presets’ of a
modular application. Furthermore, some novel additions
to the formulations of the hammer and pluck excitations
are presented, required for their real-time interactions with
the various resonators. The ultimate goal of this work is
to act as a sound engine for a virtual reality application,
potentially allowing for a more natural interaction.

This paper is structured as follows: Section 2 describes
the physical models used in this work and Section 3 de-
scribes how to implement these. Section 4 presents the
real-time application, Section 5 presents results and dis-
cusses these, and concluding remarks appear in Section 6.
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2. MODELS

Consider a state variable q(x, t) with time t ≥ 0 (in s) and
spatial coordinate x ∈ D, where the dimensions and def-
inition of domain D depend on the system at hand. The
dynamics of a system can then be written using the follow-
ing general form:

Lq = 0, (1)

where linear partial differential operator L describes the
dynamics of a model in isolation.

2.1 1D Systems

A commonly used 1D model (see e.g. [19, 21]) is the
damped stiff string (or string for short). With reference
to Eq. (1), consider a string of length L (in m), its trans-
verse displacement described by state variable q = u(χ, t)
(in m), and spatial coordinate χ is defined over domain
D = [0, L]. Furthermore, L = L(1) is defined as [23]

L(1)=ρA∂2t −T∂2χ+EI∂4χ+2σ0ρA∂t−2σ1ρA∂t∂2χ, (2)

where ∂t and ∂χ denote partial differentiation with respect
to time and space respectively. The model is parameterised
by material density ρ (in kg/m3), cross-sectional area A =
πr2 (in m2), radius r (in m), tension T (in N), Young’s
modulus E (in Pa), area moment of inertia I = πr4/4 (in
m4) and loss coefficients σ0 ≥ 0 (in s−1) and σ1 ≥ 0 (in
m2/s). If T = 0, the model reduces to a damped bar and the
(damped) 1D wave equation if E = 0. Note that a circular
cross-section is assumed here. Finally, in this work, the
boundary conditions are chosen to be simply supported as

u = ∂2χu = 0, for χ = 0, L. (3)

2.2 2D Systems

Consider a rectangular stiff membrane (or membrane for
short) with side lengths Lx and Ly (both in m). With ref-
erence to Eq. (1), its transverse displacement can be de-
scribed by q = w(x, y, t) (in m), which is defined for do-
mainD = [0, Lx]×[0, Ly], andL = L(2) is defined as [24]

L(2) = ρH∂2t − T∆+D∆∆+ 2σ0ρH∂t − 2σ1ρH∂t∆,
(4)

Here, ∆ = ∂2x + ∂2y is the Laplacian, and parameters
are material density ρ (in kg/m3), thickness H (in m),
tension per unit length T (in N/m), stiffness coefficent
D = EH3/12(1− ν2) (in kg · m2·s−2), Young’s modulus
E (in Pa), dimensionless Poisson’s ratio ν, and loss coeffi-
cients σ0 ≥ 0 (in s−1) and σ1 ≥ 0 (in m2/s). If T = 0, the
model reduces to a thin plate, and ifD = 0 it reduces to the
(damped) 2D wave equation, which can be used to model
a non-stiff membrane. For simplicity, boundary conditions
are chosen to be clamped, such that

w = n · ∇w = 0, (5)

where∇ denotes ‘the gradient of’, and n is a normal to the
plate area at the boundary.

2.3 Connections

One can add connections between instances of the mod-
els presented above by extending the general form in Eq.
(1). Also see Figure 1. Consider M models qm indexed
by m ∈ M, where M = {1, . . . ,M} and C connections
between them. A connection is indexed by c ∈ C with
C = {1, . . . , C}, and is characterised by the indices of the
models it connects ± rc ∈ M and sc ∈ M ± and the loca-
tions where these models are connected ± xr,c ∈ Drc and
xs,c ∈ Dsc . Here, domains Drc and Dsc are the (spatial)
domains that models qrc and qsc are defined for.

Model qrc will be placed ‘below’ qsc such that the con-
nection force acts positively on the former and negatively
on the latter. The general form in Eq. (1) can then be ex-
tended to include connections according to

Lmqm =
∑

c∈C

rc=m

δ(xm − xr,c)fc −
∑

c∈C

sc=m

δ(xm − xs,c)fc, (6)

where fc = fc(t) is the force (in N) of the cth connection.
The simplest connection considered in this work is the

rigid connection, which assumes that the connected sys-
tems have an identical displacement at their respective con-
nection locations. Alternatively, as done in [16, 24], one
can use a spring to connect two systems. A connection
force due to a nonlinear damped spring is

fc = K1,cηc +K3,cη
3
c +Rc∂tηc, (7)

with is a linear spring coefficient K1,c ≥ 0 (in N/m),
nonlinear spring coefficient K3,c (in N/m3), and damp-
ing coefficient Rc ≥ 0 (in s−1) of the cth connection. If
K3,c = 0, Eq. (7) reduces to a linear spring. Furthermore,
ηc = ηc(t) = qsc(xs,c, t)− qrc(xr,c, t) is the relative dis-
placement of the two systems at their respective connection
locations (in m). Section 3.2 will elaborate on how to cal-
culate the connection forces for all cases in discrete time.

To illustrate, consider two models (M = 2), a string and
a membrane, such that q1 = u(χ, t) and q2 = w(x, y, t),
and a single connection between them (C = 1) at unspec-
ified locations χc ∈ Ds1 and (xc, yc) ∈ Dr1 respectively.
See Figure 1. Placing the string above the membrane, we
get that s1 = 1 and r1 = 2, i.e., the ‘above’ model of
connection 1 has index 1, and the ‘below’ model of con-
nection 1 has index 2. Substituting the partial differential
operators for the string and membrane found in Eqs. (2)
and (4) respectively, Eq. (6) becomes, for the string and
the membrane respectively

L(1)u = −δ(χ− χc)f1, (8a)

L(2)w = δ(x− xc, y − yc)f1. (8b)

One can apply a rigid connection to Eq. (8a) according
to [24]:

u(χc, t) = w(xc, yc, t). (9)

If instead a spring connection is chosen,

f1 = K1,1η1 +K3,1η
3
1 +R1∂tη1, (10)

with η1 = η1(t) = u(χc, t)− w(xc, yc, t).
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2.4 Excitations

In this work, as excitations will only be applied to 1D sys-
tems, the state variable of the stiff string, u(χ, t) will be
used for the presentation of the various excitations. For the
string, the general form in Eq. (1) can thus be extended to
(ignoring connections for now)

L(1)u = eefe, (11)

where ee = ee(χ) is an excitation distribution and fe =
fe(t) is the externally supplied excitation force (in N).

2.4.1 The Bow

As done in previous work, see e.g. [21], one can include a
bowing interaction by introducing a static friction model.
With reference to Eq. (11), the excitation force can be de-
fined using the following friction model [24]

fe = −fB
√
2aBvrele

−aBv
2
rel+1/2, (12)

with externally supplied bow force fB = fB(t) (in N), di-
mensionless free parameter aB and

vrel = ∂tu(χB, t)− vB (13)

is the relative velocity (in m/s) between the string at ex-
ternally supplied bowing location χB = χB(t) (in m) and
the externally supplied bow velocity vB = vB(t) (in m/s).
Furthermore, the excitation distribution is set to be a single
point along the string:

ee = δ(χ− χB). (14)

2.4.2 Hammer

Another way of exciting a system is to use a hammer,
which can be modelled as a simple mass-spring-damper
system with a few proposed additions to allow for real-
time interaction. In this work, state variable z = z(t) is
used to describe the displacement of the hammer from its
equilibrium position (in m). The interaction between the
hammer and the string is then modelled as a collision, us-
ing the following collision potential [25]:

ϕ(ηe) =
Ke

αe + 1
[ηe]

αe+1
+ , (15)

with collision stiffness Ke ≥ 0 (in N/mαe ) and nonlin-
ear collision coefficient αe ≥ 1. Furthermore, [ηe]+ =
0.5(ηe + |ηe|) describes the ‘positive part of ηe’ and

ηe = ηe(t) = θ
(
u(χe, t)− z(t)

)
(16)

is the relative displacement between the string at collision
location χe (in m) and the hammer (in m). Here, we pro-
pose θ = τ if the string should be excited from above, and
θ = −τ if it should be excited from below, where τ = 1 if
the hammer interaction is triggered by the user and τ = 0
if not (see Section 3.3.2).

Using a change of variables based on energy quadratisa-
tion proposed by Lopes et al. in [26] and used for collisions

Figure 1. Snapshot of the application including a string
and a thin plate with a rigid connection between them. The
string is excited using a pluck.

in a musical acoustics context in [27], one can rewrite the
collision potential as

fe = −θψψ′, (17)

where ψ = ψ(η) =
√
2ϕ, and using dots to denote a tem-

poral derivative, ψ′ = ψ̇/η̇. This change of variables ul-
timately allows for an explicit implementation of the non-
linear collision.

The dynamics of the hammer, including the collision with
the string, can be described by the following PDE:

Mz∂
2
t z = −Kz

(
z − (1− τ)zoff

)
−Rz∂tz + θψψ′, (18)

with mass Mz (in kg), spring constant Kz (in N/m), loss
coefficient Rz (in kg/s) and zoff = zoff(t) is an externally
supplied offset (in m) (also see [22]). The offset is used
to keep the mass away from the equilibrium (and thus the
system it excites) when controlling the application without
wanting to excite the system. If the hammer excitation is
triggered, and thus τ = 1, the offset will no longer have an
effect on the mass. The spring force then pulls the hammer
towards the system, colliding with it in the process. After
the collision, τ = 0, and the offset will affect the mass
again to avoid continuous collision between the hammer
and the system.

Finally, with reference to Eq. (11), the excitation distri-
bution is set to be a raised cosine with centre location χe

and excitation width ew (in m):

ee(χ) =

{
1−cos( 2π(χ−χe)

ew
+π)

2 , if χe − ew
2 ≤ χ ≤ χe +

ew
2 ,

0, otherwise.
(19)

Note that χe and ew must be chosen such that χe− ew
2 ∈ D

and χe +
ew
2 ∈ D, where D is the domain of the excited

system.

2.4.3 Pluck

The pluck is modelled nearly the same way as the hammer.
The main difference is that τ = 1 until the collision force
is larger than a certain value, after which it will be set to 0.
This will be elaborated on in Section 3.3. See Figure 1 for
an example of the plucking interaction with a (connected)
string.

3. DISCRETE TIME

In order to implement the models described in Section 2
using FDTD methods, a spatio-temporal grid needs to be

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

19



defined [24]. For all models, time is discretised to t = nk
with time index n = 0, 1, 2 . . . and time step k = 1/fs

(in s) where fs is the sample rate (in Hz). For the 1D
systems, space is subdivided into N equal intervals of
length hs (in m) according to χ = ph with spatial index
p ∈ {0, . . . , N}. In the case of the 2D systems, the spatial
coordinate is discretised as (x, y) = (lh,mh) where spa-
tial indices l ∈ {0, . . . , Nx} and m ∈ {0, . . . , Ny}. Here,
Nx and Ny are the number of intervals in the x and y di-
rection respectively. Notice that the same value for grid
spacing h is used for both the x and y directions.

Using these definitions, the general state variable q(x, t)
can be approximated to grid function qn

l
, where for the 1D

systems l = p yielding grid function unp and for the 2D
systems, l = (l,m) yielding grid function zn(l,m).

One of the main concerns when working with FDTD
methods is the stability of the scheme. The stability con-
dition for the discrete models can be described in terms of
the grid spacing h as [18]

h ≥
√
β
(
c2k2 + 4σ1k +

√
(c2k2 + 4σ1k)2 + 16κ2k2

)

(20)
where for the string c2 = T/ρA, κ2 = EI/ρA and
β = 0.5, and for the membrane c2 = T/ρH , κ2 = D/ρH
and β = 1. The number of intervals between grid points
can then be calculated as N = ⌊L/h⌋ for 1D systems
and Nx = ⌊Lx/h⌋ and Ny = ⌊Ly/h⌋ for 2D sys-
tems, where ⌊·⌋ denotes the flooring operation. Includ-
ing the boundaries, discrete systems will have N + 1 and
(Nx + 1)(Ny + 1) grid points for the 1D and 2D case re-
spectively.

3.1 FDTD schemes

The general form in Eq. (1) can be discretised to the fol-
lowing FDTD scheme:

ℓqn
l
= 0 (21)

where ℓ is the discretised version of linear partial differen-
tial operator L. The discrete-time definitions of Eqs. (2)
and (4) will not be given here for brevity, but can be found
in the literature (e.g. [24], [18]). However, for any explicit
FDTD scheme (which are used in this work), one can ex-
pand Eq. (21) to yield an update equation of the form

aqn+1
l

= bqn
l
+ cqn−1

l
(22)

where a, b and c depend on the system at hand. In the fol-
lowing, we assume that a = (1 + σ0k) for any discretised
system.

3.2 Connections

To apply the effect of connections to FDTD schemes, inter-
polation and spreading operators must be introduced. As
in Section 2.3, consider M models where the grid function
of the mth model is qnm,lm . One can define a (zeroth-order)
interpolation operator as

Im,lm(xm) =

{
1, if lm = ⌊xm/hm⌋ ,
0, otherwise,

(23)

which can be applied to grid function qnm,lm to to obtain the
state of one grid point of the system. A spreading operator
can then be defined as

Jm,lm(xm) =
1

(hm)ε
Im,lm(xm), (24)

where ε is the number of spatial dimensions the system is
defined over (ε = 1 for 1D systems, ε = 2 for 2D systems).
Equation (24) can then be used to localise a (connection)
force onto a specific location along a system. The general
form in Eq. (6) can be discretised to

ℓmq
n
m,lm =

∑

c∈C

rc=m

Jm,lm(xr,c)f
n
c −
∑

c∈C

sc=m

Jm,lm(xs,c)f
n
c , (25)

Assuming that none of the connections overlap one can
solve for each force fnc individually.

One can express the relative distance between two models
(qsc and qrc ) connected by connection c as

ηnc = Isc,lsc (xs,c)q
n
sc,lsc

− Irc,lrc (xr,c)qnrc,lrc . (26)

If a rigid connection is chosen, the force of connection c
can be solved for according to [24]

fnc =
η⋆c

k2

arcMrc
+ k2

ascMsc

, (27)

whereMm is the effective mass of a single grid point (in
kg) of model qm, i.e., M = ρAh for 1D systems, and
M = ρHh2 for 2D systems and am = (1 + σ0,mk). Fur-
thermore,

q⋆m,lm =
bmq

n
m,lm

+ cmq
n−1
m,lm

am
(28)

is the state of model qm at the next time step in isolation,
i.e., without the connection forces (obtained by rewriting
Eq. (22)), and can be appropriately used in Eq. (26) to
obtain η⋆c .

Introducing the centred difference and centred averaging
operator

δt·η
n =

1

2k

(
ηn+1 − ηn−1

)
≊ η, (29)

µt·η
n =

1

2

(
ηn+1 + ηn−1

)
≊ η, (30)

the spring in Eq. (7) can be discretised to

fnc = K1,cµt·η
n
c +K3,c(η

n
c )

2µt·η
n
c +Rcδt·η

n
c , (31)

which can be shown to be inherently stable [16, 24]. The
connection force can then be solved for according to [24]

fnc =
η⋆c +

γc,−
γc,+

ηn−1
c

1
γc,+

+ k2

arcMrc
+ k2

ascMsc

, (32)

where

γc,± =
K1,c

2
+
K3,c(η

n
c )

2

2
± Rc

2k
. (33)

Notice that the rigid connection force in Eq. (27) is a spe-
cial case of Eq. (32) where ηn−1

c = 0 and γc,+ → ∞.
See [18, Ch. 11] for a derivation and more details.

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

20



Figure 2. The graphical user interface (GUI) of the application presented in Section 4. Here, the guitar preset is loaded with
6 strings, 1 bar, 1 thin plate and several linear (orange) and rigid (green) connections between them, excited using a bow.

3.3 Excitations

3.3.1 The Bow

The discretisation of the friction model in Eq. (12) as well
as its implementation using an iterative solver ± such as
Newton-Raphson ± is well-covered in the literature (see
e.g. [18, Ch. 8]). The spatial Dirac delta function in Eq.
(14) is discretised using cubic spreading operator Jp,3(χi),
rather than Eq. (24), for more accurate control. Its defini-
tion is also excluded here for brevity, but can be found in
the literature [24, Sec. 5.2.4].

3.3.2 Hammer and Pluck

The discrete-time definition of Eq. (18) will not be given
here. The discretisation of a mass-spring-damper system
can be found in e.g. [16, 22], and a derivation of the col-
lision between the mass-spring and a 1D system using
the non-iterative collision method used here (from [27]) is
given in [18, Sec. 10.2]. Changes in θ and τ (introduced in
this work) are considered instantaneous and do not affect
the derivations.

For the hammer, τ will be set to 0 if the user triggers
this with the mouse (see Section 4.2.7). For the pluck, τ
will be set to 0 if |fe/h| > φ, where φ is a threshold,
which simulates a plucking interaction. Note that the force
is scaled by the grid spacing of the respective resonator
module so that the plucking interaction will be similar for
strings with different parameters (and thus different values
of h).

4. REAL-TIME APPLICATION

A real-time application implementing the models above
has been created in C++ using the JUCE framework 1 .
Figure 2 shows the graphical user interface of the appli-
cation using the guitar preset for illustration. The appli-
cation is controlled using the mouse, and is divided into
three main parts: the control panel (bottom), the excita-
tion panel (right), and the instrument area. The latter is

1 https://juce.com

vertically and equally subdivided over the amount of in-
struments in the application, which in turn are subdivided
vertically and equally into the amount of resonators they
contain. The instrument area has a refresh rate of 15 Hz
and visualises the states of the various resonator and ex-
citer modules.

After describing the system architecture, this section will
go into detail of the functionality of the application. An
extensive demo of the application, going through all of the
functionality described in this section, can be found via
[28].

4.1 System Architecture

Figure 3 illustrates the architecture of the audio-generating
part of the application. The application can contain several
independent instruments, each of which can contain sev-
eral resonators. Furthermore, instruments contain infor-
mation about the connections between various resonators.
Every 1D resonator has three exciter modules, one for each
of the excitations described in this paper. Only one of the
exciter modules is activated at a time, controlled by the ex-
citation panel (see Section 4.2.7).

4.2 Functionality

This section goes through functionality of the application
following the order of the various buttons shown in the
control panel (bottom area in Figure 2).

Instrument

Resonator 1 (1D)

Bow Pluck Hammer
Resonator 2 (2D)

Connections

Figure 3. The system architecture. An instrument contains
resonators as well as information about the connections be-
tween them. 1D resonators contain three exciter modules.
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4.2.1 Instruments

The Add Instrument button adds an (additional) instrument
to the application. Clicking on an instrument makes it the
‘currently active instrument’ to which resonator modules
can be added.

4.2.2 Resonator Modules

The available resonators are: the stiff string, bar, mem-
brane, thin plate and stiff membrane and are implemented
as in Section 3.1. The states of the 1D models are visu-
alised as cyan (string) and purple (bar) lines and the states
of 2D models as grey-scale squares (as done in e.g. [21]).

The Add Resonator Module button opens a window
where a user can select a resonator type as well as its pa-
rameters. For the stiff string, one can choose an advanced
(all parameters) and non-advanced (only the fundamental
frequency and radius) list of parameters. For 2D models,
an extra parameter ‘maxPoints’ is given which alters the
grid spacing such that the number of moving grid points,
i.e., those that are not fixed at the boundaries, does not sur-
pass this. This is to not overload the CPU and keep the
application running in real time (also see Section 5). A
button Add Module, adds the resonator module to the cur-
rently selected instrument.

The Remove Resonator Modules button changes the but-
tons in the control panel to Remove and Done. Clicking
on a resonator module adds a red overlay, and clicking the
Remove button removes the resonator from the instrument.

It must be noted that if any button is pressed, the states
of all resonator modules will be set to 0 to prevent audible
artefacts when editing the settings.

4.2.3 Outputs

The output of any model can be obtained by listening to
qn
lo

for an output location lo. In the application it is possi-
ble to change the output locations by clicking the Edit In-
Outputs button. If the button is clicked, the control panel
will show instructions on the chosen option as well as a
Done button. The user can now add output locations to the
various resonators.

For 1D systems, outputs will show as downwards point-
ing arrows from the system state at the respective output lo-
cations. For 2D systems, rectangles around the output grid
point are used. Left, right and stereo channels are shown
in white, red and yellow respectively. Functionality to add
inputs has been left for future work (see Section 6).

4.2.4 Connections

Connections between resonators (implemented as in Sec-
tion 3.2) are visualised using coloured (dotted) lines (also
see Figure 2). Rigid connections are shown in solid green,
linear springs in dotted orange and non-linear springs in
dotted magenta. A connection location on a 1D system is
accentuated using a circle of the same colour, and the same
is done for a 2D system using a rectangle. A solid circle
along the connection line indicates the mass ratio between
the grid points of the two components: Msc/Mrc (see
Eq. (27)). The closer this is to one component, the heavier
a grid point of that component is with respect to the other.

If the Edit Connections button is clicked, the control
panel will change in the same way as for the Edit In- Out-
puts button. Now, the currently active connection will be
indicated by a yellow ‘halo’ around the connection loca-
tions. If a user tries to overlap two connections, the cur-
rently active connection will be removed from the applica-
tion.

4.2.5 Groups

If the Edit Groups button is pressed, the control panel
changes in the same way as for the previous two buttons.
The user can click on 1D resonator modules to add them to
groups (see [28] for more details). Grouped models can be
excited simultaneously (see Section 4.2.7).

4.2.6 Presets

Presets are saved in ‘.xml’ files and have the structure
shown in Figure 4. Each preset contains several elements
(instruments, resonators, connections, etc.), each contain-
ing one or more attributes.

Pressing the Load Preset button causes a ‘File Chooser’
window to pop up, where the user can select a local ‘.xml’
file containing a preset. The Save Preset button makes a
window pop up with a text box into which the desired name
of the current application configuration can be saved. If a
file with that name already exists a warning window will
pop up asking whether the existing file may be overwritten.

As different sample rates yield different values for h (see
Eq. (20)) and thus the number of grid points for each res-
onator, the locations of the outputs and connections are
saved as ratios of the total number of grid points of the
respective resonator. This allows for the same relative lo-
cations of outputs and connections for one preset between
different sample rates.

   Application

   Instrument (id)

   Resonators (id, type) 
    Parameters (id, value)

   Outputs (id, channel, location)

   Connections (id, type, resonator indices, locations)

Figure 4. Structure of the ‘.xml’ files containing presets.
Attributes for several elements are given in parentheses.

4.2.7 Excitations

One can interact with the various 1D resonator modules
in the instrument area. The excitation panel (right area in
Figure 2) contains a dropdown menu with the various ex-
citations: Bow, Hammer and Pluck. Selecting one of these
activates the corresponding exciter module in all 1D res-
onator modules. Furthermore, an Excite! button toggles
the currently active exciter module for all 1D resonator
modules. Now a user can hover the mouse over the res-
onator modules in the instrument area (or click for the
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Mouse action Bow Hammer & Pluck
x-position χB χe

y-position - zoff

Scroll-wheel −0.2 ≤ vB ≤ 0.2 h ≤ ew ≤ 10h
Click - τ (hammer only)

Table 1. Mouse interactions related to the various excita-
tions described in Section 4.2.7.

Name Symbol (unit) Value
Bow
Free parameter aB (-) 100
Bow force fB (N) 40 · ρA
Hammer / pluck
Mass Mz (kg) 0.01
Spring coefficient Kz (N/m) 1000
Loss coefficient Rz (kg/s) 1
Collision stiffness Ke (N/mα

e ) 106

Nonlin. coll. coeff. αe (-) 1.3
Pluck force threshold φ (N/m) 500
Connections
Linear spring coeff. K1 (N/m) 108

Nonlin. spring coeff. K3 (N/m3) 1010

Damping coeff R (s−1) 0.01

Table 2. List of fixed parameter values (see Section 4.3).

hammer) to excite them. If the excitation is deactivated,
all resonators (including 2D ones) can be excited using a
raised cosine (although this is only used for testing pur-
poses). Table 1 shows how the mouse is related to various
excitation parameters.

The bow is visualised with a yellow rectangle with a mov-
ing gradient, the speed and direction of which depends on
the value of the bow velocity (vB in Eq. (13)). The mass
used for the hammer and pluck (z in Eq. (18)), is visualised
using a yellow circle and follows the mouse / cursor. The
excitation distribution (ee in Eq. (19)) is visualised using a
grey ellipse around the cursor; its width is determined by
the value of ee. For the hammer, a mouse click sets τ = 0
in Eq. (18).

4.3 Fixed parameters

As described in Section 4.2.2, the parameters of the res-
onator modules can easily be altered by the user when
adding one to the application. The parameters found in Ta-
ble 2, however, can not be altered by the user, and have
been set to result in pleasing sounds for many different
model configurations.

5. RESULTS AND DISCUSSION

Table 3 shows the CPU usage of the application with var-
ious settings and graphics turned off and on. Tests were
carried out on a MacBook Pro with a 2,3 GHz Intel i9
processor. Results show that for many different configura-
tions, the application is still able to run in real time (usage

Strings (N = 118)
No. of strings 1 5 10 20
No graphics 1.7 7.4 12.3 26.8
Graphics 8.3 14.0 19.4 35.0
Plate
Moving points 100 400 1600 2500
No graphics 4.8 15.4 47.0 63.3
Graphics 12.0 23.9 59.2 77.5
Two connected strings (N = 118, C = 117)
Type None Rigid Linear Nonlinear
No graphics 3.8 8.3 13.1 13.3
Graphics 12.7 28.4 42.3 43.1

Table 3. CPU usage (in %) of the application with various
configurations, and graphics turned on and off.

< 100%).
One can observe that the CPU increases with the num-

ber of grid points that need to be calculated per sample,
which is an expected result. As more calculations need
to be performed per sample for a 2D system the CPU us-
age is higher per grid point than for a 1D system. For
two strings with all their moving grid points connected
(N = 118, C = 117), the CPU usage increases signif-
icantly when compared to unconnected strings, and more
so for non-rigid connections. Moreover, the graphics in-
crease the CPU usage substantially, especially when con-
nections need to be drawn. As the speed of the graphics
thread has not been the focus during the development of
the application, this could be optimised in the future.

To ensure that the application runs in real time, several
things need to be considered. One example is the ‘max-
Points’ variable, limiting the number of grid points for
2D systems mentioned in Section 4.2.2. Using fewer grid
points reduces the simulation quality and the frequency
bandwidth of the model at hand [24]. Furthermore, it has
been chosen to only use explicit models, which, although
more computationally cheap, cause detuning of modes in
models with high stiffness values such as bars and plates
[24]. These effects, however, have been found to be less
important for stringed instrument models, due to the large
amount of damping of bars and plates and the inharmonic
nature of models with high stiffness.

6. CONCLUSION

This paper presented an application implementing vari-
ous resonator modules using FDTD schemes which can
be connected in a modular fashion to create (non)existing
musical instruments. The instruments can be played in real
time using bowing, hammering and plucking excitations.

Future work could include to embed this contribution in a
virtual reality application where users will be able to build
and play instruments in a virtual environment.
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