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ABSTRACT

Wave Digital Filters and neural networks are two popu-
lar solutions for circuit modelling. This paper describes
the development of a Differentiable Wave Digital Filters
library. Diode clipper circuits were constructed. A dataset
was collected from the circuits and, with the library, was
used to train a real-time deployable model. The trained
model has higher accuracy and similar computation time
when compared to traditional white-box models.

1. INTRODUCTION

Virtual analog (VA) modelling is often divided into two
non-distinct types of approaches. ªWhite-boxº modelling
involves developing a circuit model based on the physi-
cal interactions of the circuit elements, while ªblack-boxº
modelling involves taking measurements from the circuit,
and creating a digital system that replicates perceptually
relevant aspects of the circuit’s behaviour [1]. VA mod-
elling approaches that combine elements of both white-box
and black-box methods are typically referred to as ªgrey-
boxº approaches.

Wave Digital Filters (WDFs) are a white-box method that
works by modelling individual circuit elements in the wave
domain, and modelling the interactions of those elements
with wave domain ªadaptorsº [2, 3]. WDFs are a power-
ful tool due to their modular and flexible nature; however,
as with many other white-box approaches, they may pro-
vide inaccurate results when modelling circuits containing
components that behave in a non-ideal manner.

In recent years, there has been significant research on de-
veloping black-box models using neural networks [4±6].
While this approach can achieve high levels of accuracy
when comparing the model to the reference circuit, one
drawback is that it can be difficult for neural network-based
models to include circuit control parameters, particularly
continuous controls such as potentiometers. Wright et al.
suggest training neural networks using control values as
additional inputs [6], however this approach often requires
training a larger network, which requires more computing
resources to run in real-time.
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One potential solution to the respective issues of the WDF
and neural network modelling techniques is to combine
them via Differentiable Digital Signal Processing (DDSP)
[7]. The fundamental idea behind DDSP is to implement
basic signal processing building blocks within a framework
of automatic differentiation. Then, gradient descent may
be used to optimize various parameters of the signal pro-
cessing algorithm for a given set of input and target data. In
recent years, DDSP has been applied to IIR filter design [8]
and parameter discovery for white-box circuit models [9].

This paper proposes a grey-box modelling technique using
Differentiable Wave Digital Filters (DWDFs). The DWDF
technique involves constructing a WDF model of a refer-
ence circuit, and then training neural networks to replace
one or more of the circuit elements in the WDF model.
With this technique, non-ideal components can be mod-
elled with a high degree of accuracy, since the neural net-
works may be trained with data collected from the actual
circuit. Further, including the circuit’s control parameters
in the model is trivial, so long as the control parameters
are connected to circuit elements being modelled with tra-
ditional WDF elements.

The structure of this paper is as follows: Section 2 dis-
cusses the development of a DWDF library, and the use of
that library for solving simple parameter discovery tasks.
Section 3 presents a process for training neural networks
to emulate the behaviour of anti-parallel diodes in the wave
domain. Section 4 considers the implementation of WDF
models with neural network components for real-time use.

2. DIFFERENTIABLE WAVE DIGITAL FILTERS

While several WDF libraries exist [10, 11], they are pri-
marily focused on implementing real-time circuit models,
and are not well-suited for differentiation. With that in
mind, a new WDF library was implemented in Python, us-
ing the TensorFlow framework for automatic differentia-
tion [12]. The source code for the DWDF library is avail-
able on GitHub [13].

2.1 Library Implementation

Wave Digital Filters operate on wave variables, rather than
the Kirchoff variables typically used for analyzing circuits
(voltage v, and current i). The wave domain variables are
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defined generically as,

a = Rρ−1
0 v +Rρ0i

b = Rρ−1
0 v −Rρ0i

(1)

where a is defined as the incident wave for a given circuit
port, b is the reflected wave, and R0 is the port impedance.
ρ is a wave definition parameter: ªvoltage wavesº are de-
fined for ρ = 1, while ªcurrent wavesº are given when
ρ = 0. In this writing, only voltage waves will be used.

2.1.1 DWDF 1-Ports

Most simple circuit elements, such as resistors and capac-
itors may be implemented as 1-port elements. A resistor is
defined by the voltage wave relationship,

b = 0 (2)

while a capacitor maybe similarly characterized as,

b = az−1 (3)

where z−1 is defined as a 1-sample delay. Both of these
circuit elements may be trivially implemented with Ten-
sorFlow, and may therefore be differentiated automatically.
For cases where the resistance or capacitance of a given cir-
cuit element may not be known, the library also allows the
component value to be initialised as a ªtrainableº variable.

2.1.2 DWDF Adaptors

Simple WDF adaptors such as series and parallel adap-
tors may be implemented generally as N-port elements.
These adaptors are typically implemented as 3-port adap-
tors, since any N-port adaptor can be made up of a chain of
3-port adaptors. A series adaptor is defined by the voltage
wave relationship,
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where an, bn, andRn are the incident wave, reflected wave,
and port impedance at a given port. A parallel adaptor is
similarly defined by the voltage wave relationship.
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The DWDF library implements these adaptors using the
one-multiply form described in [2]. When training a DWDF
structure, TensorFlow will automatically propagate gradi-
ents through the relevant adapters so that a quantity any-
where in the structure maybe optimized via gradient de-
scent.

2.2 Parameter Discovery with DWDFs

As a test of the DWDF models constructed with the library,
two simple parameter discovery tasks were attempted, sim-
ilar to those outlined in [9].

Figure 1: Training the voltage divider WDF model.

2.2.1 Voltage Divider

For the first task, synthetic data was generated for a sim-
ple voltage divider circuit made up of two equivalent resis-
tors, corresponding to a gain of G = 0.5. A corresponding
WDF model was constructed, using resistors with starting
values of 2 kΩ and 100 Ω, both initialised as trainable vari-
ables. The WDF model was trained on the synthesized data
for 100 epochs, using an Adam optimizer [14],

θt ← θt−1 − α
√
1− βt2
1− βt1

· mt√
vt + ϵ̂

, (6)

where θ is the quantity being optimized, α is the initial
learning rate, mt is the exponential moving average of the
gradient, and vt is the squared gradient. Hyperparameters
β1 and β2 represent the exponential decay rates of the first-
and second-order moment estimates respectively, with de-
fault values β1 = 0.9 and β2 = 0.999. For the voltage
divider circuit, the Adam optimizer was given an initial
learning of α = 25 Ω. The model was trained using a
mean-squared error (MSE) loss function,

LMSE =
1

N

N∑

i=1

(yt(i)− yp(i))2 (7)

where yt represents the ªtargetº data, yp represents the
ªpredictedº signal output by the model, and N represents
the length of the signal in samples. Table 1 shows the start
and end values for each circuit element, as well as the final
error. Fig. 1 plots the component values and error over the
course of the training process. The component values after
training correspond to a gain of G = 0.502.

2.2.2 RC Lowpass Filter

For the second task, synthetic data was generated for a
first-order RC lowpass filter circuit, with a cutoff frequency
of fc = 720 Hz. A corresponding WDF model was con-
structed, with an initial cutoff frequency of 159 Hz (R =
1 kΩ, C = 1 µF), with both component values initialised
as trainable variables. The model was again trained with
an MSE loss function for 100 epochs. The resistor was
trained with an Adam optimizer with an initial learning
rate of α = 25 Ω, while the capacitor was trained with
a separate Adam optimizer with an initial learning rate of
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Figure 2: Training the RC lowpass WDF model.

Circuit Element Error [V]

Voltage
Divider

R1
Start 2 kΩ

3.4e−6End 984.75 Ω

R2
Start 100 Ω
End 975.65 Ω

RC
Lowpass

R
Start 1 kΩ

2.58e−5End 315.99 Ω

C
Start 1 µF
End 693.8 nF

Table 1: Training statistics for voltage divider and RC low-
pass parameter discovery tasks.

α = 10 nF. Table 1 shows the start and end values for each
circuit element, as well as the final error. Fig. 2 plots the
component values and error over the course of the training
process. The component values after training correspond
to a cutoff frequency of fc = 726 Hz.

3. NEURAL WDF DIODE MODELS

While traditional wave domain diode models can achieve
high accuracy when compared to the expected behaviour
of ideal diodes, they typically require the evaluation of the
Lambert W function at least once per-sample, which can
limit the performance of real-time implementations [15].
As a result, real-time implementations often use lookup ta-
bles or approximations, which offer a trade-off between
accuracy and performance [16]. Further, manufacturing in-
consistencies and other real-world factors may cause diodes
to behave non-ideally, thereby decreasing the accuracy of
traditional wave domain models.

Neural networks offer a potential solution to these limita-
tions, by leveraging data measured from a physical circuit
to help train a more accurate model. As an example, this
section will present a WDF model of an RC diode clipper
(similar to one found in many guitar distortion pedals), in
which the diodes are modelled using a neural network.

3.1 Diode Circuit Data

Data for the neural networks was prepared by constructing
the diode clipper circuit shown in Fig. 3. This circuit var-
ied with the amount of diodes on the ªupward-facingº side

Input

10-100 kΩ

4.7 nF

Output

Figure 3: Diode Clipper with anti-parallel diode configu-
ration. In this schematic, there are only 1 upward-facing
and 1 downward-facing diode.

Diode Notation Upward Diodes Downwards Diodes
1U1D 1 1
1U2D 1 2
1U3D 1 3
2U2D 2 2
2U3D 2 3
3U3D 3 3

Table 2: This table shows the notation used for the la-
belling of the various diode clipper schematics, wherein
1U1D refers to a diode clipper with 1 upward-facing diode
and 1 downward-facing diode.

and ªdownward-facingº side. Table 2 shows the different
anti-parallel diode configurations sampled.

Following the construction of the 6 diode clipper circuits,
a dataset was prepared. The input data for this dataset was
taken from the IDMT-SMT-Guitar Dataset [17]. About 14
seconds of audio was used as input to the diode clipper cir-
cuit. The audio was output from a Universal Audio Apollo-
Twin to the diode clipper circuit, and was sampled with a
Digilent Analog Discovery 2 USB Oscilloscope, as shown
in Fig. 4. The oscilloscope offers a range of sampling rates
from 50 mHz to 100 MHz; measurements were made at
50 kHz since it was the closest option to a standard audio
sampling rate. Each diode clipper circuit was sampled at 5
different resistor values (10 kΩ, 25 kΩ, 45 kΩ, 75 kΩ, 100
kΩ). The capacitor value remained unchanged.

Although 14 seconds seems like a small amount of data,
one must note that model performance is being evaluated
at the sample level, meaning that there will be about 4×106
samples to be used for training. 80% of the data was used
for training the model, and 20% was used to validate the
model’s accuracy.

3.2 Diode Network Architecture

A network architecture was chosen as a sequence of fully-
connected layers similar to the network presented in [18],
with two inputs (the incident wave and port impedance)
and one output (the reflected wave). Since diodes typically
exhibit nonlinear behaviour, a tanh activation function is
used in between each neural network layer. To improve
training speed, the port impedance was replaced with the
log of the port impedance, and the reflected wave was re-
placed with the negation of the reflected wave. The model
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Figure 4: The experimental setup for data collection. Input
comes from a Universal Audio Apollo-Twin audio inter-
face, and data is captured and logged by a Digilent Analog
Discovery USB Oscilloscope.

hyperparameters consist of the number of ªhiddenº layers
to use in between the model inputs and outputs, as well as
the size of the hidden layers. A visualization of an exam-
ple ª2x4º network with 2 hidden layers, each with 4 fully-
connected units can be seen in Fig. 5. When trained, the
diode network represents a memoryless mapping between
the inputs and outputs.

b = −f
([

a
log(R)

])
(8)

a

log(R)

−1 b

Figure 5: An example ª2x4º diode network, with 2 hidden
layers, each with 4 fully-connected units.

3.3 Diode Network Pre-Training

While it is expected that the diode network could be trained
entirely within the DWDF model, training would be much
slower than training the network outside of the DWDF
model (due to the overhead introduced by the other WDF
elements). With that in mind, each diode network was
ªpre-trainedº against synthetic data, generated using wave
domain diode equations derived from the Shockley diode
law [15]. The training signal consists of a linear ramp of in-
cident voltage waves ranging from [−2.5, 2.5] V, repeated
for exponentially increasing port impedances in the range
[10, 109] Ω (see Fig. 6).

Diode networks were pre-trained for 2000 epochs, using
an Adam optimizer with a starting learning rate of 2e−5.
The networks were trained with a combined loss function

Figure 6: Synthetic data used for pre-training diode net-
works.

Figure 7: Pre-trained network results for 1-up/1-down
1N4148 diodes.

of mean-squared error, plus normalized error-to-signal ra-
tio (ESR), defined as,

LESR =

√√√√ 1

N

∑N
i=1(yt(i)− yp(i))2∑N

i=1 yt(i)
2

(9)

where yt and yp represent the ªtargetº and ªpredictedº sig-
nal respectively, and N represents the length of the signal
in samples. Then, from Equation (7).

LTOT = LMSE + LESR (10)

Fig. 7 shows the results of pre-training a 2x8 network to
model a set of 1-up/1-down 1N4148 diodes.

3.4 RC Diode Clipper Training

A DWDF model of the diode clipper circuit was constructed,
with the diode set in the WDF model replaced by the neural
network architecture shown above.

3.4.1 Training Hyperparameter Search

The DWDF models were trained using an Adam optimizer,
as described in Equation (6) In order to determine the ideal
training parameters for the differentiable diode clipper mod-
els, the training process was run for 100 epochs using the
1-up/1-down dataset with a 2x16 network, using a set of
different training parameters for each run, as shown in Fig.
10. After completing the hyperparameter search, the set of
hyperparameters resulting in the lowest loss values were:
α = 1.0e-4, β1 = 0.5, and β2 = 0.999.
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3.4.2 Determining Ideal Network Size

Next, the training process was run for 500 epochs using
the 1-up/1-down dataset with a variety of network sizes,
as shown in Table 3. From the results, it can be seen that
using a ªwiderº network with larger hidden layers can im-
prove the network accuracy more so than using a ªdeeperº
network with more hidden layers. It was determined that
the 2x16 network size should be used for training future
networks, since it was able to achieve the highest accuracy.

Model Pre-Training Epoch 0 Epoch 100 Epoch 500
2x4 2.57e-3 3.22e-2 1.15e-2 9.31e-3
2x8 8.55e-4 3.01e-2 7.68e-3 5.96e-3

2x16 1.03e-4 1.14e-2 6.90e-3 4.42e-3
4x4 1.49e-3 2.13e-2 9.67e-3 7.88e-3
4x8 7.11e-4 2.11e-2 8.28e-3 4.92e-3

Table 3: Training results for 1-up/1-down models with dif-
ferent network sizes. ªPre-Trainingº shows the final loss
values after pre-training. The final three columns show the
validation loss values after epochs 0, 100, and 500.

3.4.3 Training Results

DWDF models of the diode clipper circuit containing 2x16
networks in place of the wave domain diode element were
trained for 500 epochs for each diode configuration, using
the training hyperparameters determined above. Table 4
shows the results of these training runs. The pre-training
loss shown in the second column of Table 4 is the network
error after the pre-training step described above. Note that
the loss at Epoch 0 (third column) can be interpreted as the
error between the ideal diode equations and the measured
data. The neural network models were able to improve
upon the initial error by more than a factor of two in al-
most all cases.

Finally, an additional 2x16 model was trained for 2000
epochs for the 1-up/1-down dataset, results in a final vali-
dation loss of 3.78e-3. Plots of the training and validation
output signals before and after the training run can be seen
in Fig. 9. From visual inspection, it appears that the largest
discrepancies between the two signals occur during the ex-
treme peaks in the signal. It is expected that adjustments to
the loss function used to train the networks could improve
the network performance for these parts of the signal.

Config Pre-Training Epoch 0 Epoch 100 Epoch 500
1U-1D 1.03e-4 1.14e-2 6.90e-3 4.42e-3
1U-2D 1.70e-4 2.36e-2 7.79e-3 6.12e-3
1U-3D 1.25e-4 2.77e-2 6.30e-3 5.05e-3
2U-2D 1.71e-4 1.38e-2 8.12e-3 7.45e-3
2U-3D 1.01e-4 1.89e-2 8.66e-3 7.04e-3
3U-3D 3.07e-4 1.25e-2 8.25e-3 6.04e-3

Table 4: Training results for 2x16 networks with different
diode configurations. ªPre-Trainingº shows the final loss
values after pre-training. The final three columns show the
validation loss values after epochs 0, 100, and 500.

Another useful comparison is to examine the transconduc-
tance of the neural network diode model compared to the
transconductance characteristic predicted by the Shockley
diode law [19], shown in Fig. 8. From the asymmetry
in the transconductance of the neural model, it is likely
that the upward- and downward-facing diodes used in the
circuit did not have identical characteristics, as the ideal
model assumes. Further, the loss in current at higher volt-
ages indicates that the diodes may have exhibited some
internal resistance that is not accounted for by the ideal
model.

Figure 8: Comparing the transconductance characteristic
between the ideal Shockley diode law, and the 2x16 neural
network for the 1-up/1-down diode configuration.

4. REAL-TIME CONSIDERATIONS

VA models are often implemented as part of a real-time
system that may be used for sound mixing/mastering, or
musical performance. With that end in mind, an audio plu-
gin was developed containing an implementation of the 1-
up/1-down WDF diode clipper model using several differ-
ent methods for modelling the wave domain diodes. The
first implementation uses the wave domain diode equations
presented in [15], along with a high-precision C++ imple-
mentation of the Wright Omega function in order to eval-
uate the LambertW function [20]. The second implemen-
tation uses the same diode equations, this time using an
approximate implementation of the Wright Omega func-
tion [16]. The remaining implementations use the trained
diode models developed in the previous section, imple-
mented using the RTNeural library for performing neural
network inferencing in real-time [21]. Source code for the
plugin is available on GitHub [13].

4.1 Performance Comparison

In order to compare the performance of the different diode
models, a performance benchmark was developed using
the Google Benchmark library. 1 . The benchmark initialises
the diode clipper WDF with the given diode model, and
processes 100 milliseconds of audio at a sample rate of 96
kHz. This process will repeat until the benchmarks time

1 https://github.com/google/benchmark
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Figure 9: Before and after comparison of the training process for the 2x16 model.

Model # Iterations x Ideal
Ideal Model 1816 ±

Approx. Model 20779 11.44
2x4 Model 7006 3.86
2x8 Model 4401 2.42
2x16 Model 2302 1.27
4x2 Model 3531 1.94
4x8 Model 2903 1.60

Table 5: Results of the diode clipper performance bench-
marks. ªIdeal/Approx. Modelº refers to the diode model
implemented with a high-precision/approximate Wright
Omega function. The second column shows how many
iterations the benchmark was able to perform within 5 sec-
onds. The third column shows how many times faster each
model is when compared to the ideal model.

out after 5 seconds. The number of iterations completed
within 5 seconds can then be used as a ªscoreº to com-
pare the run-time performance between the models. The
benchmarks were run on a 2018 Mac Mini, with a 3.2 GHz
Intel Core i7 CPU. Table 5 shows the results of the per-
formance benchmarks, including the number of iterations
completed within 5 seconds, as well as the number of iter-
ations compared against the ideal model score. The results
of the benchmark show that the neural network models can
out-perform the high-precision implementation, although
all the neural network models are clearly out-performed
by the approximate model. For the purposes of practi-
cal implementations of diode clipper circuit models, the
implementer should choose between the speed of using a
model based on mathematical approximations of lookup
tables relative to the improved accuracy given by the neu-
ral network model.

5. CONCLUSION

This paper has outlined the development of a Differen-
tiable Wave Digital Filter library, that can be used to train
neural network models of circuit components via gradient
descent. The DWDF library has been used to train neu-

ral network models of anti-parallel diodes, which may be
used in models of audio circuits. From a ªwhite-boxº per-
spective, DWDFs offer the ability to augment wave digital
circuit models with data measured from physical circuits.
From a ªblack-boxº perspective, DWDFs offer a method
to construct neural network circuit models that is modu-
lar and utilizes prior knowledge about the circuit. The
WDF models constructed with trained neural networks can
be implemented for real-time use with comparable perfor-
mance to a model constructed with traditional WDF ele-
ments.

Future research in this area will focus on extending the
scope of DWDF models, to include models of circuits with
more complex topologies, such as circuits with multi-port
elements including tubes, transistors, and op-amps. In par-
ticular, training differentiable models of R-type adaptors
[3] could offer many possibilities for developing data-driven
models of more complicated circuits. In particular, WDF
models of circuits containing multi-port nonlinearities of-
ten require large multi-dimensional lookup tables or com-
putationally expensive iterative solvers. Replacing these
multi-port nonlinearities with neural networks has the po-
tential to improve the real-time performance of these cir-
cuit models.

DWDFs also make it possible for neural models of circuit
components that were originally trained in one circuit to
be used in a WDF model of a completely separate circuit.
Exploring this possibility is an interesting topic for future
research.

Another potentially interesting line of study is the use of
machine learning to generate a WDF topology for an un-
known circuit. While the DWDF strategy presented here
would be useful for optimizing the generated topologies,
the topology generation itself would require an approach
that is not based on gradient descent, such as genetic algo-
rithms or heuristics.

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

7



Acknowledgments

The authors would like to thank the Center for Computer
Research in Music and Acoustics (CCRMA) at Stanford
University for providing computing resources necessary
for this research. Thanks also to Camille Noufi, Dirk Roosen-
burg, and Champ Darabundit for useful conversations about
neural network training strategies.

6. REFERENCES

[1] F. Germain, ªNon-Oversampled Physical Modeling
for Virtual Analog Simulations,º Ph.D. dissertation,
Stanford University, June 2019. [Online]. Available:
https://searchworks.stanford.edu/view/13250111

[2] A. Fettweis, ªWave Digital Filters: Theory and Prac-
tice,º Proceedings of the IEEE, vol. 74, no. 2, pp. 270±
327, Feb. 1986.

[3] K. J. Werner, ªVirtual Analog Modeling of Audio Cir-
cuitry Using Wave Digital Filters,º Ph.D. dissertation,
Stanford Univeristy, June 2016. [Online]. Available:
https://searchworks.stanford.edu/view/11891203

[4] M. A. MartÂınez Ramirez and J. D. Reiss, ªModeling of
Nonlinear Audio Effects with End-to-End Deep Neural
Networks,º arXiv e-prints, p. arXiv:1810.06603, Oct.
2018.

[5] E. DamskÈagg, L. Juvela, and V. VÈalimÈaki, ªReal-
Time Modeling of Audio Distortion Circuits with Deep
Learning,º in Proc. of the 16th Sound and Music Com-
puting Conference (SMC-2019), May 2019.

[6] A. Wright, E. DamskÈagg, and V. VÈalimÈaki, ªReal-
Time Black-Box Modelling with Recurrent Neural
Networks,º in Proc. of the 22nd Int. Conference on
Digital Audio Effects (DAFx-19), Sept. 2019.

[7] J. Engel, L. H. Hantrakul, C. Gu, and
A. Roberts, ªDDSP: Differentiable Digital Sig-
nal Processing,º in International Conference on
Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=B1x1ma4tDr

[8] B. Kusnetsov, J. D. Parker, and F. Esqueda, ªDifferen-
tiable IIR Filters for Machine Learning Applications,º
in Proc. of the 23rd Int. Conference on Digital Audio
Effects (DAFx-20), Sept. 2020.

[9] F. Esqueda, B. Kusnetsov, and J. D. Parker, ªDifferen-
tiable White-Box Virtual Analog Modelling,º in Proc.
of the 24th Int. Conference on Digital Audio Effects
(DAFx-21), Sept. 2021.

[10] D. Roosenburg, E. Stine, R. Michon, and J. Chowd-
hury, ªA Wave-Digital Modeling Library for the Faust
Programming Language,º in 18th Sound and Music
Computing Conference (SMC-2021), June 2021.

[11] M. Rest, R. Dunkel, K. J. Werner, and J. Smith, ªRT-
WDFÐA Modular Wave Digital Filter Library with

Support for Arbitrary Topologies and Multiple Nonlin-
earities,º in Proc. of the 19th Int. Conference on Digital
Audio Effects (DAFx-16), Sept. 2016, p. 287±294.

[12] M. Abadi et al., ªTensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems,º 2015, software
available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[13] J. Chowdhury and C. J. Clarke, ªDifferentiable
WDFs,º https://github.com/jatinchowdhury18/
differentiable-wdfs, 2022.

[14] D. P. Kingma and J. Ba, ªAdam: A Method for
Stochastic Optimization,º CoRR, vol. abs/1412.6980,
2015.

[15] K. J. Werner, V. Nangia, A. Bernardini, J. Smith, and
A. Sarti, ªAn Improved and Generalized Diode Clipper
Model for Wave Digital Filters,º Journal of the Audio
Engineering Society, Oct. 2015.

[16] S. D’Angelo, L. Gabrielli, and L. Turchet, ªFast Ap-
proximation of the Lambert W Function for Virtual
Analog Modelling,º in Proc. of the 22nd Int. Confer-
ence on Digital Audio Effects (DAFx-19), Sept. 2019.

[17] C. Kehling, J. Abeûer, C. Dittmar, and G. Schuller,
ªAutomatic Tablature Transcription of Electric Guitar
Recordings by Estimation of Score- and Instrument-
Related Parameters.º in DAFx, 2014, pp. 219±226.

[18] J. D. Parker, F. Esqueda, and A. Bergner, ªModelling of
nonlinear state-space systems using a deep neural net-
work,º in Proc. of the 22nd Int. Conference on Digital
Audio Effects (DAFx-19), Sept. 2019.

[19] W. Shockley, ªThe Theory of P-N Junctions in Semi-
conductors and P-N Junction Transistors,º The Bell
System Technical Journal, vol. 28, no. 3, pp. 435±489,
1949.

[20] P. W. Lawrence, R. M. Corless, and D. J. Jeffrey,
ªAlgorithm 917: Complex Double-Precision Evalua-
tion of the Wright ω Function,º ACM Trans. Math.
Softw., vol. 38, no. 3, Apr. 2012. [Online]. Available:
https://doi.org/10.1145/2168773.2168779

[21] J. Chowdhury, ªRTNeural: Fast Neural Inferencing
for Real-Time Systems,º 2021. [Online]. Available:
https://arxiv.org/pdf/2106.03037.pdf

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

8



Figure 10: Results of network hyperparameter search.
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