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ABSTRACT

To prevent work-related musculoskeletal disorders (WMSD)
the ergonomists apply manual heuristic methods to determine
when the worker is exposed to risk factors. However, these
methods require an observer and the results can be subjec-
tive. This paper proposes a method to automatically evaluate
the ergonomic risk factors when performing a set of postures
from the ergonomic assessment worksheet (EAWS). Joint an-
gle motion data have been recorded with a full-body motion
capture system. These data modeled the motion patterns of
four different risk factors, with the use of hidden Markov
models (HMMs). Based on the EAWS, automated scores
were assigned by the HMMs and were compared to the scores
calculated manually. Because the method proposed here is
intrusive and requires expensive equipment, kinematic data
from a reduced set of two sensors was also evaluated.

Index Terms— Hidden Markov Models, risk factors,
wearables, gesture recognition, work-related musculoskeletal
disorders

1. INTRODUCTION

The work-related musculoskeletal disorders (WMSD) in the
industry are becoming increasingly common. These disorders
are caused from the execution of activities that are repetitive,
exert forces or require awkward postures [1]. Treatment
and recovery of WMSDs is often unsatisfactory, resulting
in a temporal or permanent disability, affecting the indus-
trial worker’s quality of life and increases company’s costs.
Experts have developed ergonomic assessment methods to
prevent WMSD-related hazards. These methods are based on
theoretical knowledge of human physical limitations and abil-
ities [2] and define accepted standards (e.g ISO 11226:2000
and EN 1005-4). Some of the most used methods in industry
are the Rapid Upper Limb Assessment (RULA) [3], Ovako
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Working Posture Analysing System (OWAS) [4], and the
European Assembly Worksheet (EAWS) [5], which consists
of four sections for the evaluation: working postures, action
forces, manual materials handling, and repetitive loads of the
upper limbs. To carry out an assessment with these meth-
ods, it is necessary that the ergonomist fill manually their
respective worksheet. This worksheet evaluates the exposure
of the worker to ergonomic risk factors. These factors are
mainly related to the working posture, action forces of the
whole body, manual material handling and task repetitive-
ness. However, the results of current ergonomic assessments
are subjective since they rely on the ergonomist perception
and experience. Moreover, the frequency of evaluation and
monitoring of WMSD risk factors is limited since the eval-
uations are time-consuming and need to be applied by an
ergonomist. To overcome some of these limitations, motion
capture technology is used for a more objective ergonomic
evaluation. Yan et al. [6] used inertial measurement units
(IMU) to measure torso inclination for a monitoring system
for construction workers’ WMSD prevention. Busch et al. [7]
used optical markers to track the upper body segments (head,
hands, elbows, torso, and waist) and fill in automatically the
REBA ergonomic assessment worksheet. Such approaches
still present issues that made them impractical to implement
in industry. Only a few postural risk factors are screened ac-
curately, and vision approaches are costly and face occlusions
issues. In this paper, a pipeline for automatic recognition of
four postural risk factors and the computation of ergonomic
score is proposed based on the evaluation protocol of EAWS,
where the first risk factor is the posture of the legs (F1) with
three possible motion patterns: standing, seating and kneel-
ing. The second factor focuses on the torso inclination (F2)
with 2 patterns: bending forward or not. The third risk factor
is the lateral bending and torso rotation (F3). Finally the
fourth one, is the elevation of the arms (F4). Depending on
which factor is present during the performance, an automatic
EAWS-related score is assigned on a scale from 0.5 to 26.5,
with the larger values assigned to the more dangerous pos-
tures. Motion capture (MoCap) from an IMU suit was used



to record the postures this paper work examined. For the risk
factors modeling, Hidden Markov Models (HMM) were used
for automatic recognition. However, to implement the pro-
posed system in an industrial environment, it is necessary to
use less intrusive technologies and to minimize the number of
sensors placed on the human body. To address this limitation,
this paper also evaluates the performance of the pipeline with
only two IMU sensors. The results indicate that it is possible
to monitor the exposure to ergonomic risk factors using two
accelerometers, potentially from a smatphone and a smart-
watch, which is a more realistic attempt for wide industrial
implementation.

2. PIPELINE

2.1. Generation of the data set

Ten healthy subjects were recorded performing 28 gestures,
with three repetitions, six seconds each. During these ges-
tures, the subject could be exposed to any combination of risk
factors. The motion capture technology (MoCap) used was an
IMU full-body suit (NANSENSE-BioMed Bundle, Baranger
Studios, Los Angeles, CA, USA). The output was joint an-
gles of the full body as a BVH file. For data processing, only a
low-pass Butterworth filter was applied to remove noise in the
MoCap data. In Fig. 1 it is shown three examples of gestures
that were recorded, each one exposing to a different combina-
tion of risk factors.

(a) (b)

(c)

Fig. 1: Example of three different awkward gestures. (a)
Standing while bending forward and rotating the torso; (b)
Sitting while rising arms above shoulder level; (c) Kneeling
while bending forward.

2.2. Recognition of risk factors on awkward gestures by
using Hidden Markov Models

For the recognition of the postural risk factors, four sets of
Hidden Markov Models (HMM) were used, one for each

factor. HMMs were used because they have proved to be a
prominent tool for gesture recognition [8, 9]. In Fig. 2 it is
shown the scheme for the recognition of the four factors. For
the recognition of F1, three HMMs were trained using only
the joint angles from the lower body. Each HMM modeled
one of the three possible postures of the legs (standing, sit-
ting, and kneeling). The HMM that provided the maximum
probability indicated the posture recognized. E.g. if HMM
F1.1 has the highest probability then the posture recognized is
standing. Two HMMs were trained for the recognition of F2,
using only the data from sensors located on the spine. One
HMM modeled the gestures where the subjects were upright
and the other where they were bending forward. Another two
HMM were trained for the recognition of F3, using the data
from the spine and arms, hence subjects moved both body re-
gions to execute the gestures involving the risk factor F3. One
HMM corresponded to the gestures where the subjects were
rotating and lateral bending their torso and the other where
they were not. The recognition of F4 was done with another
two HMM trained with the data from the arms and shoul-
ders. One HMM modeled the gestures where the subjects
raised their arms above shoulder level and the other gestures
where they kept their arms low. An ergodic HMM learned
the hidden states given the observation sequence (joint an-
gles) of each gesture, by using the Baum Welch algorithm.
The ergodic models were selected since for all gestures the
subjects returned to the initial posture. The gestures were
discretized using K-means clustering. The number of states
for each model and the number of clusters for discretization
were chosen by applying a stratified 10-fold cross-validation.
The centroids that produced the best results were retained to
quantize new test gestures. For every new test gesture, the
L2-norm was computed with each centroid and the cluster
that had the minimum distance was the one where the gesture
was assigned.

To evaluate the possibility to implement the proposed
pipeline with IMUs from smartphones and smartwatches, a
configuration of two sensors was also evaluated. The sen-
sors used for this configuration were the sensor located at
the right forearm, representing the IMU of a smartwatch, and
the sensor located on the hips, representing the IMU from a
smartphone. The right forearm was chosen since most of the
subjects are right-handed, and the sensor of the hips because
the origin of the movement for bending forward and rotating
the torso starts from the hips.

2.3. Automatic computation of an EAWS-related er-
gonomic score

For the computation of the automatic EAWS-related score,
four equations were designed based on the tables provided by
the EAWS worksheet in the working posture assessment sec-
tion [5]. Note that the numbers used for awkward postures
that are assumed for a lapse around six seconds. The auto-
matic EAWS-related score defined as S ∈

[
0.5, 26.5

]
, is the



Fig. 2: Pipeline of the modeling of the risk factors using motion data and the computation of the EAWS-related score.

sum of the scores S1, S2, S3, and S4 as shown in (1).

S =

4∑
i=1

Si (1)

S1 was computed by using (4):

S1 = LM1, L =

1.50.5
7

 (2)

where M1 was used as index of vector L, which consists of
the initial scores defined by EAWS for standing, sitting, and
kneeling respectively. For example, 0.5 a low risk value is
assigned when the subject is sitting and a seven a higher risk
value, when the subject is kneeling. The second score S2 was
computed with the following equation:

S2 = (M2− 1)BM1, B =

71
3

 (3)

where M2 is two if the subjects are bending and one if not;
B is the scores for bending forward, depending if the subjects
are standing, sitting or kneeling, which is indicated by M1.
In this case, if the subjects are bending forward, (M2 − 1)
will be one and a score from the vector B will be obtained. If
the subject is upright, the subtraction (M2− 1) will be equal
to zero as S2. The next score S3 was computed as:

S3 = 7.5(M3− 1) (4)

where M3 is two if the subjects are rotating their torso and
one if they are not. If the subjects are rotating their torso then
S3 will be equal to 7.5, if not is equal to zero. Finally, S4 was
computed using (5) and (6).

S4 = (M4− 1)(2−M2)AM1 + 5(M4− 1)(M2− 1) (5)

A =

 7
6.5
9

 (6)

where M4 is two if the subjects are rising their arms and one
if they are not, if they are not (M4− 1) will be zero as S4. If
the subjects are rising their arms, then the score of S4 would
depend if the subjects are bending forward too and if they
are standing, sitting or kneeling. For example, if the subjects
are not bending, a score for having the arms raised will be ob-
tained from the vector A, this score will depend if the subjects
are standing, sitting or kneeling, which is indicated by M1. If
the subjects is bending forward too (indicated by M2), S4

will be equal to five.

3. RESULTS

For the evaluation, a stratified cross-validation (CV) proce-
dure with ten iterations was followed. The data set was ran-
domly partitioned in ten parts of equal size. Then nine of them
were used for training of the models and the remaining was
used for testing. The process was repeated for all ten parts.
Since the data set had a less number of gestures where the
subject was kneeling or rising his arms, a stratified CV was
chosen to keep the same proportion of gestures with different
factors for each iteration. Therefore, only 180 gestures for
each class were used for F1 (standing, sitting, and kneeling),
90 per class for F2 (upright and bending), 90 per class for F3
(no rotating the torso and rotating torso), and 90 per class for
F4 (arms low and arm raised). Table 1 illustrate the resulting
confusion matrices after the ten iterations.

From these confusion matrices the F1-score was com-
puted by using the following equation:

F1score = 2 · precision · recall
precision+ recall

(7)

The set composed of all joint angles achieved an F1-score
of 0.9499 for F1, 0.9443 for F2, 0.9165 for F3, and 0.9272
for F4, thus an overall F1-score of 0.9345. These recognition
performances are compared with the ones achieved with the
minimum set of sensors in Table 2.



Table 1: Confusion matrices for the recognition of F1, F2,
F3, and F4, using all joint angles. Note that U: Upright; B:
Bending forward; NTR: No rotating the torso; TR: Rotating
the torso; AL: Arms low; AR: Arms raised

Motion data
HMM Standing Seated Kneeling

F1
F1.1 60 0 0
F1.2 0 47 6
F1.3 0 2 53

Motion data
HMM U B

F2 F2.1 73 9
F2.2 0 86

Motion data
HMM NTR TR

F3 F3.1 69 12
F3.2 2 85

Motion data
HMM AL AR

F4 F4.1 73 12
F4.2 0 83

Table 2: Overall recognition performance with each config-
uration of sensors for F1, F2, F3, and F4. Note that ALL:
Configuration with all the sensors; H and RF: Configuration
with two sensors

Risk factor Sensors F1-scores

F1 ALL 0.9505
H 0.7927

F2 ALL 0.9461
H 0.8593

F3 ALL 0.9159
H and RF 0.9272

F4 ALL 0.9283
H and RF 0.9451

Table 3: Mean absolute errors and the absolute error standard
deviation with each configuration of sensors. Note that ALL:
Configuration with all the sensors; H and RF: Configuration
with two sensors

Sensors MEA Std
ALL 1.5206 0.6337

H and RF 1.9496 0.4005

The proposed minimum set achieved an F1-score of
0.8811. Hence by using all joint angles, there is an improve-
ment of only 0.0534 over the minimum set of two sensors.
The factor that was the most challenging for the minimum set
was F1. Because there is only one sensor on the hips, there
are not enough data to discriminate between the three differ-
ent posture of the legs. Therefore, the minimum set proposed
is recommended for upper body ergonomics monitoring. For
the three out of four risk factors, when using only two sen-
sors, satisfying recognition results are achieved (F1-Score >
85%). These results are promising and open perspectives for
the use of this pipeline in industrial environments by using
less invasive technologies such as smartphones/smartwatches,
etc.

The absolute difference between the computed automatic
EAWS-related score and the manually assigned EAWS score
was calculated per each EAWS-related score prediction in the
10-fold cross-validation. After the cross-validation, the mean
of all absolute differences was computed, this corresponds to
the mean absolute error (MAE). The MAE of each configu-
ration of sensors and the standard deviation of the absolute
differences are shown in Table 3.

4. CONCLUSION

In this paper, a methodology for the recognition of postu-
ral risk factors on ergonomically hazardous gestures is pro-
posed. Wearables IMUs were used for the data collection,
where ten subjects executed 28 gestures, with different lev-
els of ergonomic risk according to the EAWS. From the data,
joint angles were obtained, from which motion patterns were
successfully recognized using models based on HMMs. By
using only two sensors placed on the right forearm and on the
hips and following the pipeline proposed, it was possible to
compute the automatic EAWS-related score with an MAE of
1.9496 and small standard distribution of the error. This indi-
cates that it is possible to use a minimum set of sensors for the
automatic computation of the EAWS-related score. This can
potentially allow the use of smartwatches and smartphones
for ergonomic assessment for the industry in a day-to-day ba-
sis. Wearables measuring working postures have the poten-
tial to reduce the prevalence of WMSD. High frequency and
easily-accessible monitoring technology can help give real-
time feedback to workers. Therefore, for future research, the
recognition algorithm presented in this paper will be tested
with data from less specialized technologies to design a mod-
ule for real-time ergonomic feedback.
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