
A Knowledge Extraction Framework for Python Code
Repositories

Dr. Rosa Filgueira, University of St Andrews, Scotland, UK
rf208@st-andrews.ac.uk

@Rosa_Filgueira
Dr. Daniel Garijo, University Politecnica of Madrid, Madrid, Spain

daniel.garijo@upm.es
@dgarijov

mailto:rf208@st-andrews.ac.uk
mailto:Daniel.garijo@upm.es

Motivation

● Best practices for Open Science are
spreading to Research Software

○ MSR now embraces FAIR! [1]

● Research Software can still be difficult to:
○ Understand
○ Adopt
○ Compare
○ Execute, reproduce or scale

● Research Software has become a research
topic:

○ Each approach introduces their own
tokenizer/ feature extractor/etc !!!

A Survey on Machine Learning Techniques for Source Code Analysis, 2021[1] https://conf.researchr.org/track/msr-2022/msr-2022-data-showcase

https://conf.researchr.org/track/msr-2022/msr-2022-data-showcase

Framework for extracting features from Python code repositories in order to:

- Ease repository comprehension
- How to run a target repository (software invocation)
- Determine the type of repository (library, package, service)

- Ease machine readability (extract features)
- Extract available documentation

- Functions
- Methods

- Call graph, Control Flow
- File hierarchy, tests files
- Dependencies and requirements

In a single, unified framework

Without executing code repositories

Reusing existing tools

Inspect4py: Main features

- Parse repositories to Abstract Syntax Tree (AST)
- Extract details of classes, methods, functions, documentation, etc

- Employ additional tools for obtaining:
- Requirements (pigar), Control Flow Graph (cdmcfparser)

- Analyse the previous information (new set of heuristics) to generate:
- Dependencies, Call graph, Files hierarchy, Test Detection, Software Type and Software invocation

- Evaluation Summary
- Manually annotated corpora (95 python repositories)

- 24 packages, 27 libraries 13 services and 31 scripts
- Overview of results for main software type classification for each category

Inspect4py: Usage example (1)

Installation: pip install inspectp4y

>> inspect4py -i MSR_Example -o output -html -si

dynamic call

Inspect4py: Usage example (2)

>> inspect4py -i pyLODE -o output_Pylode -r -html -si

Ranking software invocation methods

Software type
based on our ranking score

Inspect4py: Use cases
- Automated software catalogs (in combination with other tools for metadata

extraction)
- Autocomplete readme files

Work in Progress
- Software similarity

(feature extraction)

Inspect4py is Open Source and freely available
 https://github.com/SoftwareUnderstanding/inspect4py

https://inspect4py.readthedocs.io/en/latest/
https://pypi.org/project/inspect4py/

Problems? Questions? Open an issue :)

https://github.com/SoftwareUnderstanding/inspect4py
https://inspect4py.readthedocs.io/en/latest/
https://pypi.org/project/inspect4py/

