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Introduction

For forest management the availability of com-

plete and up-to-date forest inventories is essen-

tial, with one of the most important parameters

being the volumetric tree species distribution. Un-

fortunately, tree species mapping in Norwegian

production forests is a time-consuming and largely

manual process, leading to forest inventories that

are often incomplete and/or outdated. Indeed, the

determination of the tree species distribution is

currently performed by a forestry expert, mainly

by visual interpretation of aerial imagery and in

some cases lidar data. High resolution aerial im-

agery is available, however campaigns are expen-

sive and therefore infrequent. Satellite imagery, on

the other hand, provides dense time series, but has

a much lower resolution. The primary goal of the

SENTREE project is to automate the classification

of Norwegian main production tree species (Nor-

way spruce, Scots pine and Birch) using semantic

segmentation networks on a fusion of aerial and

satellite data sources.

Experiments

Three major directions are explored during the SEN-

TREE project:

The utility of combining Sentinel-2 (S2) and aerial

images.

The noise robust training.

Semi-supervised training.

Aerial and S2 combination: S2 bands and derived

indices (NDVI, etc.) were aggregated over time by

calculating minimum, maximum, median values, with

or without cloud masking. This process resulted in

almost 400 possible input features, which were fed

into TPOT[1] for model based automatic feature se-

lection. The 20 most relevant features were se-

lected, upsampled and concatenated to the 3 RGB

channels from the aerial images. Figure 2 depicts

the labels, aerial and aggregated S2 features.

Loss functions

The model is based on a standard U-Net[2] and uses

several custom loss functions. Firstly, the pixel level

predictions are aggregated on stand level. This ag-

gregation yields a vector of species distribution. The

L1 measure of the difference of the label and pre-

diction is used as the primary metric. Secondly, this

scalar value is fed into a modified Huber loss func-

tion. This function is used to prevent overfit on al-

ready converged samples. By modifying the Huber

loss, the contribution of the mislabeled stands can

be limited.

Finally, the semi-supervised training exploits the

nonetheless useful information provided by the un-

labeled regions. During this step, two loss functions

are implemented: focal-loss on pseudo-labeled pix-

els, and consistency loss over different augmenta-

tions [3].

Figure 1: Modified Huber loss with reduced contribution for high values.

Figure 2: Aerial image with stand labels (left), S2 summer image (middle), S2 winter image (right).

The broadleaf areas are easy to separate from coniferous forest in the winter but not in the summer images.

Model predictions and noise detection

Figure 3: Baseline model prediction for a single test tile in Rana, Norway.

Ground truth (top-left), aerial model prediction (top-right), S2 model prediction (bottom-left), aerial+S2 model prediction (bottom-right).

Norway spruce, Scots pine and birch are visualised in red, green and blue respectively.

Figure 4: Left: High label-prediction map with mismatches highlighted in red. Right: One of the identified mismatching stands.

The label was Scots Pine while the model predicted Norway Spruce. Human reviewer also identified the stand as Norway Spruce.

Discussion

The baseline models above show that S2 time series

data contributes to better generalization. The best

model performance is provided by the combined S2-

aerial model, followed by aerial-only and finally by

S2-only.

Two noise-related approaches were applied: limiting

the contribution of incorrect labels through noise ro-

bust losses (Figure 1), and detection of mislabeled

stands. The latter can be done by identifying regions

were labels and predictions strongly mismatch (Fig-

ure 4). Furthermore, we foresee using the area un-

der the margin (AUM) [4] approach to inspect the

behaviour of the loss curves during training in order

to detect noise. The performance of all approaches

mentioned above will also be tested with artificial la-

bel noise.

The semi-supervised training with consistency loss

will be tested before the end of the project by re-

moving labeled data. This training is expected to re-

duce the data pressure and improve generalization.
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