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Exoplanet imaging: Limitation

The problem: SPECKLES

Martinez et al. 2013

Especially the quasi-static ones
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Non-common path aberrations

Credit: Claire E. Max, UCSC
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Focal-plane wavefront sensing: Principle

command

inference

correction
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Deep Convolutional Neural Networks

• Motivation: fast predictions, higher performance, better robustness.

• Deep convolutional neural networks: U-Net, ResNet, EfficientNet.

• Applied on (post-coronagraphic) simulated data and in-lab data.

U-Net:

ResNet:
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Simulator-based autoencoder: Unsupervised learning

CNN
Z

Input PSFs Reconstructed PSFs

SIM

q(z|x) p(x|z)

Latent variables: 
Zernike coefficients

Loss function: ELBO

Reconstruction term:

αEq(z|x ;φ)[log(p(x |z))]

p(x |z) := Pois(λ)

K-L divergence term:

−β KL(q(z |x ;φ)||p(z))

q(z |x) := N (µ, σ2)

p(z) := N (0, 1)
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Sim-VAE: Performance

• Simple simulator:

PSF(x, y) = |F [A(x , y)e iθ(x,y)θ(x,y)θ(x,y)]|2

• K-L divergence term factor: β = 0

• Learning rate = 10−4

• SNR = 100 ± 20
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Sim-VAE: Robustness to AO residuals

• Adding phase turbulence residuals: 50nm rms, t = 100ms.

• Information not included in labels (CNN) nor simulator (AE).

• WFS telemetry: could add AO residuals into simulator.
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Predicted phase:
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Application to real data: SCExAO instrument

Credits: NAOJ

• SCExAO: science and technology development.

• Labelled datasets + control of the instrument.

• Simulations close enough to in-lab PSFs.

• SimVAE: Morphine package (Poppy + JAX).
github.com/benjaminpope/morphine

Experimental PSFs:

Simulated PSFs:
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Transfer learning with SCExAO data
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Conclusions

Z  

Phase diversityApplication to real data

Physics-based learning for focal-plane wavefront sensing

Improving the VAE

maxime.quesnel@uliege.be University of Liège
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