A physics-based deep learning approach for focal-plane wavefront sensing

Maxime Quesnel^{a,b}

Gilles Orban de Xivry^b, Gilles Louppe^a, Olivier Absil^b

^aMontefiore Institute of Electrical Engineering and Computer Science ^bSpace sciences, Technologies and Astrophysics Research (STAR) Institute

University of Liège

ESA/ESO SciOps workshop

18 May 2022

maxime.quesnel@uliege.be

Context	Deep learning architectures		Conclusions
•00			

Exoplanet imaging: Limitation

The problem: **SPECKLES**

Martinez et al. 2013

Especially the **quasi-static** ones

maxime.quesnel@uliege.be

A physics-based deep learning approach for focal-plane wavefront sensing

Context	Deep learning architectures		Conclusions
000			

Non-common path aberrations

Context	Deep learning architectures			Conclusions
000	00	00	00	

Focal-plane wavefront sensing: Principle

	Deep learning architectures	Results	Towards real data	Conclusions
	●O	00	00	O
Deen Co	nvolutional Neural Netw	iorks		

- Motivation: fast predictions, higher performance, better robustness.
- Deep convolutional neural networks: U-Net, ResNet, EfficientNet.
- Applied on (post-coronagraphic) simulated data and in-lab data.

maxime.quesnel@uliege.be

	Deep learning architectures			Conclusions
000	00	00	00	

Simulator-based autoencoder: Unsupervised learning

Loss function: ELBO

Reconstruction term:

$$\alpha \mathbb{E}_{q(z|x;\phi)}[log(p(x|z))]$$

$$p(x|z) := Pois(\lambda)$$

K-L divergence term:

$$-\beta \operatorname{KL}(q(z|x;\phi)||p(z))$$

$$egin{aligned} q(z|x) &:= \mathcal{N}(\mu, \sigma^2) \ p(z) &:= \mathcal{N}(0, 1) \end{aligned}$$

A physics-based deep learning approach for focal-plane wavefront sensing

	Deep learning architectures	Results	Towards real data	Conclusions
	00	●O	00	O
Sim-VAE:	Performance			

• Simple simulator:

	Deep learning architectures	Results		Conclusions
000	00	00	00	

Sim-VAE: Robustness to AO residuals

- Adding phase turbulence residuals: 50nm rms, t = 100ms.
- Information not included in labels (CNN) nor simulator (AE).
- WFS telemetry: could add AO residuals into simulator.

A physics-based deep learning approach for focal-plane wavefront sensing

Deep learning architectures	Towards real data	Conclusions
	0	

Application to real data: SCExAO instrument

- SCExAO: science and technology development.
- Labelled datasets + control of the instrument.
- Simulations close enough to in-lab PSFs.
- SimVAE: **Morphine** package (Poppy + JAX). github.com/benjaminpope/morphine

	Deep learning architectures	Towards real data	Conclusions
000		00	

Transfer learning with SCExAO data

Deep learning architectures		Conclusions
		•

Conclusions

