Real-time Detection of Anomalies in **Transient Surveys**

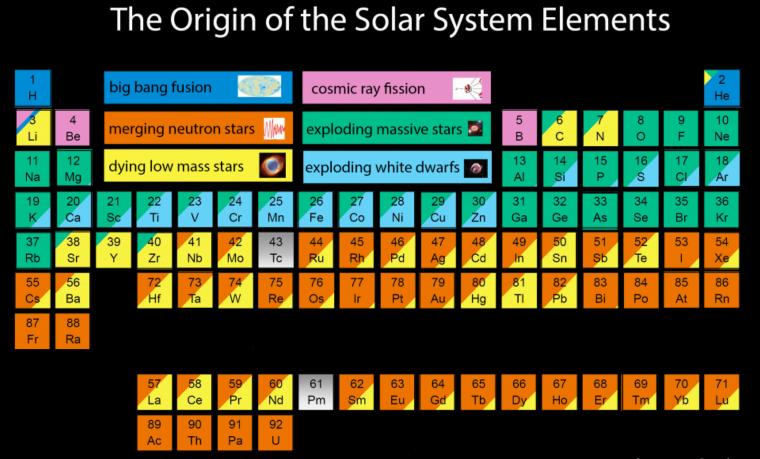
Daniel Muthukrishna MIT

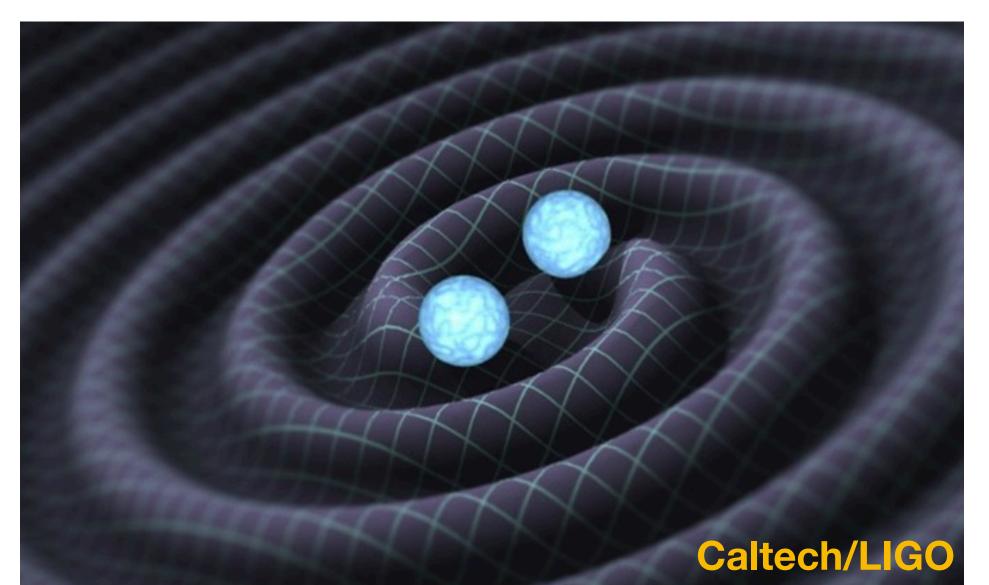
Collaborators: Michelle Lochner (SARAO) Kaisey Mandel (U. Cambridge) Gautham Narayan (U. Illinois) Sara Webb (Swinburne U.)



What have transients been useful for?

- Discovery of the accelerating expansion of the universe (Type Ia Supernova)
- Detection of gravitational waves (Kilonovae)
- Production of the universe's heavy elements

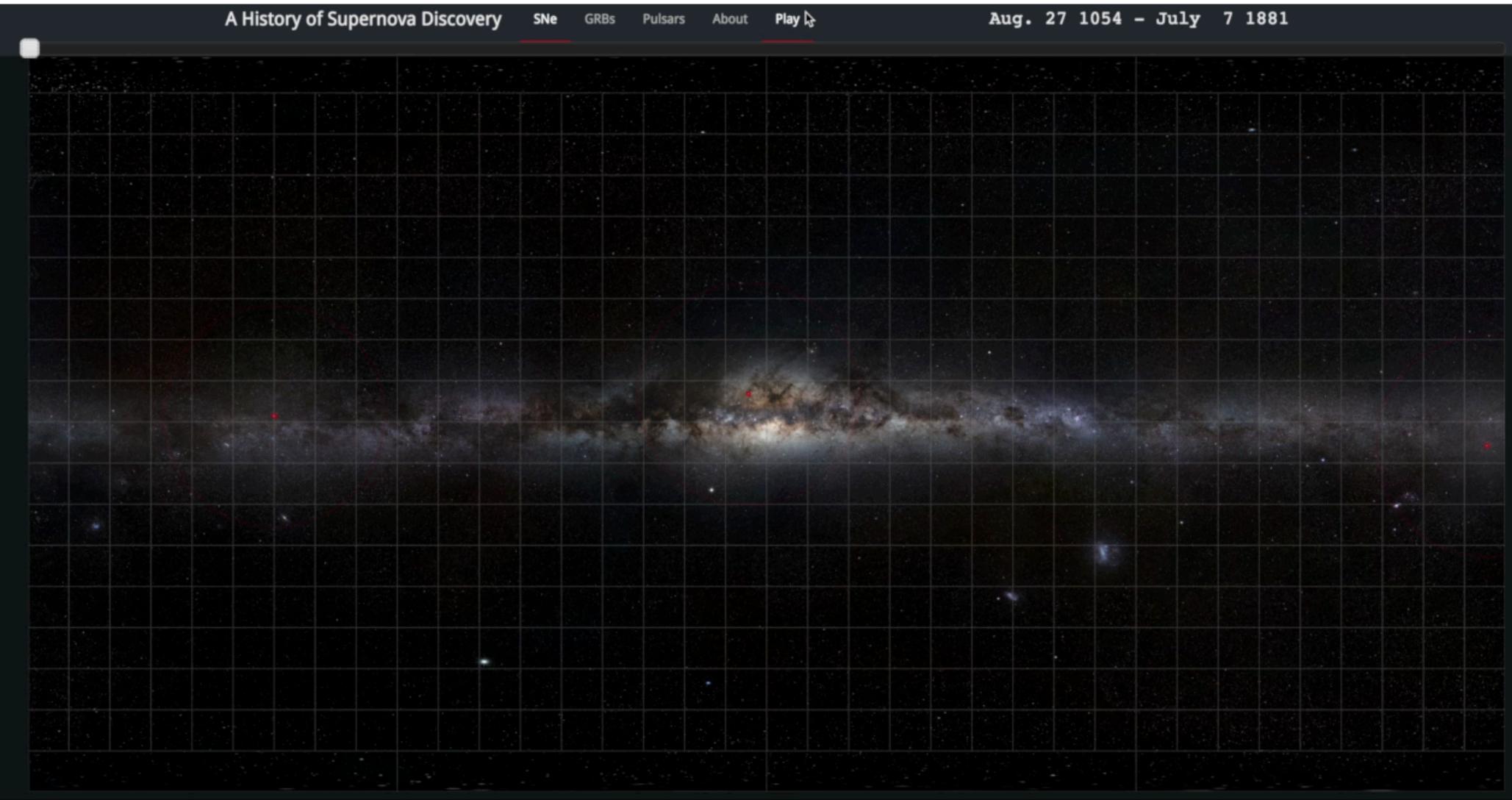




Graphic created by Jennifer Johnson

Astronomical Image Credits: ESA/NASA/AASNova

12785 Supernovae in 15 seconds



Isaac Shivvers (UC Berkeley)

LSST TAKES 20TB OF IMAGES PER NIGHT

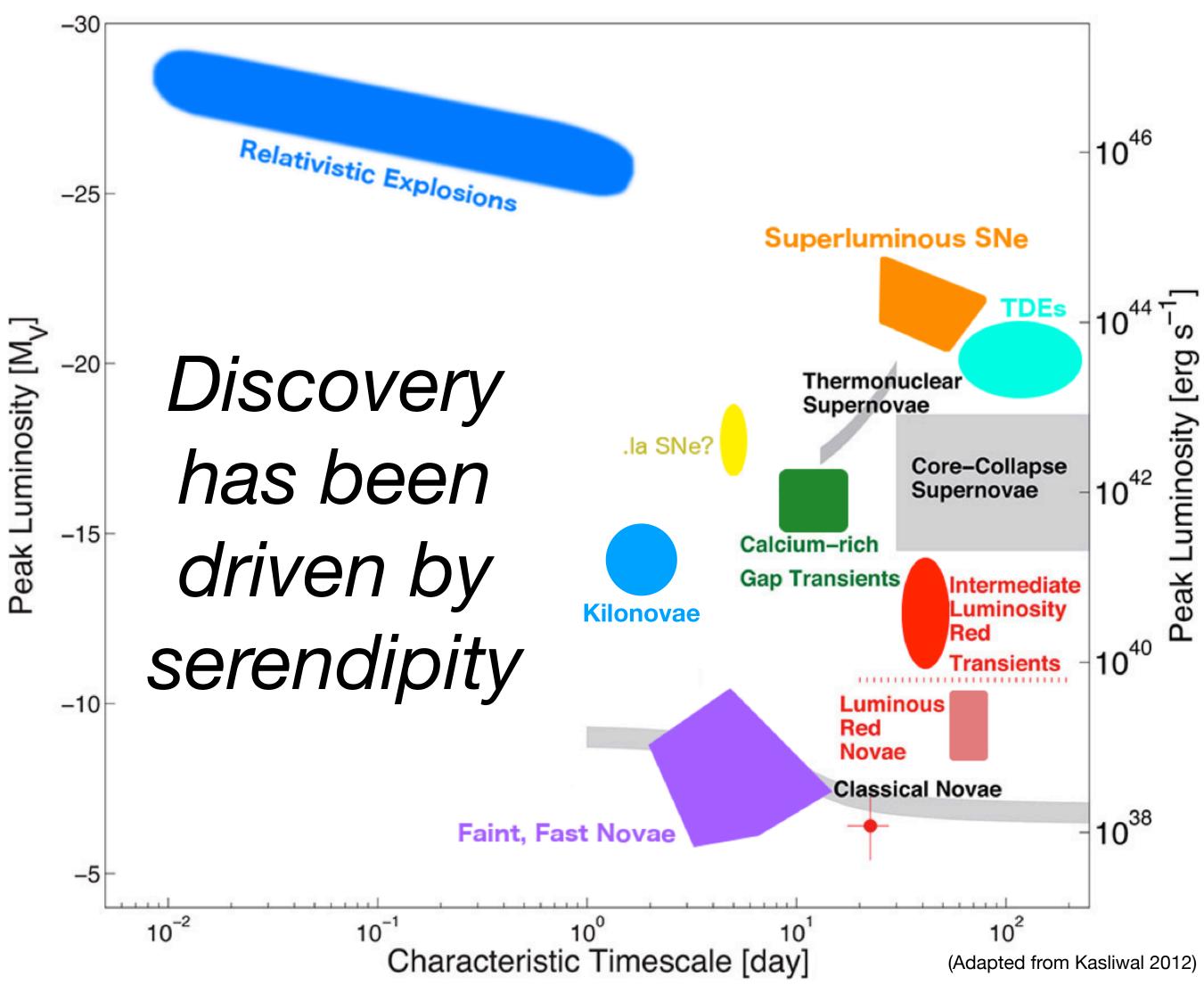
Transient searches have relied on human eyes for alerts

10 million transient alerts per night!

How can we expect to get lucky with such high volumes of data?

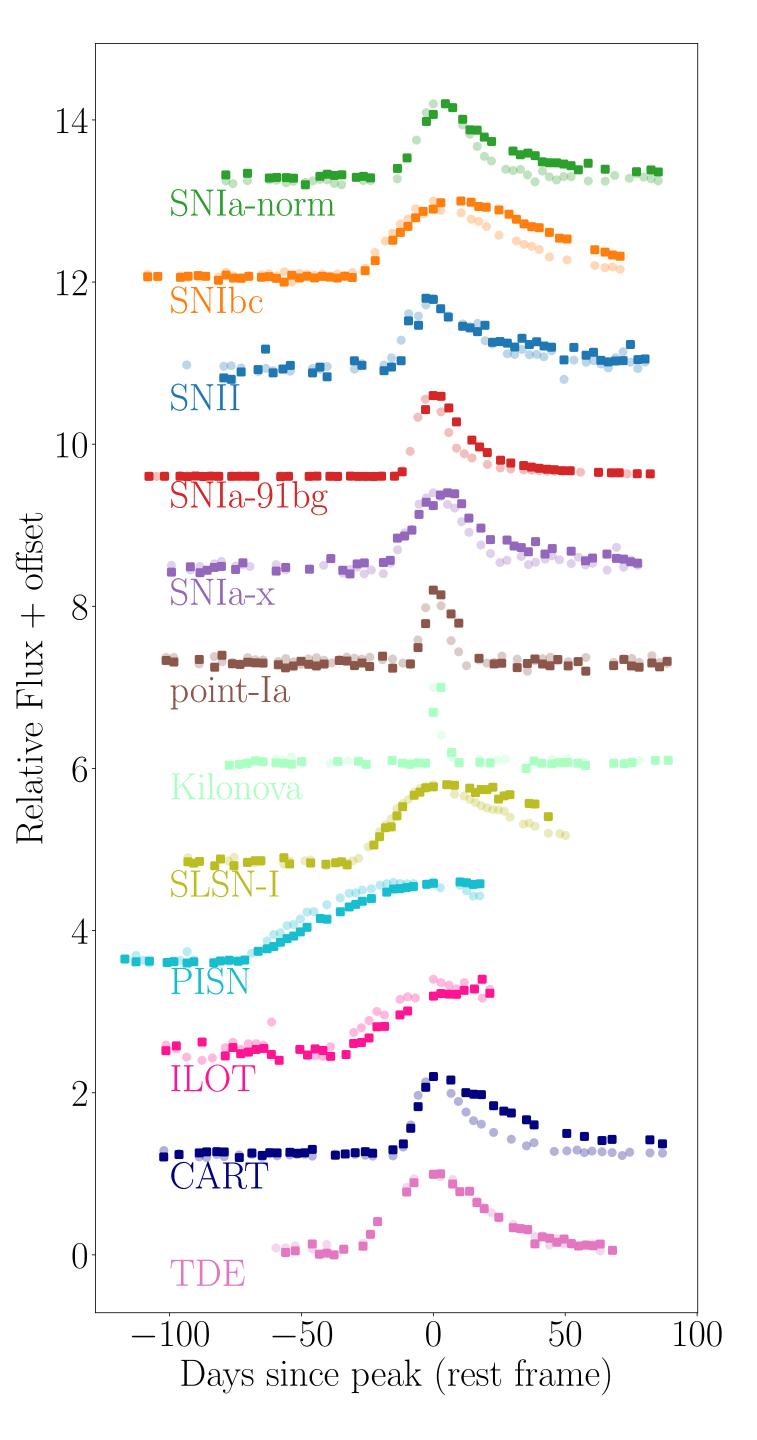
The known transient universe

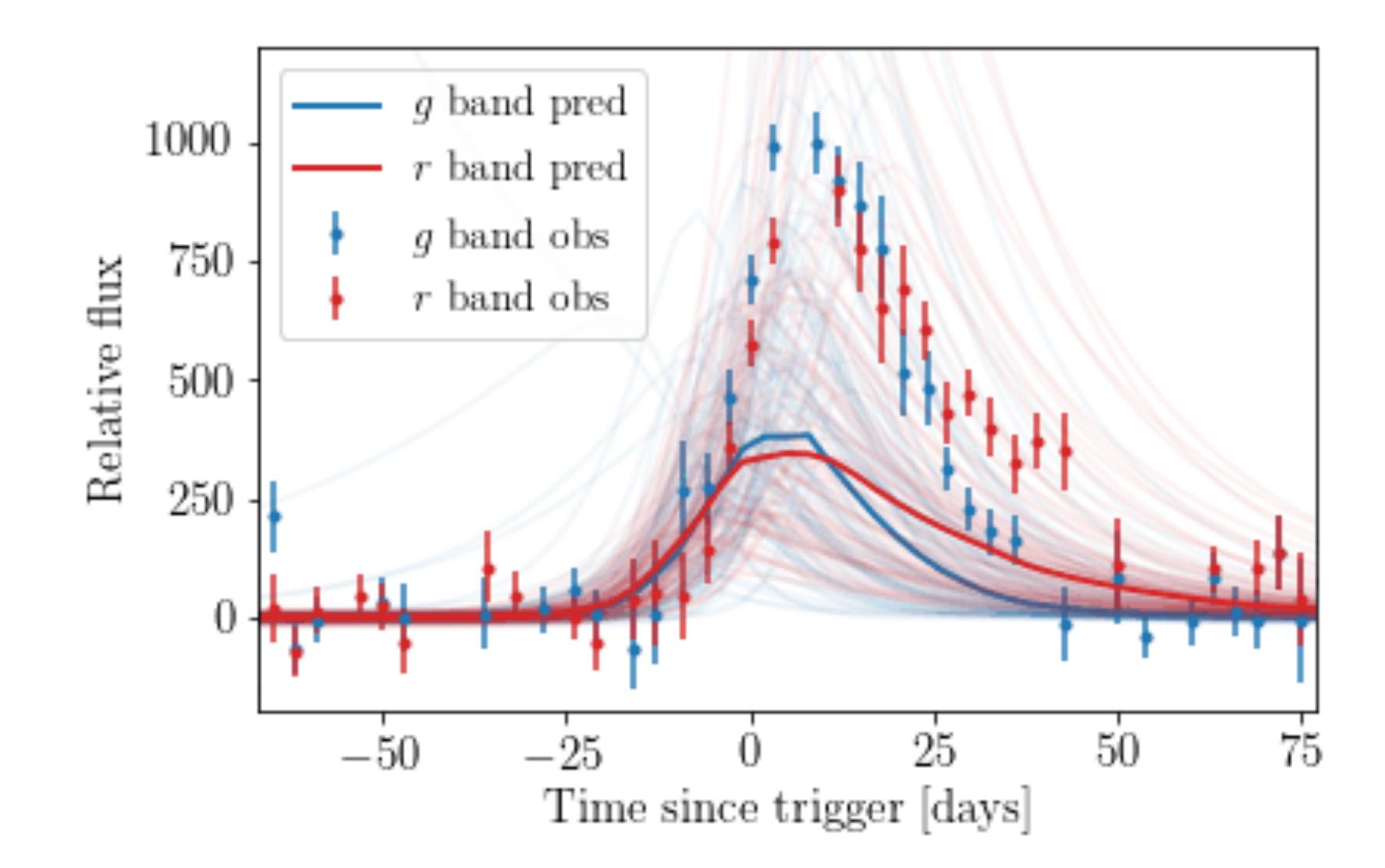
- The transient universe remains largely mysterious
- New surveys will observe an unprecedented number of transients - new and known
- Need to prioritise follow-up based on class and epoch
- Automated, fast, and early classifications are required

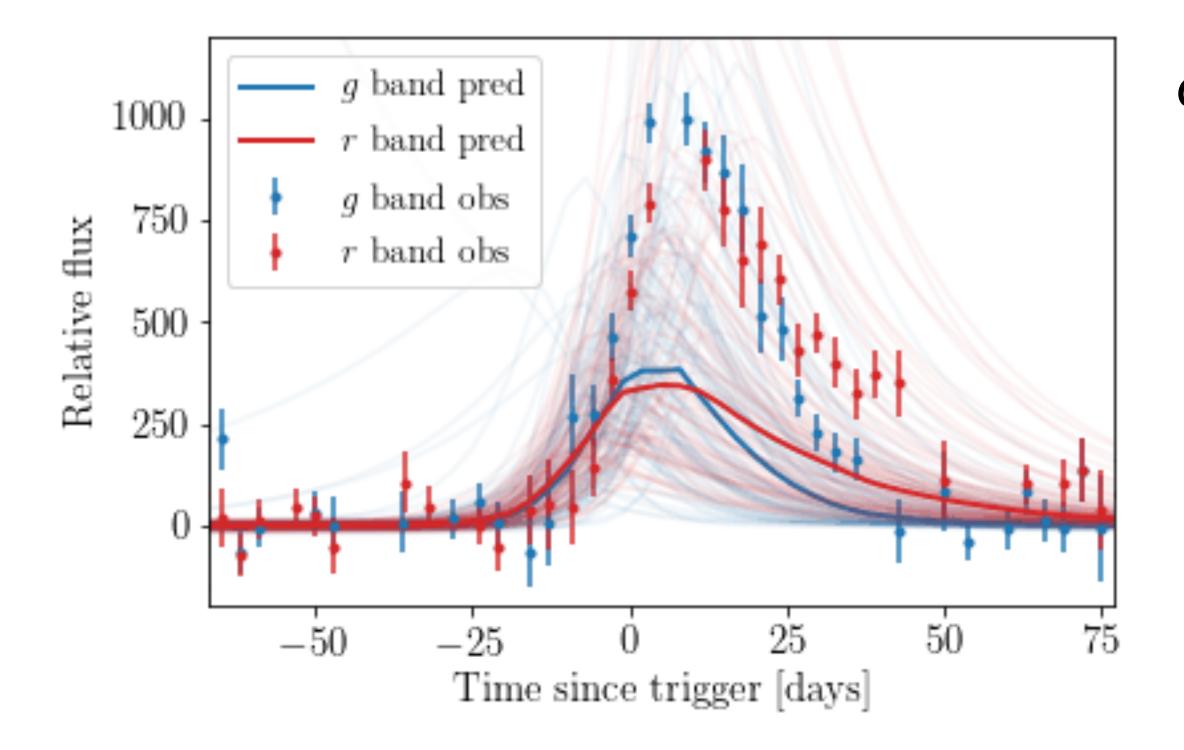


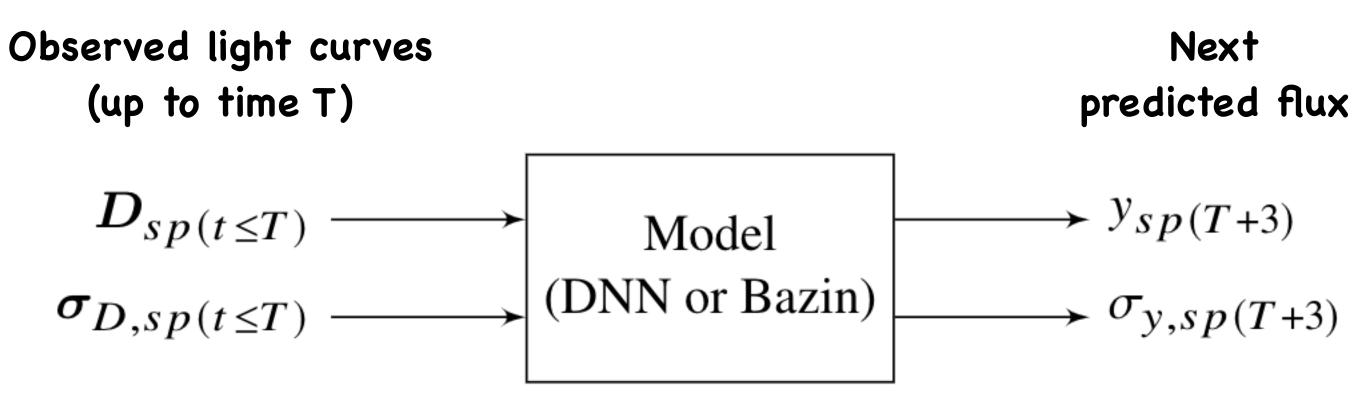
Simulated dataset

- We simulated transients with the observing properties of the Zwicky Transient Facility (ZTF) using PLAsTiCC software
- 10,000 ZTF light curves for each transient classes









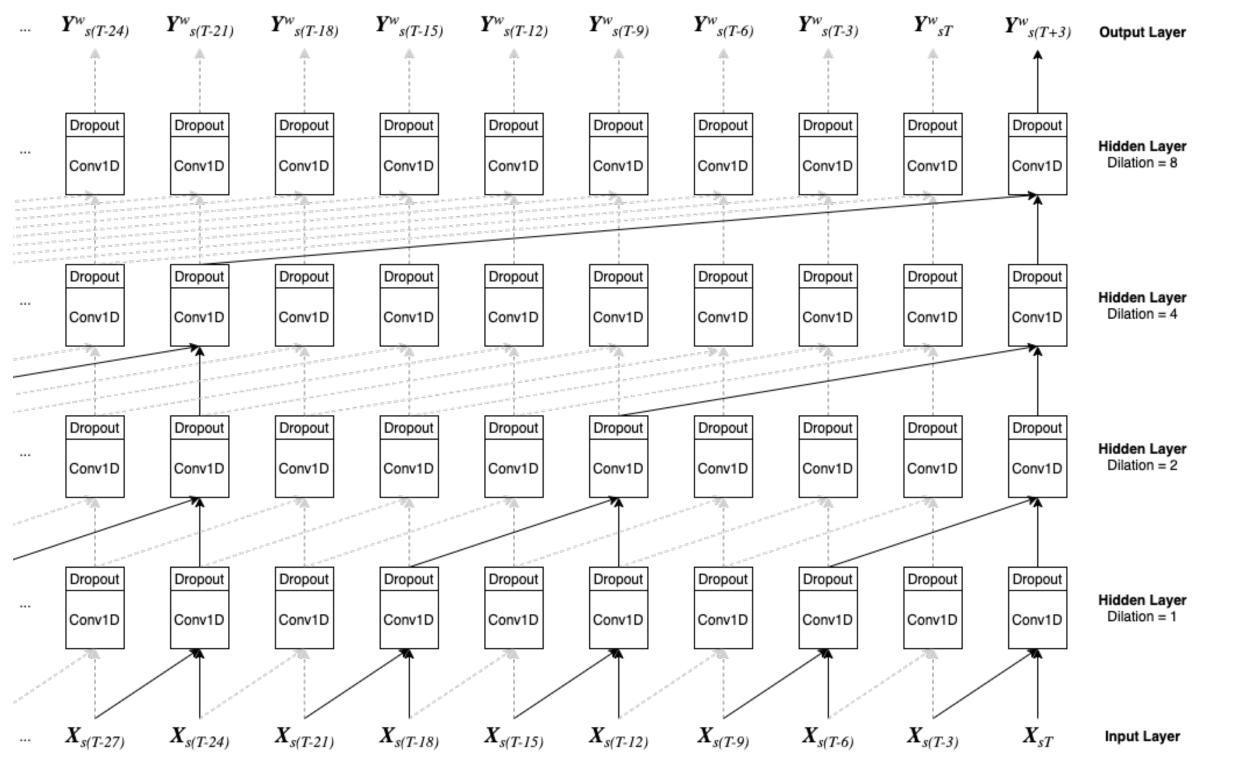
Model (1): Temporal Convolutional Neural Networks (probabilistic)

Output	•	•	•	•	•
Hidden Layer	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
Hidden Layer	\bigcirc	0	0	0	0
Hidden Layer	\bigcirc	0	\bigcirc	\bigcirc	0
Input	ightarrow	0	ightarrow	ightarrow	ightarrow

Model (2): Bayesian model based on the Bazin function (Bazin et al. 2009) $F(t) = A \frac{e^{-(t-t_0)/\tau_{\text{fall}}}}{1 + e^{-(t-t_0)/\tau_{\text{rise}}}} + B + A\epsilon_{\text{int}}(t)$

- 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0

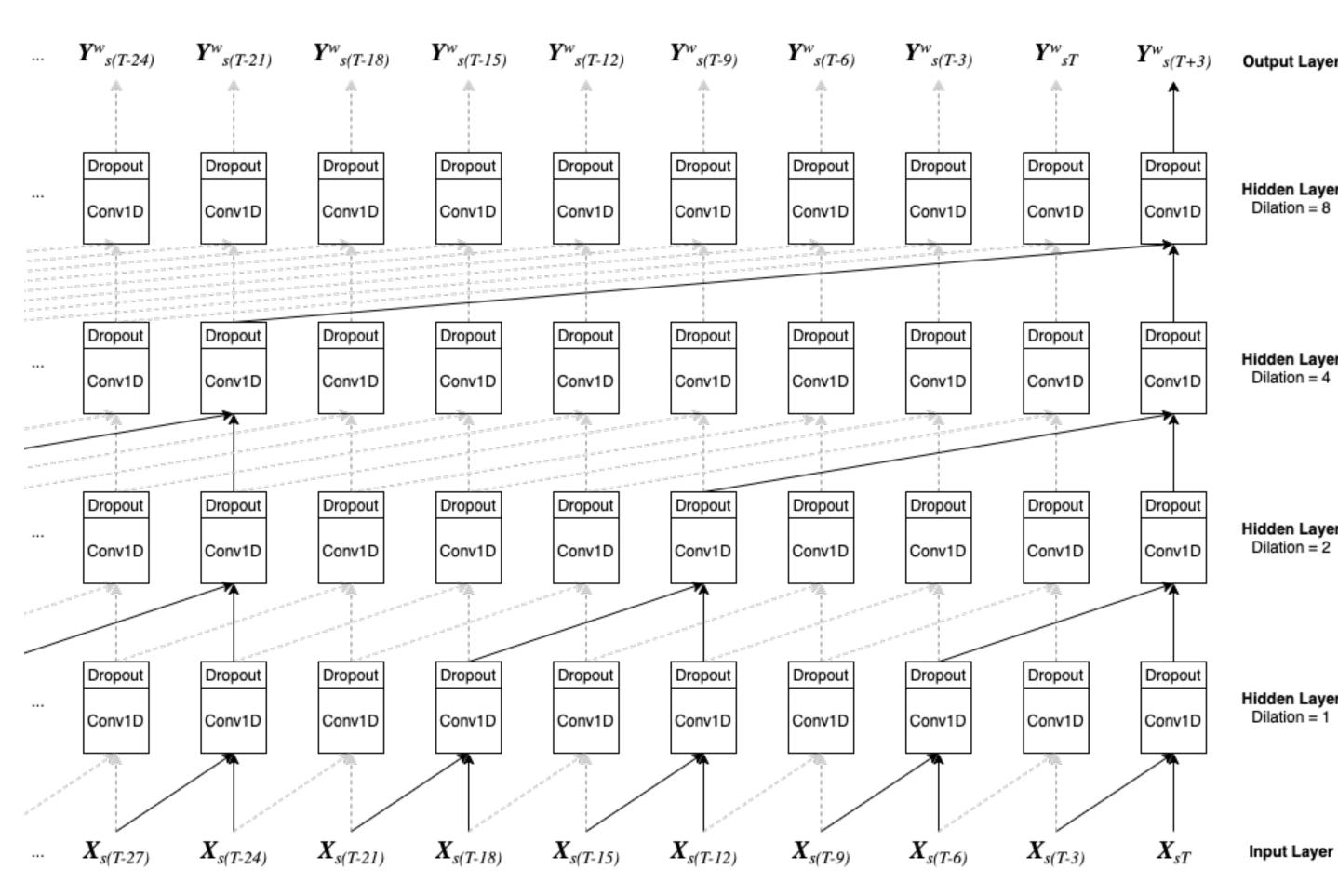
Model (1): Temporal Convolutional Neural Networks (probabilistic)



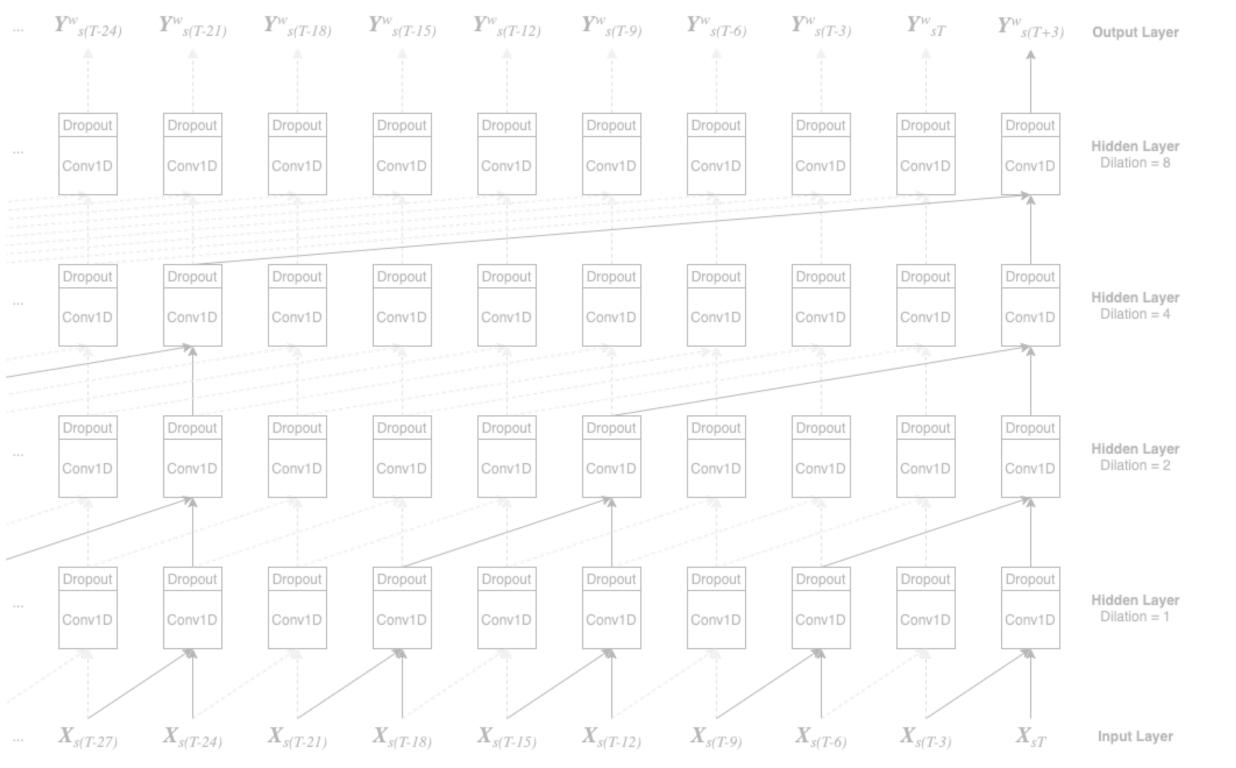
Model (2): Bayesian model based on the Bazin function (Bazin et al. 2009) $e^{-(t-t_0)/\tau_{\rm fall}}$ $F(t) = A \frac{1}{1 + e^{-(t-t_0)/\tau_{\text{rise}}}} + B + A\epsilon_{\text{int}}(t)$

Model (1): Temporal Convolutional Neural Networks (probabilistic)

- Output parameterised as a Normal distribution using a probabilisitic neural network
- Include flux and predictive \bullet uncertainties in the loss function
- Bayesian Neural Network using MCDropout (Gal & Ghahramani 2015)

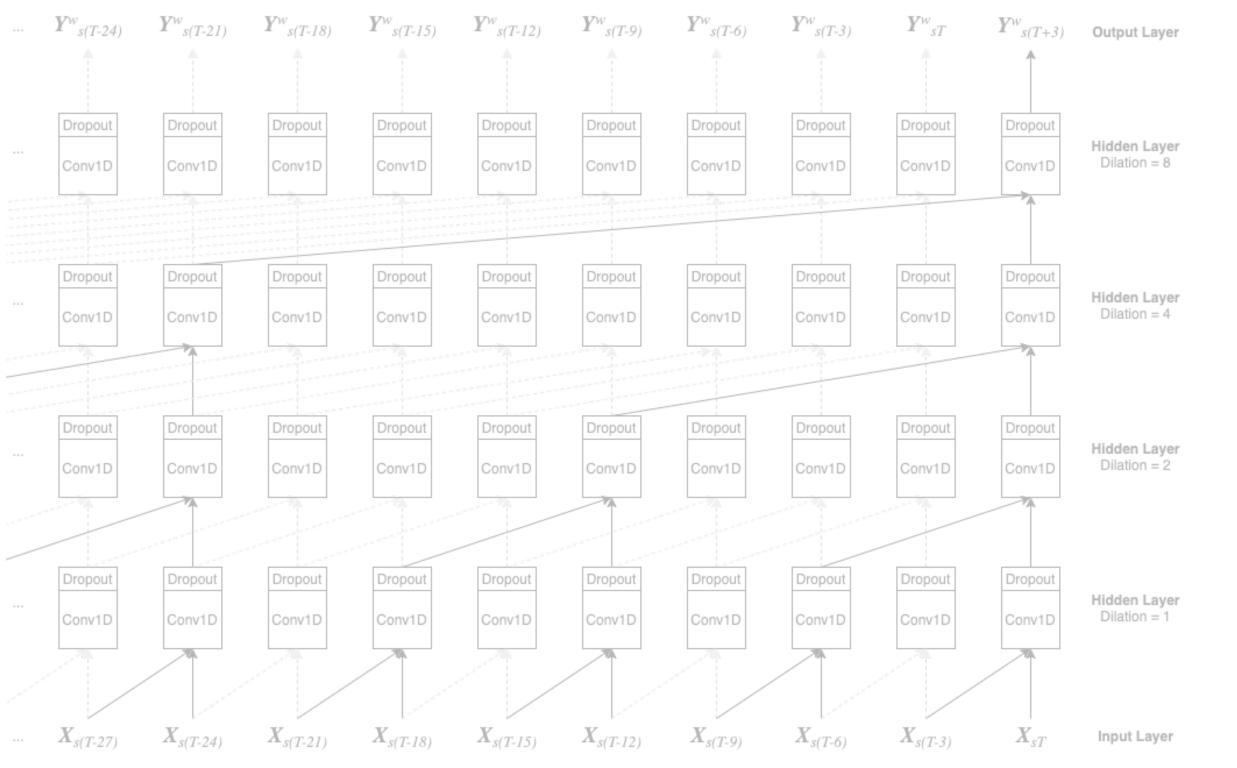


Model (1): Temporal Convolutional Neural Networks (probabilistic)



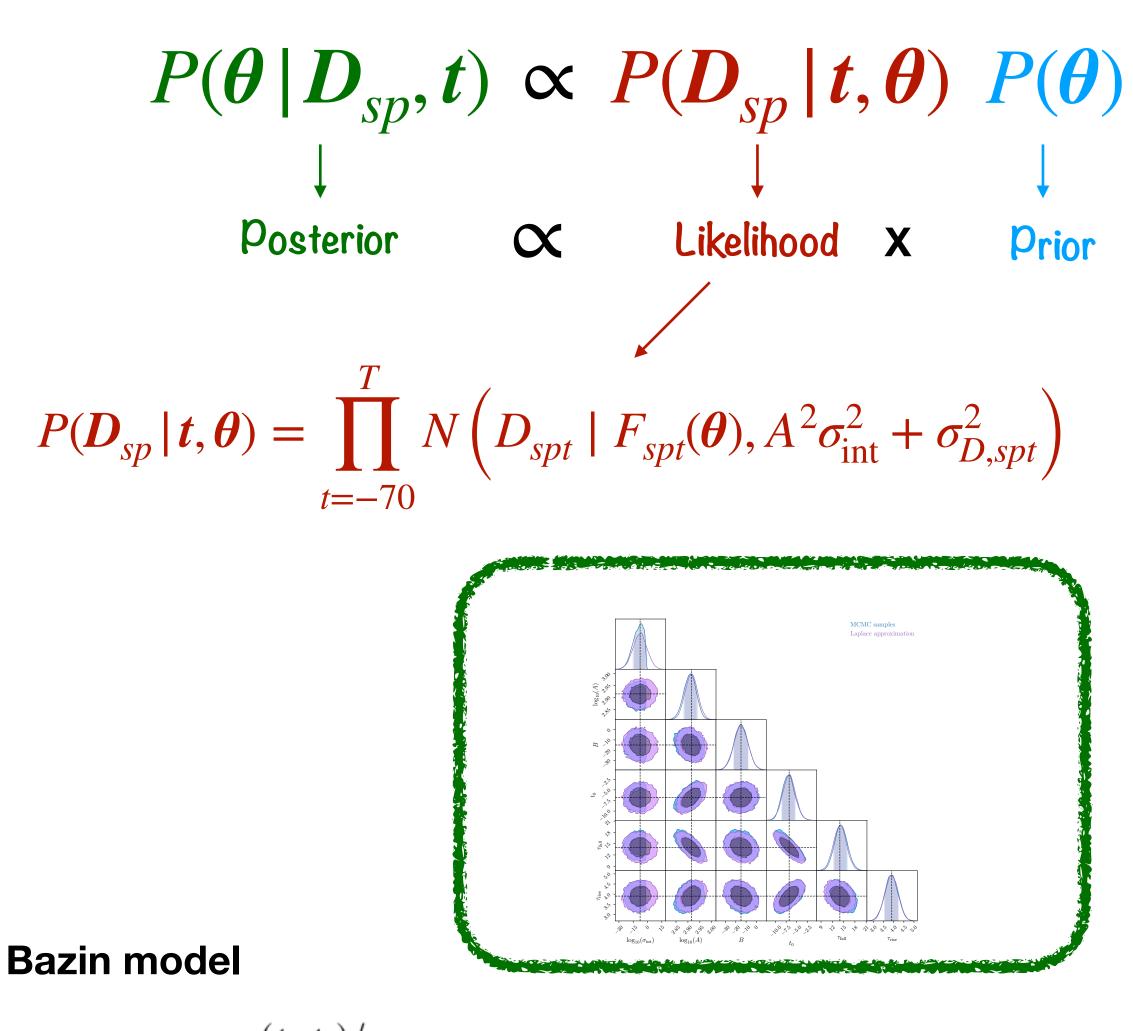
Model (2): Bayesian model based on the Bazin function (Bazin et al. 2009) $F(t) = A \frac{e^{-(t-t_0)/\tau_{\text{fall}}}}{1 + e^{-(t-t_0)/\tau_{\text{rise}}}} + B + A\epsilon_{\text{int}}(t)$

Model (1): Temporal Convolutional Neural Networks (probabilistic)

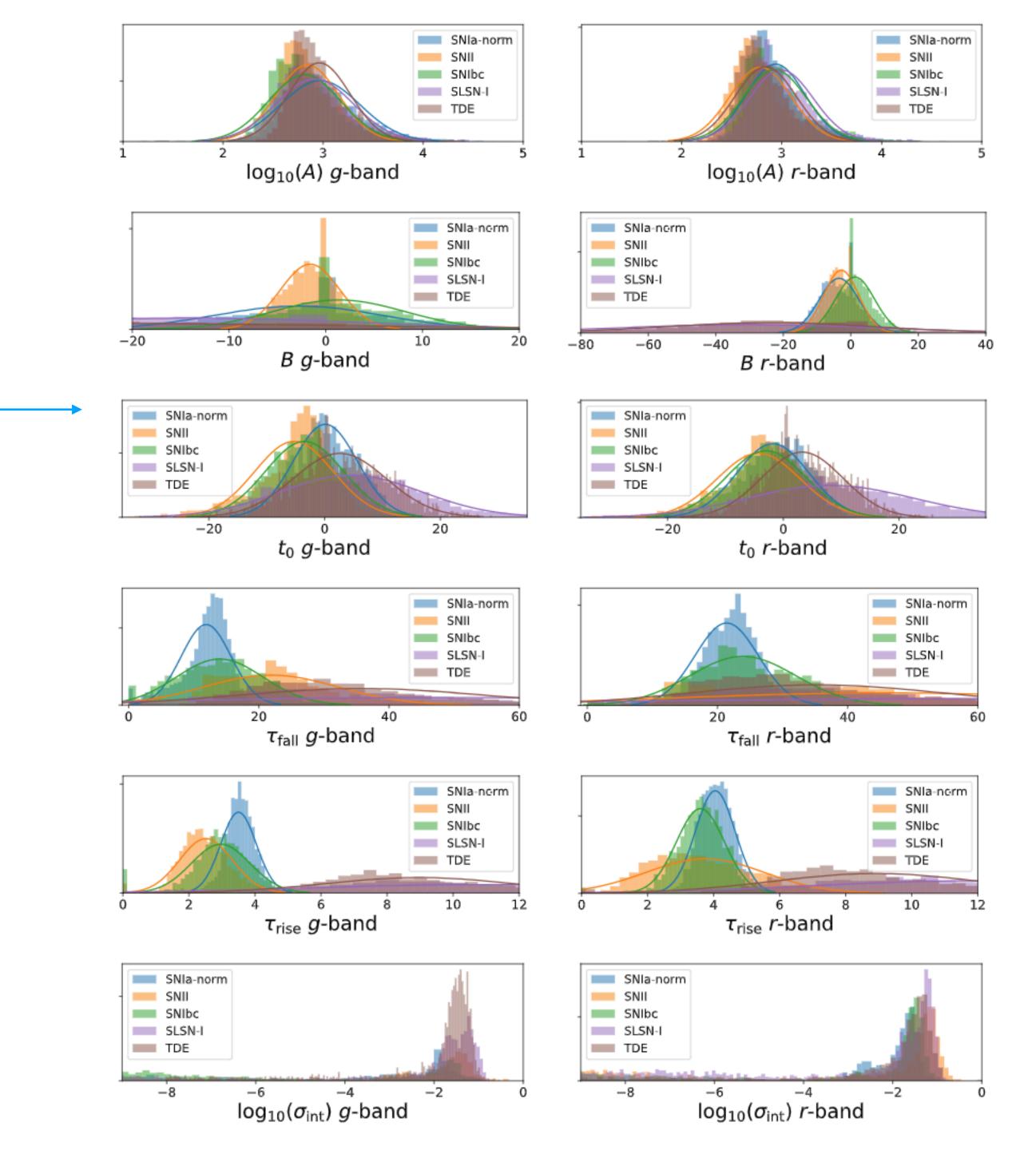


Model (2): Bayesian model based on the Bazin function (Bazin et al. 2009) $D_{spt} = A \frac{e^{-(t-t_0)/\tau_{\text{fall}}}}{1 + e^{-(t-t_0)/\tau_{\text{rise}}}} + B + A\epsilon_{\text{int}}(t) + \epsilon_{D,spt}$

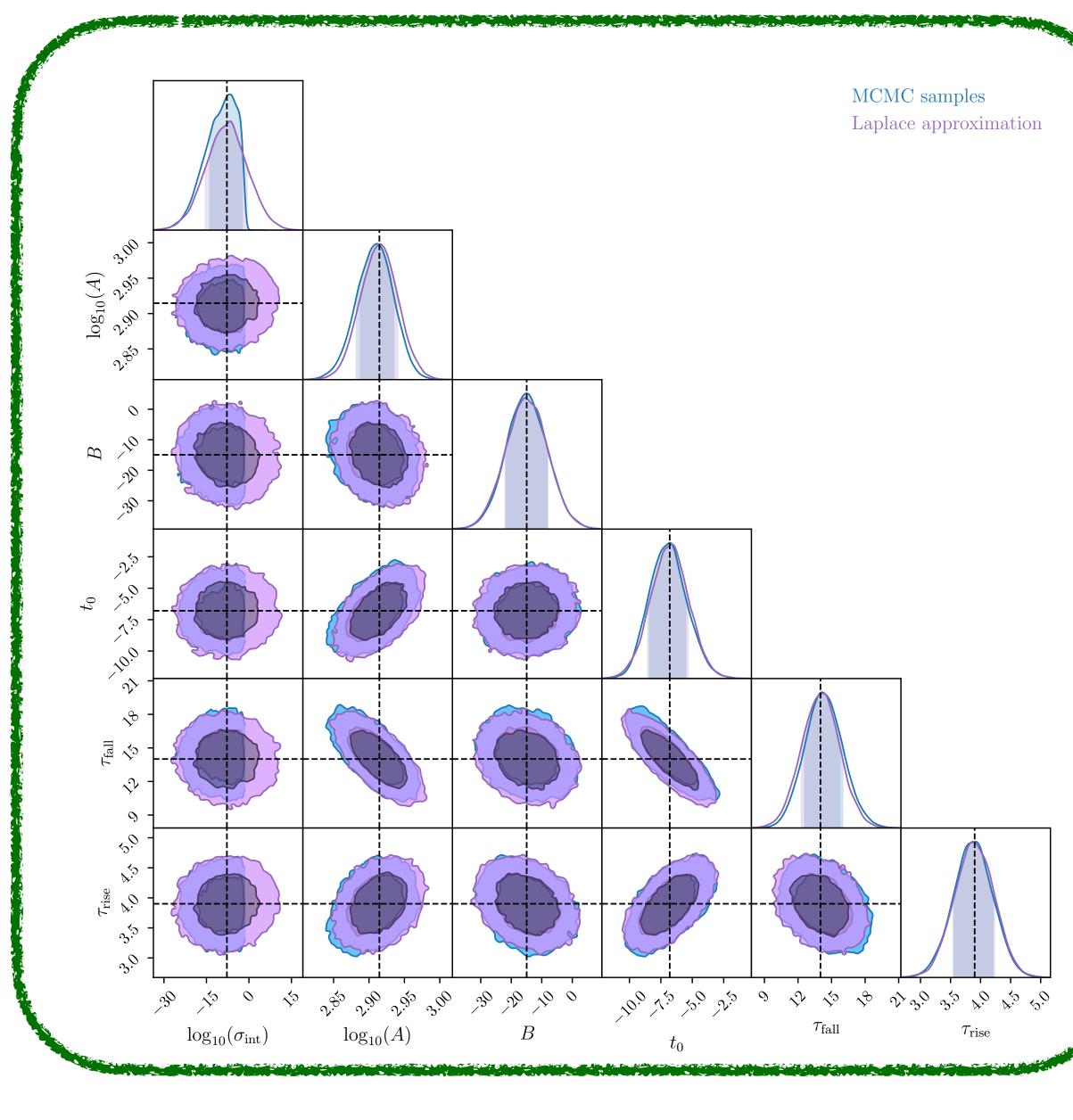
Bayesian model

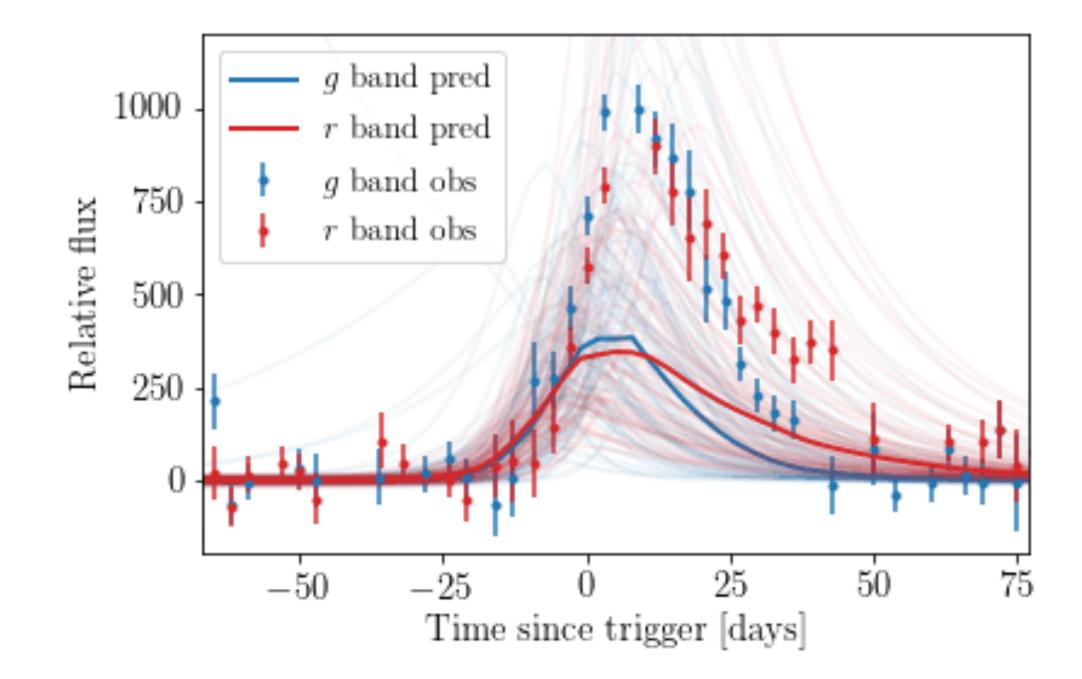


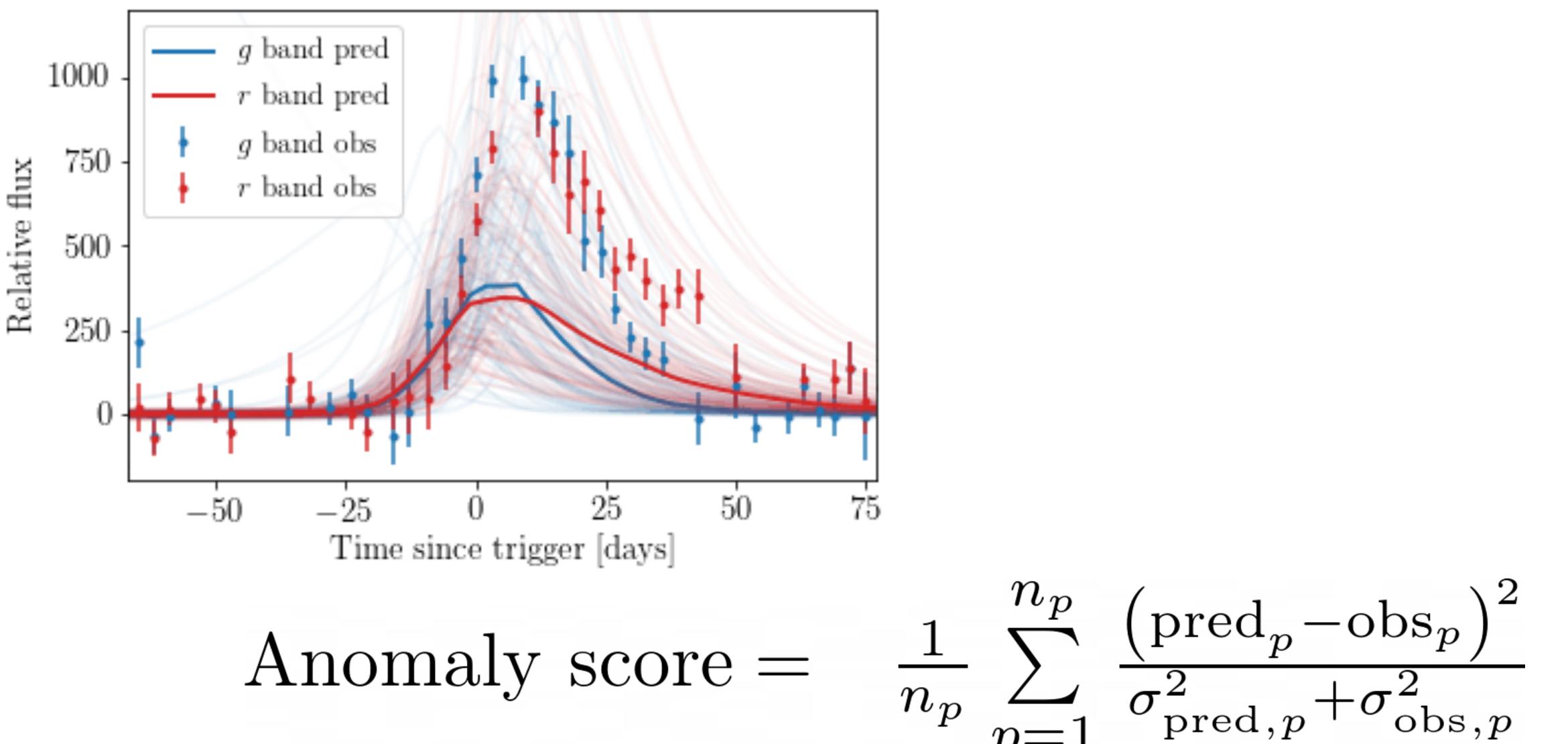
 $D_{spt} = A \frac{e^{-(t-t_0)/\tau_{\text{fall}}}}{1 + e^{-(t-t_0)/\tau_{\text{rise}}}} + B + A\epsilon_{\text{int}}(t) + \epsilon_{D,spt}$



Bayesian model

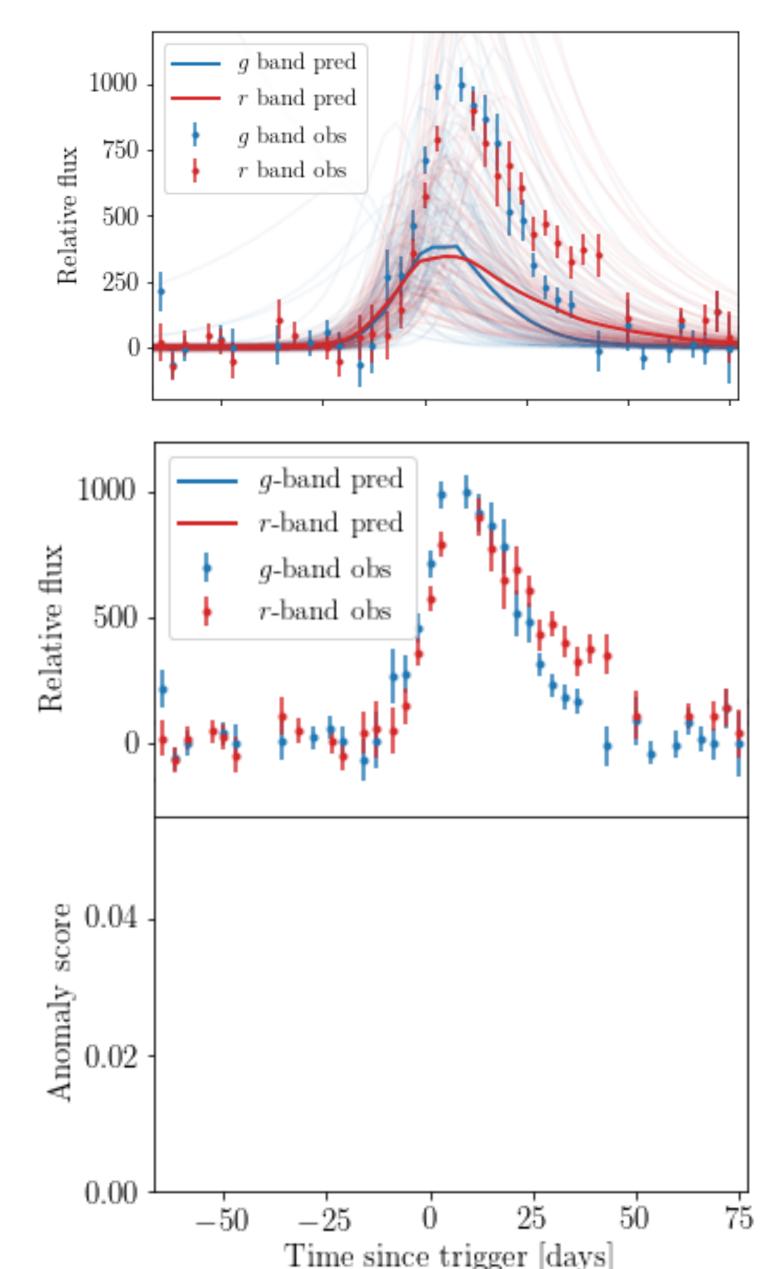




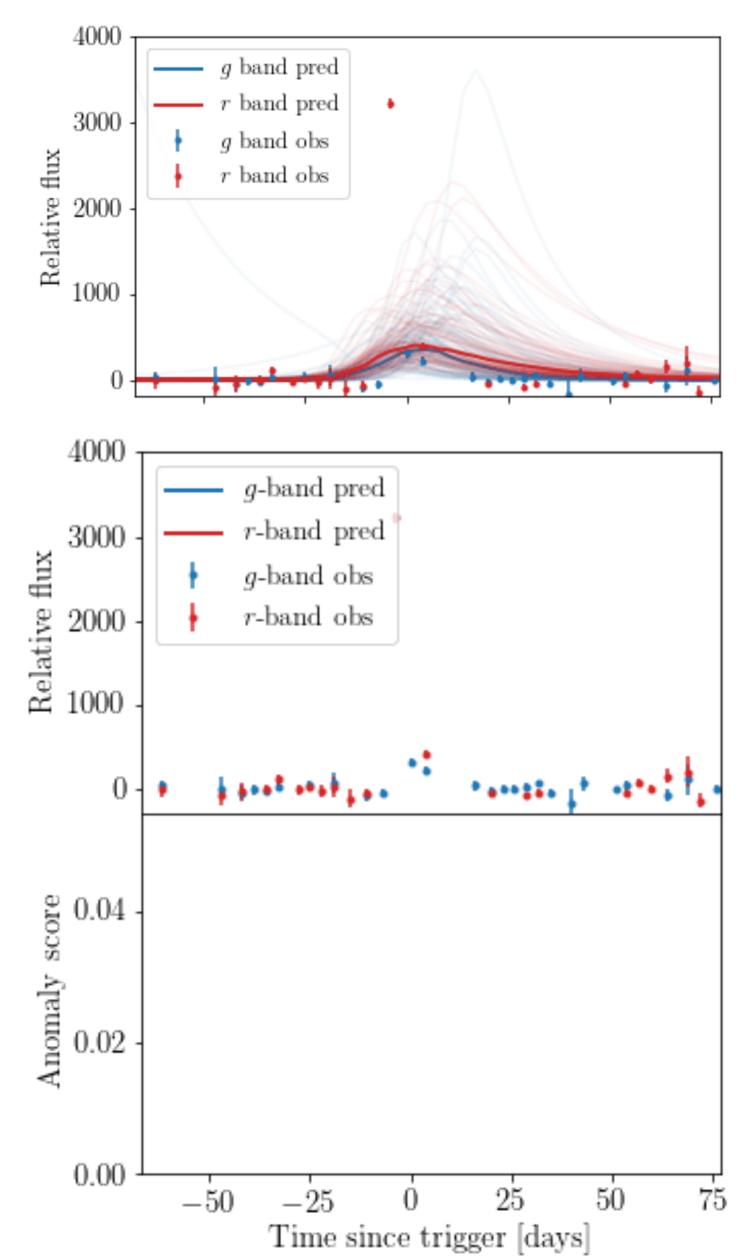


Anomaly score =

SNIa



Kilonova

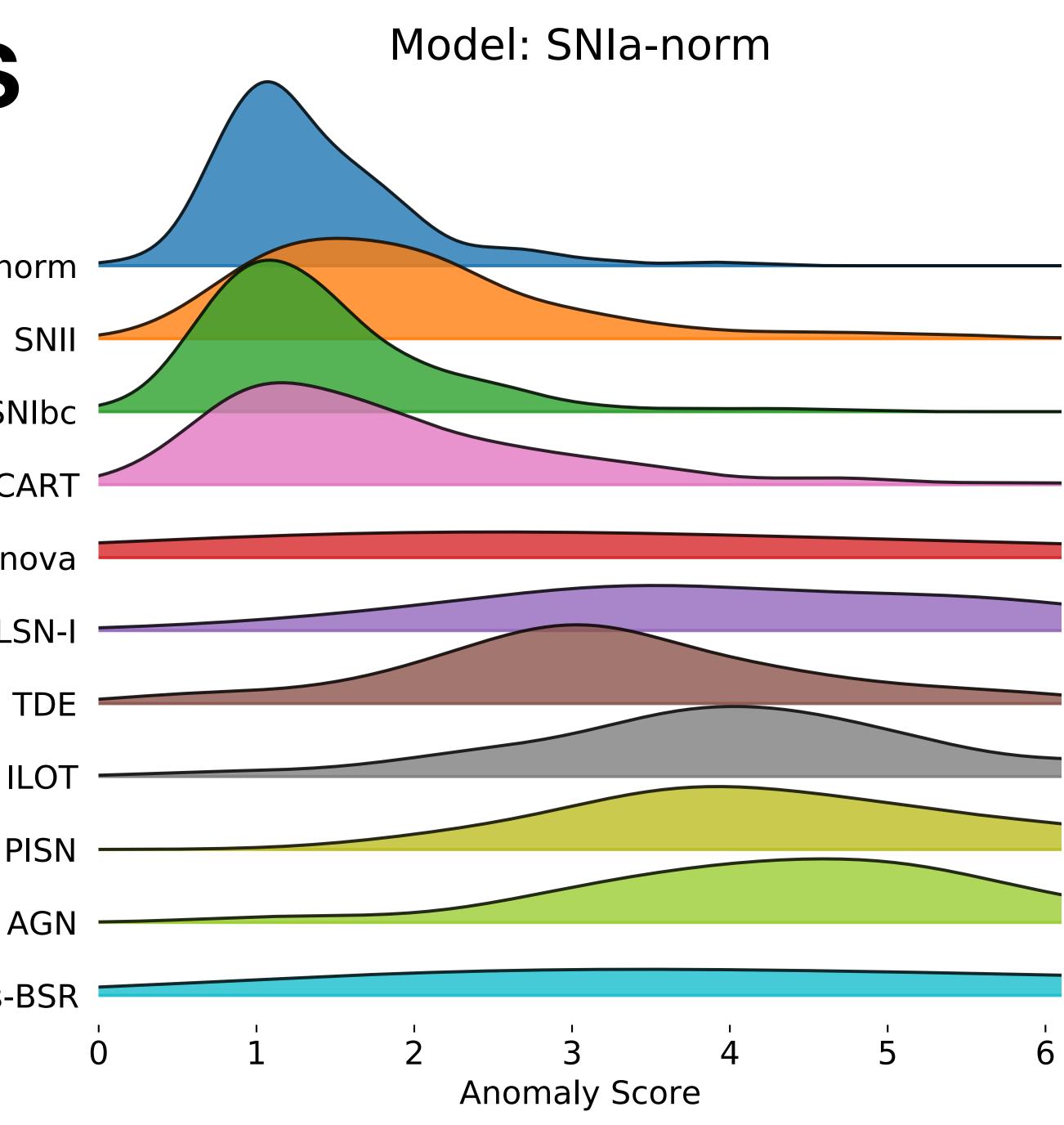


Anomaly scores

SNIa-norm

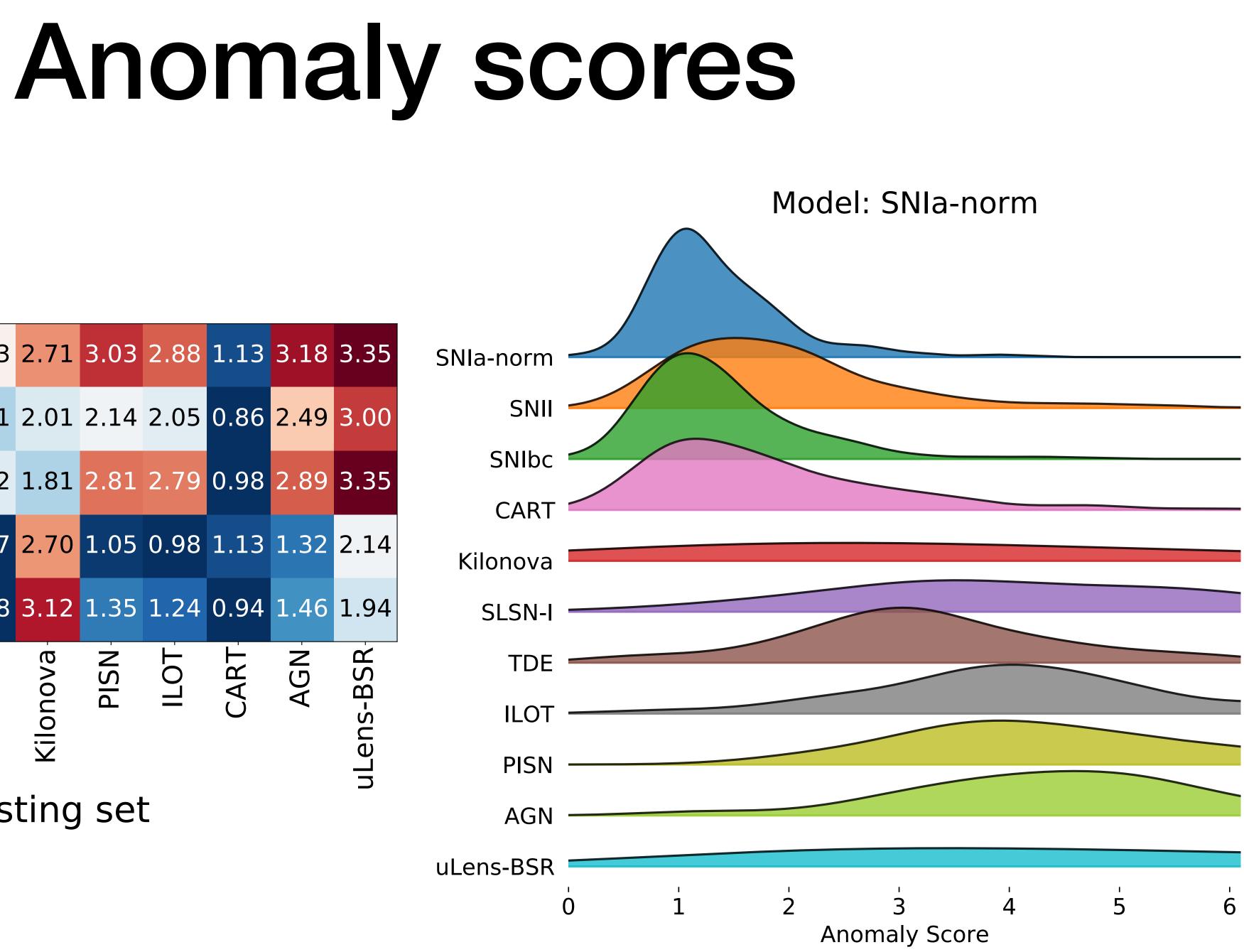
- SNIbc
- CART
- Kilonova
 - **SLSN-I**
- uLens-BSR

- Common supernovae have similar scores when using the Bazin SNIa model Anomalous classes have higher anomaly scores

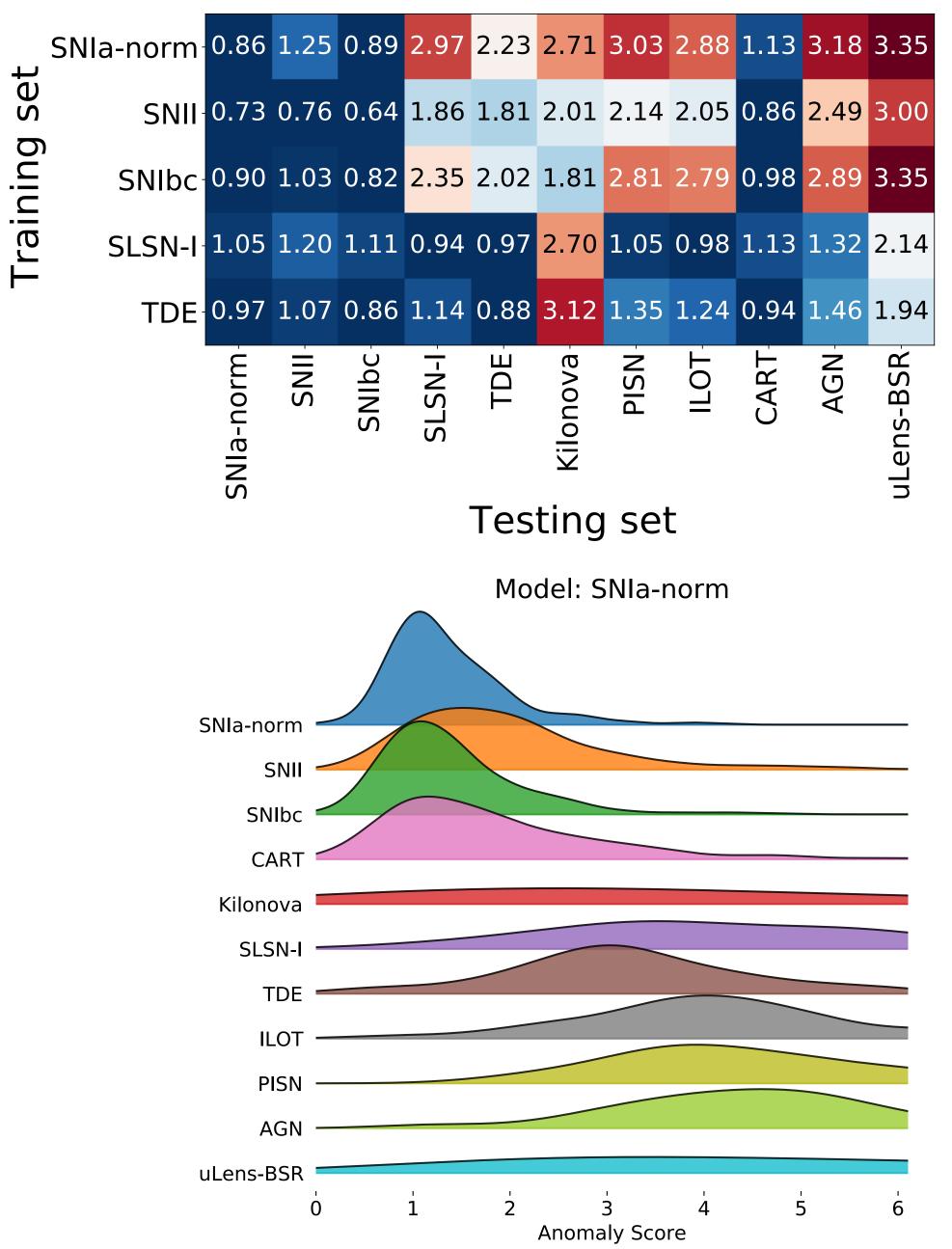


L	SNIa-norm	0.86	1.25	0.89	2.97	2.23	2.71	3.03	2.88	1.13	3.18	3,
Training set	• • • • •	0.73	0.76	0.64	1.86	1.81	2.01	2.14	2.05	0.86	2.49	3
	SNIbc ⁻	0.90	1.03	0.82	2.35	2.02	1.81	2.81	2.79	0.98	2.89	3,
	SLSN-I	1.05	1.20	1.11	0.94	0.97	2.70	1.05	0.98	1.13	1.32	2
		0.97	1.07	0.86	1.14						1.46	1.
		SNIa-norm	SNIL	SNIbc	SLSN-I	TDE	Kilonova	PISN	ILOT	CART	AGN	
	Tactina cat											

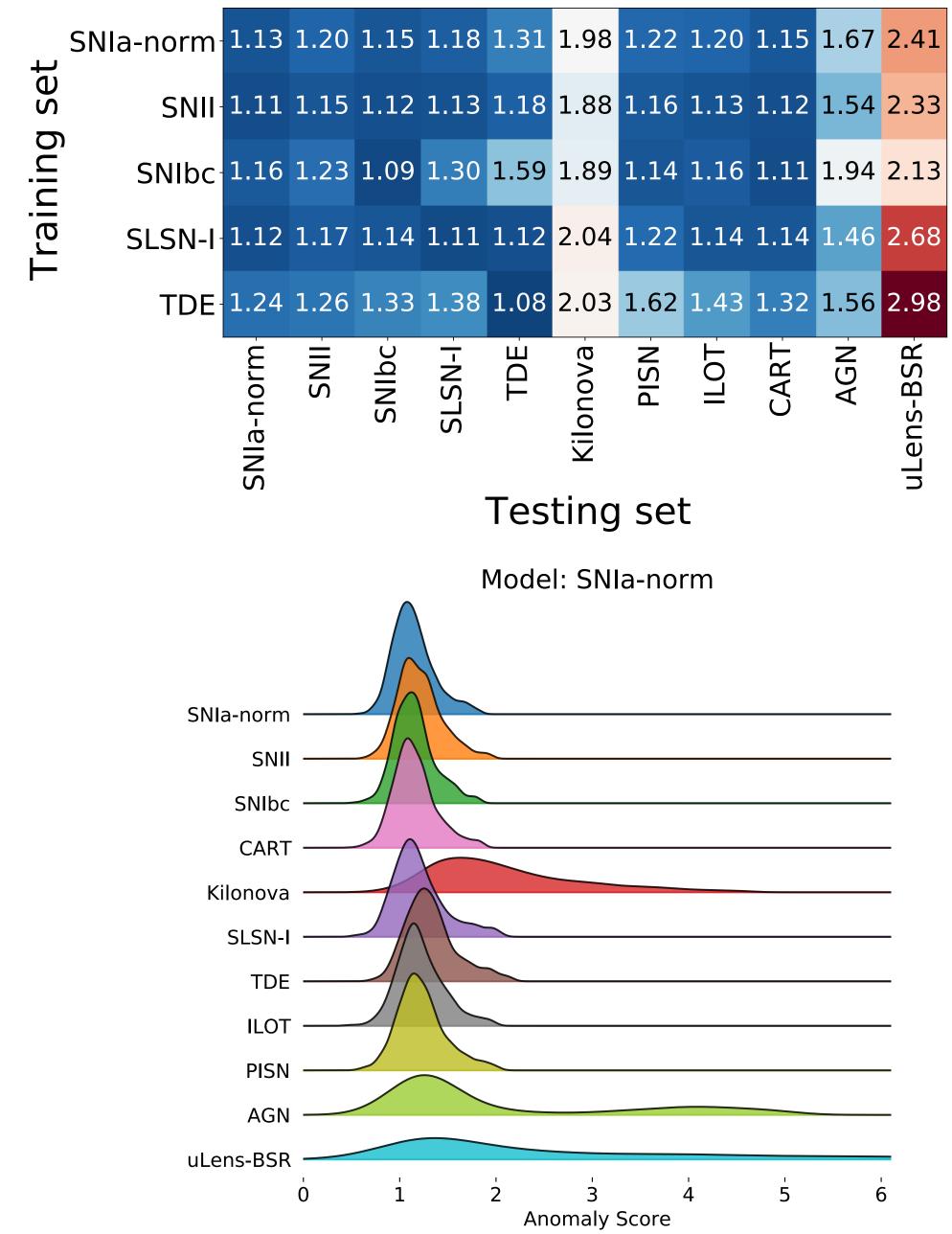
lesting set



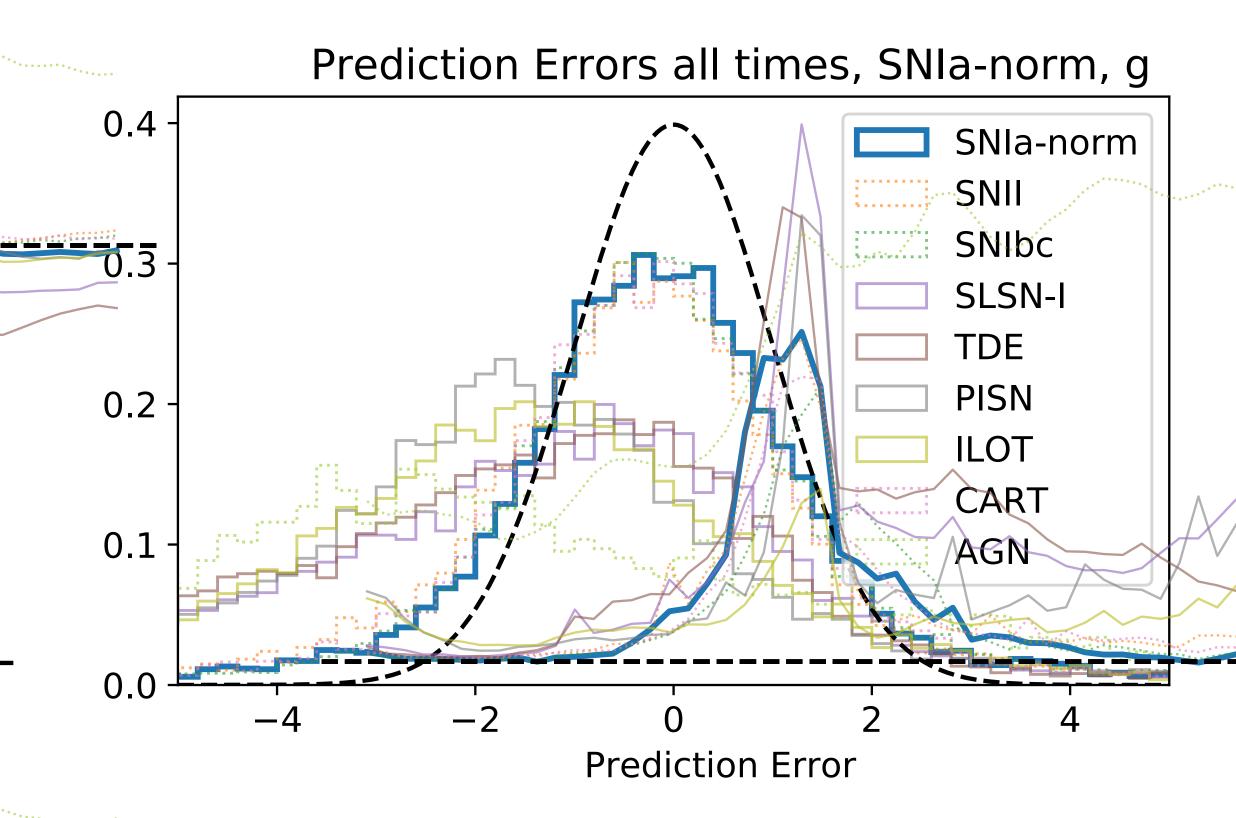
Bazin



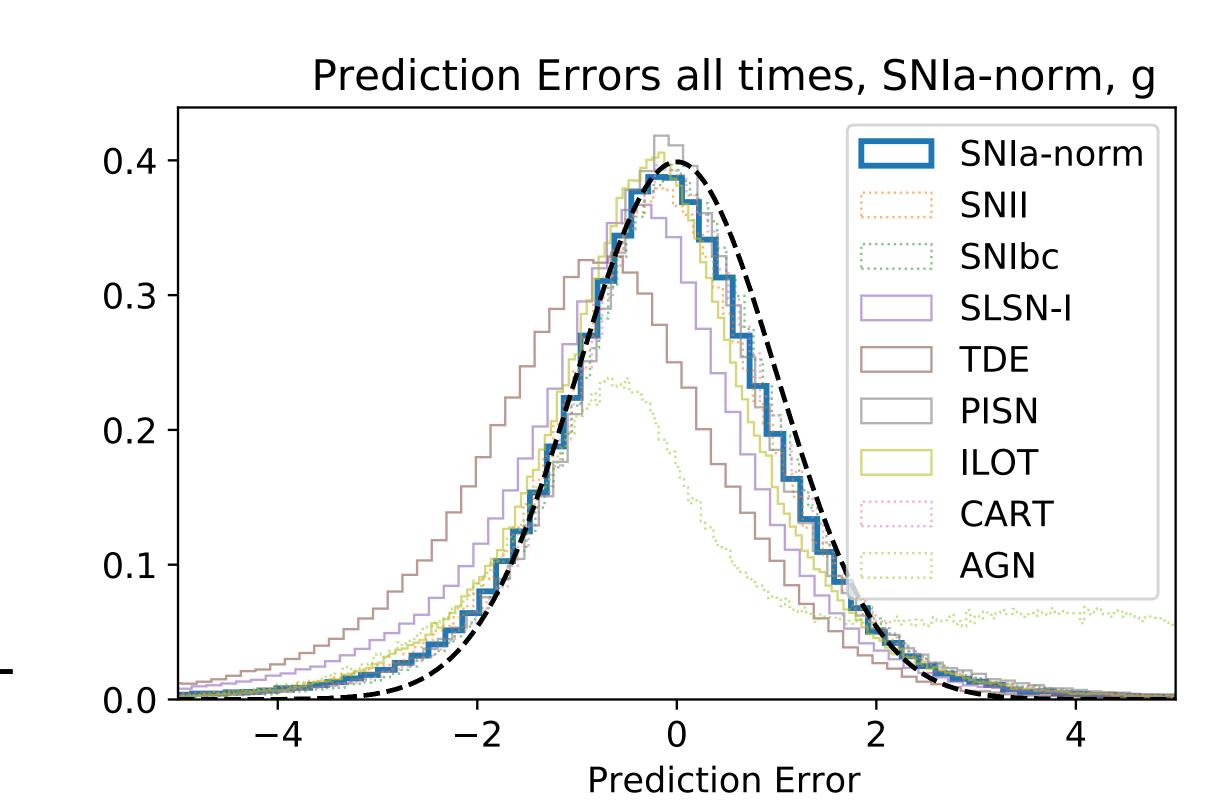
DNN



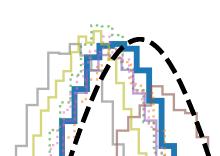
Neural networks are too good at regression for anomaly detection Bazin DNN



Prediction Error =



 $\operatorname{ror} = \frac{y_{pred} - y_{obs}}{\sigma_{obs}}$

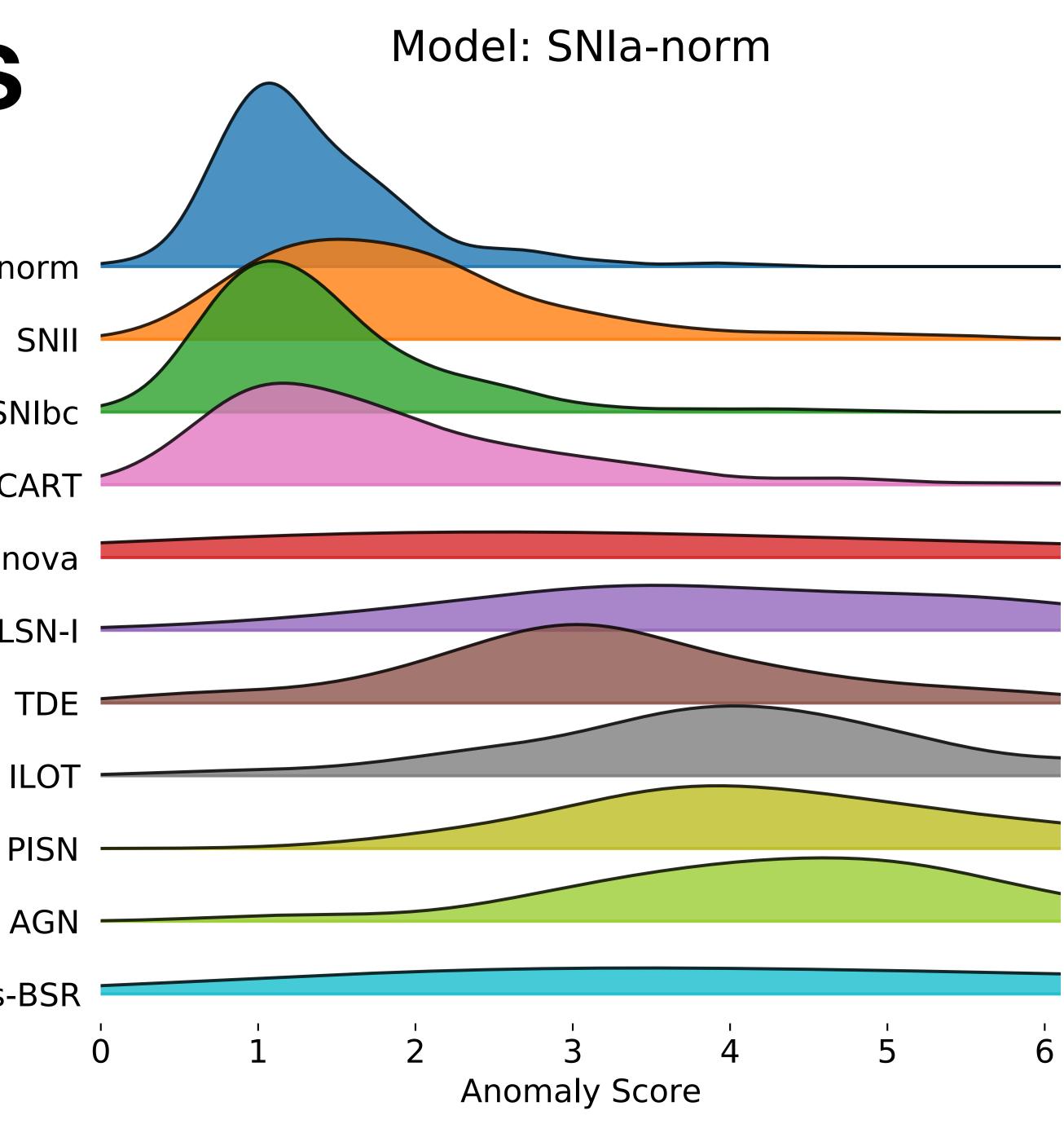


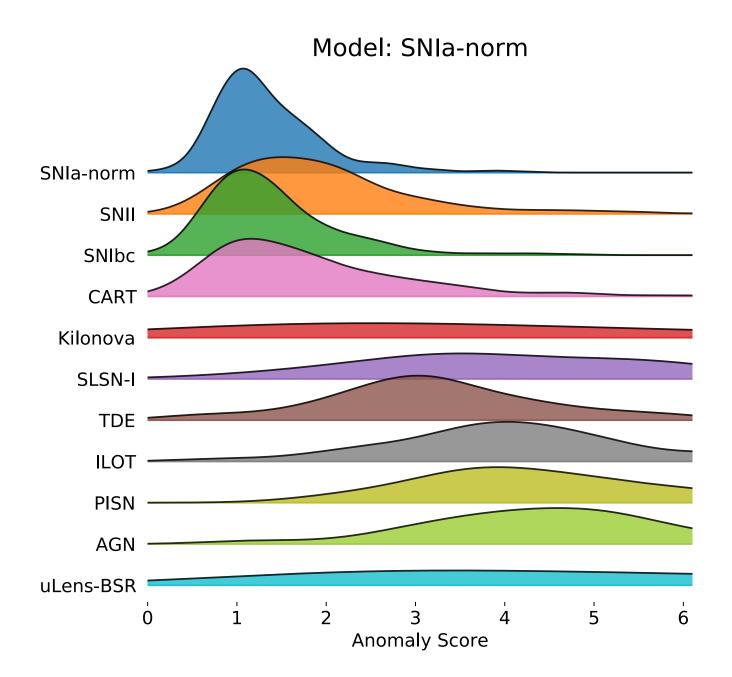
Anomaly scores

SNIa-norm

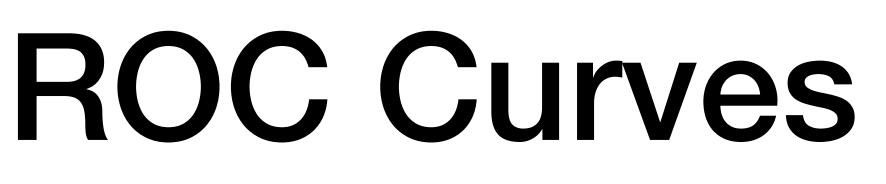
- SNIbc
- CART
- Kilonova
 - **SLSN-I**

 - ILOT
- uLens-BSR

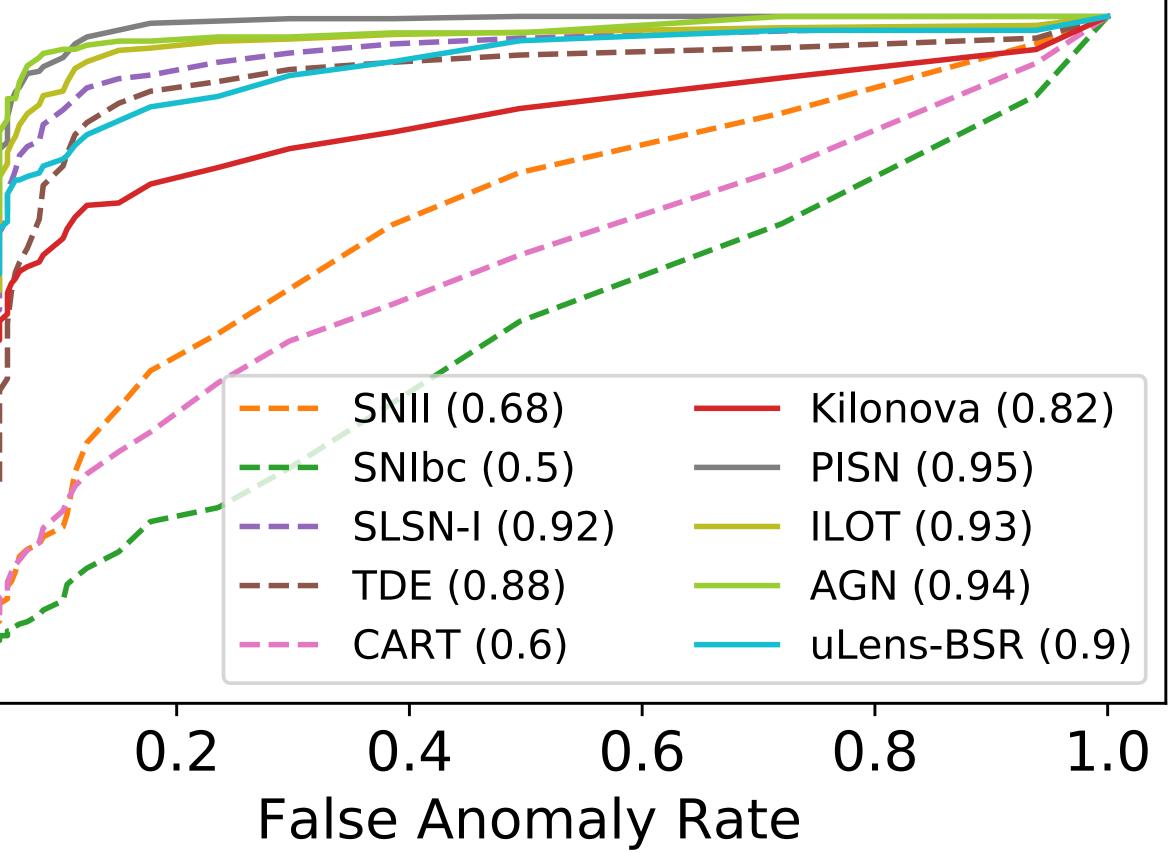


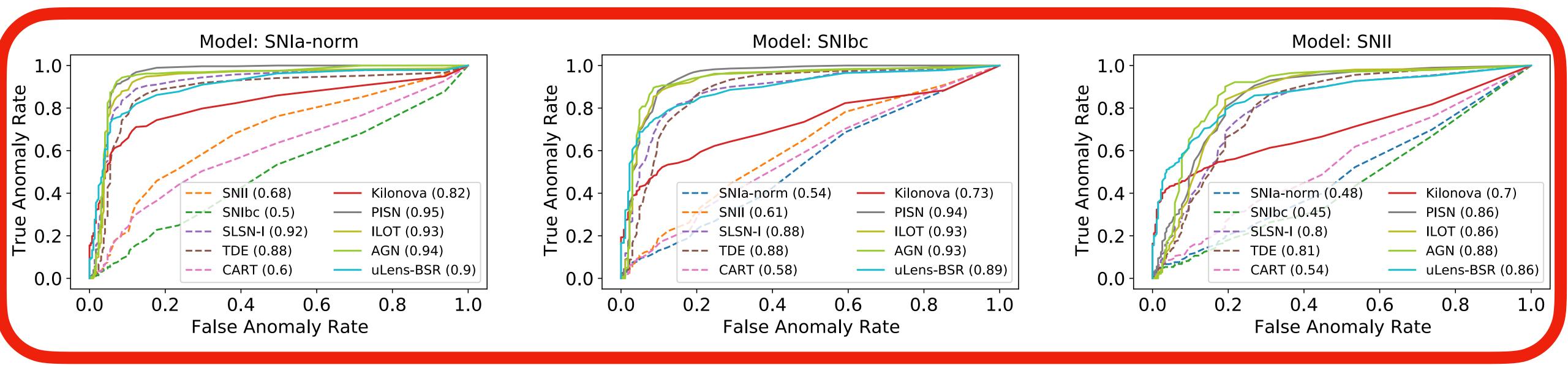


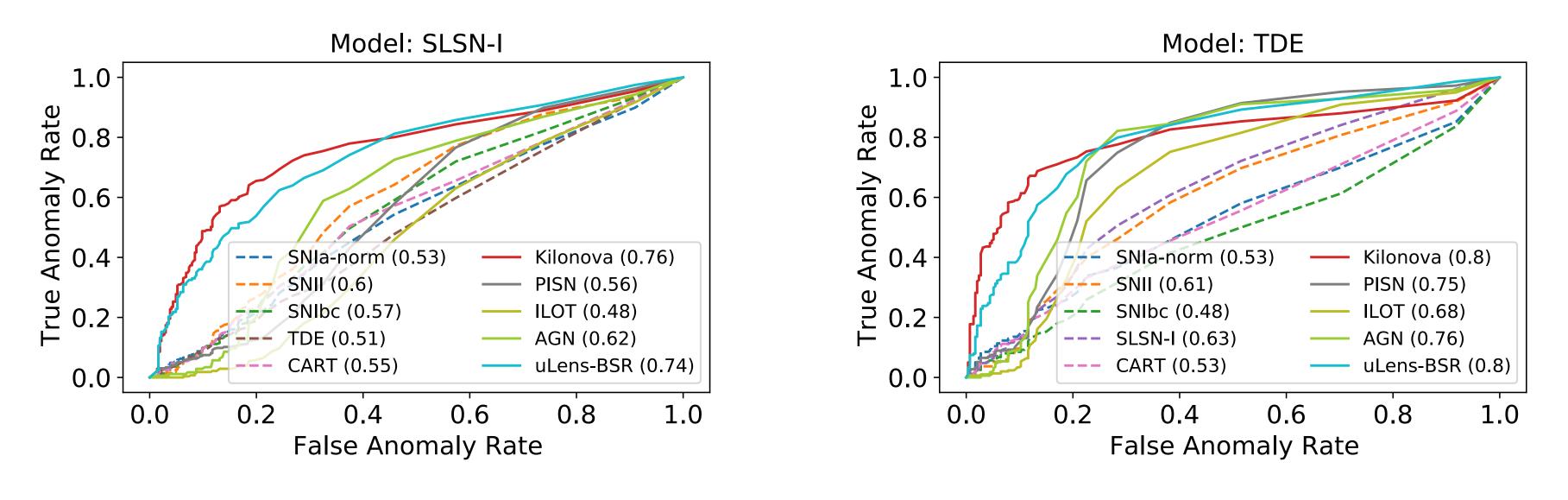
1.0 Rate 0.8 Anomaly 0.6 0.4 True 0.2 0.0 0.0



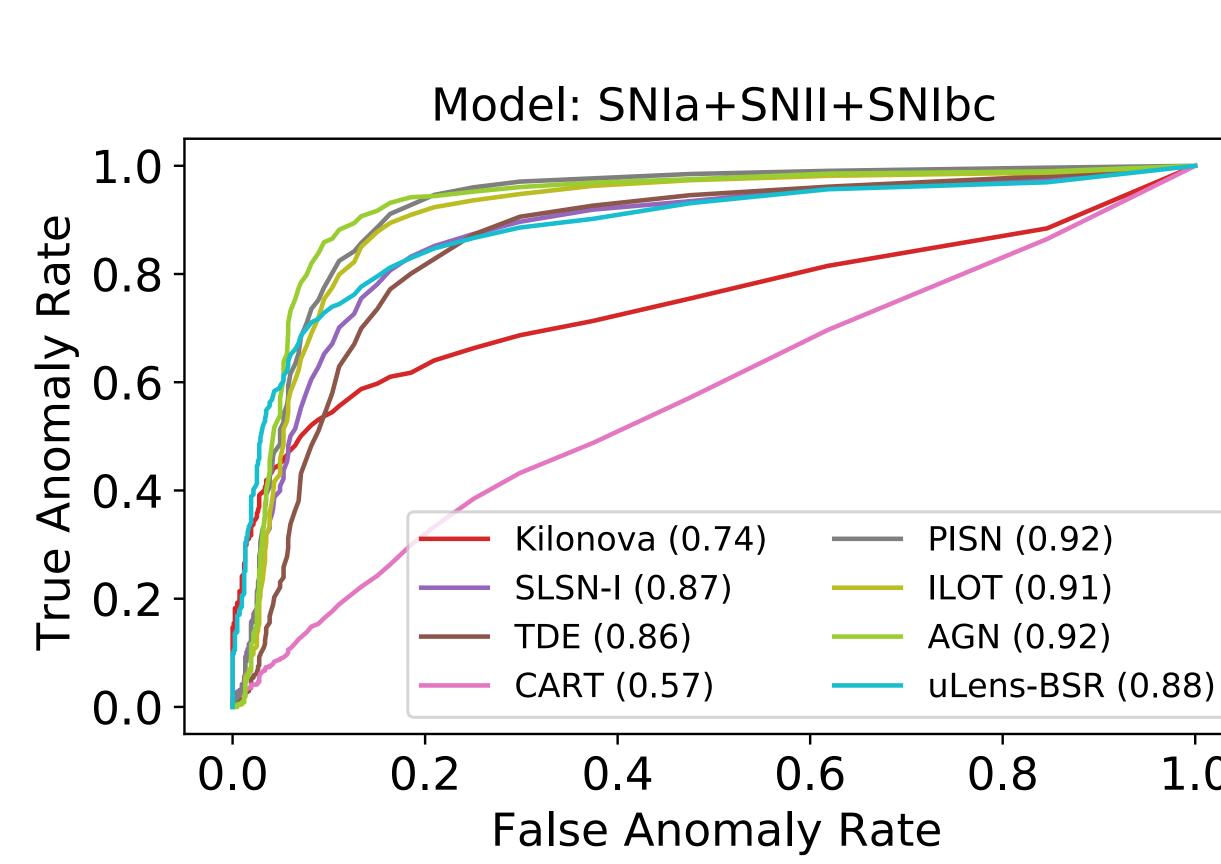
Model: SNIa-norm



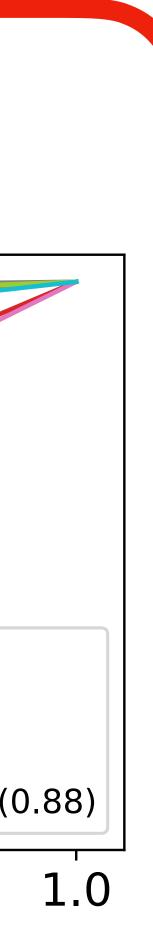




ROC Curves **Common Supernovae**

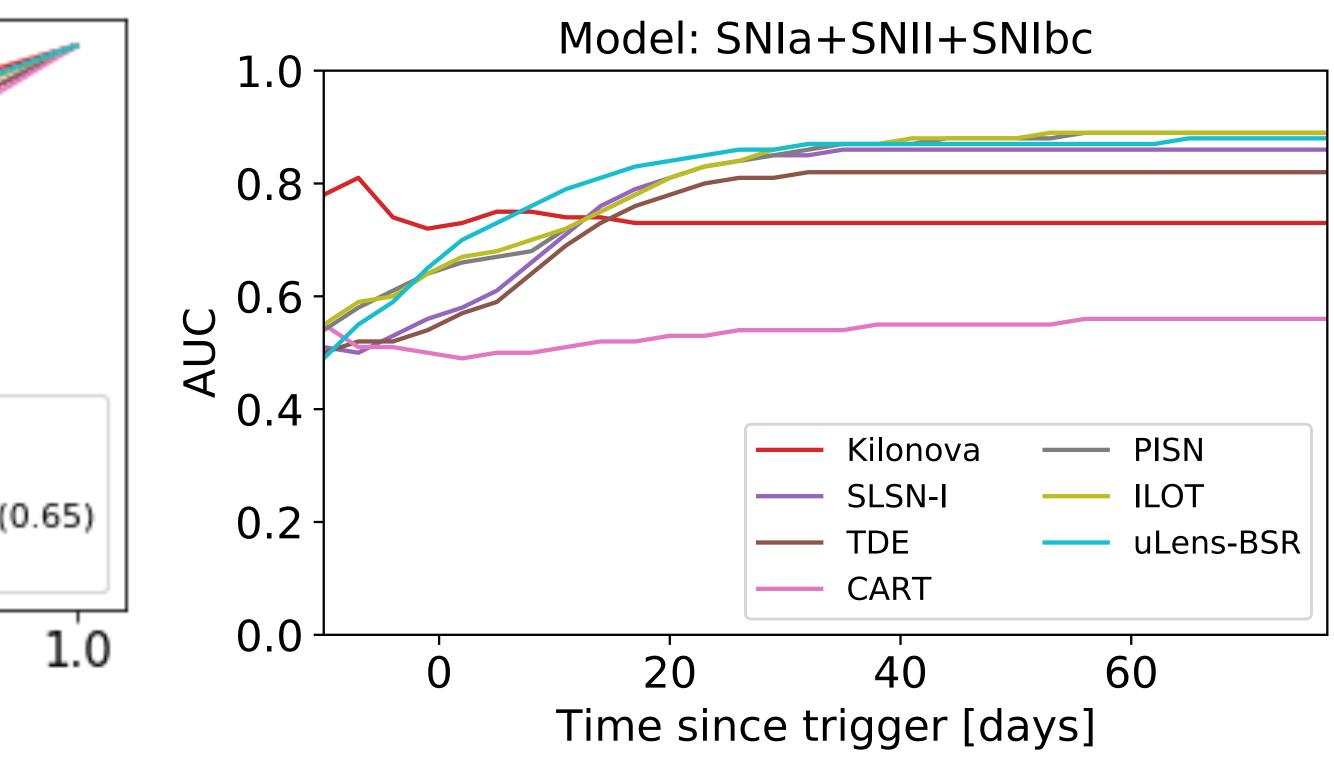


ROC Curves



Model: SNIa+SNII+SNIbc. Metric: χ^2 Time: -1 1.0 True Anomaly Rate 0.8 0.6 0.4 Kilonova (0.72) PISN (0.64) ILOT (0.64) SLSN-I (0.56) 0.2 TDE (0.54) uLens-BSR (0.65) CART (0.5) 0.0 0.2 0.6 0.8 0.0 0.4 False Anomaly Rate

Real-time ROC curves



Conclusion

- Developed two frameworks to model common transient classes using
 - (1) a Deep Neural Network
 - (2) a Bayesian model based on the Bazin function
- Built models of the SNIa, SNII, SNIbc, SLSNe, TDE transient classes
- Can detect anomalies in real-time, useful for prioritised follow-up in new large scale transient surveys
- Fast and scaleable to model tens of thousands of events that will be discovered in LSST and ZTF within a few seconds