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a b s t r a c t 

Background and objective: In type 1 diabetes (T1D) research, in-silico clinical trials (ISCTs) notably facili- 

tate the design/testing of new therapies. Published simulation tools embed mathematical models of blood 

glucose (BG) and insulin dynamics, continuous glucose monitoring (CGM) sensors, and insulin treat- 

ments, but lack a realistic description of some aspects of patient lifestyle impacting on glucose control. 

Specifically, to effectively simulate insulin correction boluses, required to treat post-meal hyperglycemia 

(BG > 180 mg/dL), the timing of the bolus may be influenced by subjects’ behavioral attitudes. In this 

work, we develop an easily interpretable model of the variability of correction bolus timing observed in 

real data, and embed it into a popular simulation tool for ISCTs. 

Methods: Using data collected in 196 adults with T1D monitored in free-living conditions, we trained 

a decision tree (DT) model to classify whether a correction bolus is injected in a future time window, 

based on predictors collected back in time, related to CGM data, previous insulin boluses and subject’s 

characteristics. The performance was compared to that of a logistic regression classifier with LASSO regu- 

larization (LC), trained on the same dataset. After validation, the DT was embedded within a popular T1D 

simulation tool and an ISCT was performed to compare the simulated correction boluses against those 

observed in a subset of data not used for model training. 

Results: The DT provided better classification performance (accuracy: 0.792, sensitivity: 0.430, specificity: 

0.878, precision: 0.455) than the LC and presented good interpretability. The most predictive features 

were related to CGM (and its temporal variations), time since the last insulin bolus, and time of the day. 

The correction boluses simulated by the DT, after implementation in the simulation tool, showed a good 

agreement with real-world data. 

Conclusions: The DT developed in this work represents a simple set of rules to mimic the same timing of 

correction boluses observed on real data. The inclusion of the model in simulation tools allows investiga- 

tors to perform ISCTs that more realistically represent the patient behavior in taking correction boluses 

and the post-prandial BG response. In the future, more complex models can be investigated. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Type 1 diabetes (T1D) is a chronic metabolic disease charac- 

erized by the almost total absence of endogenous insulin, a hor- 
Abbreviations: AUROC, area under the receiver operating characteristic curve; BG, B

egression tree; CF, correction factor; CGM, continuous glucose monitoring; CHAID, chi-sq

ini’s diversity index; ISCT, in-silico clinical trial; LASSO, least absolute shrinkage and sel

AP, sensor augmenting pump; SVM, support vector machine; T1D, Type 1 diabetes; T1D-
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one responsible for blood glucose (BG) regulation [1] . Individuals 

ith T1D require a healthy diet, physical exercise, and a lifelong 

xogenous insulin therapy to maintain their BG within the recom- 
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alance the rise in BG produced by food intake, individuals take 

nsulin boluses administered at mealtimes (also referred to as meal 

oluses), while the so-called correction boluses are recommended 

o be injected to correct, or at least mitigate, the risk of hyper- 

lycemia (i.e., BG > 180 mg/dL) [2] . 

Nowadays, new personalized T1D therapies can be easily de- 

igned /tested thanks to the availability of simulation tools relying 

n mathematical models of glucose-insulin system dynamics, and 

llow the performance of in-silico clinical trials (ISCTs) [ 3 , 4 ]. ISCTs

nable large-scale testing at limited costs, without implicating any 

isk for real subjects. As such, in the past 15 years of T1D research,

SCTs have accelerated the development of new treatments [ 5 , 6 ] 

nd drugs [7–9] , and have facilitated the design of clinical studies 

10–12] . 

While numerous literature simulation tools effectively capture 

he T1D individual physiology [13–16] , the mathematical descrip- 

ion of therapy-related behaviors has been rarely investigated so 

ar. A first attempt to simulate these aspects, thus enabling more 

ealistic ISCTs, was the prototype behavioral model embedded in 

he T1D Patient Decision Simulator (T1D-PDS) of Vettoretti et al. 

17] . This model allowed describing some aspects of behaviors and 

ifestyle that have a large impact on glucose control, such as the 

ariability in meal time and amount, the behavior in consuming 

escue carbohydrates to avoid low BG levels, and the errors in 

iming of the meal bolus time and in carbohydrate counting [18] . 

hough the T1D-PDS was proven effective in augmenting the reli- 

bility of ISCTs, [ 19 , 20 ] its behavioral model did leave some room

or improvement. In recent works by our research group, we en- 

anced the reliability of the T1D-PDS by developing and embed- 

ing new mathematical models of meal amount and timing vari- 

bility [21] and carb-counting error [22] . 

Another margin for improving the T1D-PDS of Vettoretti et al. 

17] is given by the very simplistic model of insulin correction bo- 

us timing, which only considers empirical thresholds on glucose 

evels and trend, thus not reflecting the much more complex pa- 

ients’ behavior in injecting correction boluses. 

Several guidelines exist to recommend effective correction bo- 

us timing. For example, American Diabetes Association standards 

f diabetes care [23] recommend patients should take a correc- 

ion bolus whenever BG concentration is above 180 mg/dL, and 

t least 2 h have passed since the last meal. With the recent ad- 

ent of continuous glucose monitoring (CGM) sensors, minimally- 

nvasive devices providing glucose readings and rate-of-change 

usually displayed as an arrow) almost continuously [19] , more 

omplex guidelines have been proposed. Aleppo et al. [24] recom- 

end modifying the insulin dose by a fixed insulin amount, de- 

ending on the displayed arrow, the time passed since the last 

eal (i.e., from 2 to 4 h, or more than 4 h), and a subject-specific

arameter that is the correction factor (CF). To give a practical ex- 

mple, if at least 4 h have passed since the mealtime, the sen- 

or shows one up arrow, and the individual’s CF is ≥ 75, then the 

uidelines of Aleppo et al. suggest increasing the correction bolus 

mount of 1 insulin unit. 

Despite the availability of the above-mentioned guidelines, indi- 

iduals with T1D often do not (or cannot) strictly adhere to these 

ecommendations. In fact, the timing of a correction bolus injec- 

ion may be decided by individuals based on different conditions, 

ot only related to glucose levels (e.g., CGM readings and glucose 

rend) and previous insulin injections, but also to the specific mo- 

ent of the day (e.g., if it is during daylight or night), the daily 

ctivities, the fear for hypoglycemia, hyperglycemia symptoms, and 

ther factors. Identifying the circumstances that prompt individu- 

ls to be more likely to take a correction bolus could be useful to 

esign (or optimize) new personalized insulin therapies. 

The aim of this work is twofold: i) to develop a new data-driven 

athematical model of post-meal correction bolus timing, and ii) 
2 
o embed the new model into the T1D-PDS, to enhance its capa- 

ility of simulating the patients’ behavior in injecting correction 

oluses. The model of correction bolus timing is developed us- 

ng a decision tree (DT) model, since it is remarkably easy to read 

nd interpret, and it allows mimicking the human decision-making 

rocess. 

More in detail, first we use data collected in T1D individuals 

onitored in free-living conditions to train a DT classifier, able to 

etermine whether a post-meal insulin correction bolus is injected 

n future time windows, based on predictors collected back in 

ime. The classification performance of the new DT model is eval- 

ated against those of a logistic regression classifier with LASSO 

egularization (LC), used as benchmark for comparison. Then, we 

mbed the new DT model into the T1D-PDS, and we perform an 

SCT to compare the resulting simulated correction boluses against 

hose collected in a real-world dataset. 

. Methods 

.1. Dataset 

In this work we considered two different studies, for sake of 

eadability labelled as A and B. 

Study A [ 25 , 26 ] involved 30 adults with T1D, recruited from six

edical centers in Europe and USA, undergoing sensor augmented 

ump (SAP) therapy. On mean ±std, participants were 40.3 ± 12.8 

ears old, had diabetes duration of 21.4 ± 7.47 years, glycated 

aemoglobin (HbA1c) of 7.3 ± 0.7% and body mass index (BMI) of 

5.5 ± 4.3 kg/m 

2 . Participants were monitored in free-living con- 

itions for 9.8 ± 7.1 days, using the Dexcom G4 Platinum CGM 

ensor (Dexcom Inc., San Diego, CA, USA), the Accu-Chek insulin 

ump (Roche Diagnostics, Mannheim, Germany), and the DiAs [27] , 

 smartphone-based medical platform which allows tracking many 

ariables, such as carbohydrates intakes (distinguishing between 

eals and rescue carbohydrates) and insulin boluses (distinguish- 

ng between meal boluses and correction boluses). 

Study B [28] involved 166 T1D adult patients undergoing SAP 

herapy. On mean ±std, participants were 41.9 ± 12.3 years old, had 

iabetes duration of 20.2 ± 12.2 years, HbA1c of 8.3 ± 0.5% and 

MI of 27.4 ± 4.4 kg/m 

2 . Participants were monitored in free-living 

onditions for 477.6 ± 208.1 days using the MiniMed Paradigm 

EAL-Time System (Medtronic Inc., Minneapolis, MN, USA) [29] , a 

evice integrating an insulin pump with a CGM sensor. This system 

mbedded a bolus wizard calculator, allowing to store information 

n size and timing of meals and insulin boluses (distinguishing be- 

ween meal boluses and correction boluses). 

.2. Data pre-processing 

A preliminary analysis of the raw datasets was performed to 

dentify and remove data that appears to have been inaccurately 

eported. For example, in the raw datasets a small number of 

orrection boluses resulted performed with low CGM values (i.e., 

 120 mg/dL). Such boluses, which in all likelihood were meal bo- 

uses of unreported meals, were discarded from the subsequent 

nalysis. Few insulin boluses of very small amount ( < 0.4 U) were 

lso discarded, since they were associated to cannula refill [30] . In 

ddition, when two correction boluses of the same size were re- 

orted in less than 20 min, a duplication of the same information 

as assumed to have been recorded and the latter of the two was 

gnored. 

The same pipeline described in Camerlingo et al. [21] was im- 

lemented to label the meal intakes as breakfast, lunch, dinner, or 

nack. Finally, the days with few data gathered (i.e., those with less 

han 3 meal intakes) were not considered for our analysis. 
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Fig. 1. Design of the analysis. 
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The final dataset included a total of 4 9,995 days, 296,6 85 meals 

including snacks), and 61,654 insulin correction boluses. 

The pipeline implemented to model the behavior of subjects 

ith T1D in injecting post-meal correction boluses is illustrated in 

ig. 1 . 

.3. Feature extraction 

For each meal recorded in the dataset, we considered a post- 

eal window starting 30 min after the meal and ending after 7 h, 

f no other meal has been consumed up to that moment, other- 

ise the window was truncated 30 min before the following meal. 

or the latest collected meal, if closer than 7 h to the tail of the

ata collection period, the longest window with duration multiple 

f 30 min was considered. Each post-meal window was then split 

n shorter consecutive windows of 30-min duration, from now on 

eferred to as observation windows. An observation window was 

abelled with “1”, if at least one correction bolus was registered in- 

ide the window, otherwise the observation window was labelled 

ith “0”. The total number of observation windows was 460,602: 

9,799 labelled as “1” and 430,802 labelled as “0”. 

Then, for each observation window, 12 independent variables 

ere extracted both from current and previous windows and from 

atients’ demographic data, as possible predictors of the label. 

pecifically, we considered the following features : 

• Patient’s age. 
• Patient’s body weight (BW). 
• Patient’s CF. 
• Mean glucose trend direction in the previous 30-min, com- 

puted, at each sample time, as the weighted average of the 

last 5 CGM samples, and then discretized as an integer num- 

ber ranging in [ −3, 3], to mimic the different arrow directions 

displayed by CGM sensors. 
• Current CGM, obtained by averaging the CGM samples of the 

observation window. 
• �CGM, obtained as difference of current CGM and the average 

of the previous 30 min CGM samples. 
• Mealtime �CGM, obtained as difference of current CGM and 

the average of the previous CGM samples since the last meal. 
• Time spent in hyperglycemia, computed as percent of CGM 

samples > 180 mg/dL since the last meal intake. 
• Type of last meal intake, a boolean variable equal to 1 if the 

last meal was labelled a snack, 0 otherwise. 
• Time from the last insulin bolus, including both meal boluses 

and correction boluses. 
3 
• type of last insulin bolus, a boolean variable equal to 1 if the 

last insulin bolus was a correction bolus, 0 if it was a meal bo- 

lus. 
• Time of the day, a categorical variable equal to 1, 2, 3, 4 if the

first sample in the observation window was collected in the 

time interval 5:00 am–11:55 am, 12:00 am–5:55 pm, 6:00 pm–

11:55 pm, 0 0:0 0 am–4:55 am, respectively. 

The final dataset was randomly divided into a 70% training set 

TrS) and 30% test set (TeS), maintaining the same proportions of 

he labels: 301,460 (93.5%) “0”, 20,957 (6.50%) “1" in the TrS, and 

29,197 (93.5%) “0”, 8982 (6.50%) “1” in the TeS. The TeS was fur- 

her halved into TeS1 and TeS2: the former will be used to evaluate 

he model performance, while the latter will be used as compari- 

on against simulated data. 

Since the number of “0” is much greater than the number of 

1”, the label’s frequency results imbalanced. In order to mitigate 

ias issues, TrS data were weighted to penalize the misclassifica- 

ion of the minority class, according to the following weighting 

cheme: 

 k = 

N 

K n k 

(2.3.1) 

here N = 322, 417 was the total number of observations in the 

rS, K = 2 was the total number of classes, and n k was the number

f observations in the class k , thus obtaining w k = 0 = 0.535 and 

 k = 1 = 7.692. This approach, often referred to as cost-sensitive 

earning, is preferred to deal with class-imbalance problems as it 

llows using all the available training data, thus avoiding loss of 

nformation, without degrading the learning speed, compared to 

ther commonly used approaches [31] . 

Moreover, to alleviate the subject-specific features’ variability, a 

-score standardization was performed on the continuous features 

sing their mean and their standard deviation in the TrS [32] . 

.4. Classification model selection for DT and LC 

Two supervised learning techniques were implemented to pre- 

ict the dependent variable based on the independent variables 

ollected in each window: DT, and LC. These models have been 

idely applied in the literature to approach similar problems 

 21 , 33 , 34 ]. 

The DT is a highly interpretable commonly used approach 

or classification problems [ 35 , 36 ]. A DT may be grown through 

everal algorithms, including “classification and regression tree”

CART) [37] , “chi-squared automatic interaction detection” (CHAID) 
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Table 1 

Performance metrics used for model selection. 

Metric Expression 

Accuracy T P+ T N 
T P+ T N+ F P+ F N 

Sensitivity (recall) TN 
TN+ FP 

Specificity TP 
TP+ FN 

Precision TP 
TP+ FP 

TP, true positive, window correctly classified with a correction bolus; TN, true neg- 

ative, window correctly classified without a correction bolus; FP, false positive, win- 

dow wrongly classified with a correction bolus; FN, false negative, window wrongly 

classified without a correction bolus. 
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38] , and extensive CHAID [39] , tested in this work. While the for-

er chooses the split predictor based on the maximization of a 

plit criterion gain among all the possible splits, the other two per- 

orm chi-square tests of independence between each predictor and 

esponse (CHAID), or also each pair of predictors and response (ex- 

ensive CHAID). For the CART algorithm, we tested two different 

plit criteria: Gini’s diversity index (GDI) and cross-entropy. Other 

yperparameters, including the minimum number of observations 

n the leaf node and the maximum number of branch nodes, were 

uned via grid search analysis. In particular, the minimum number 

f observations in the leaf node ranged within (10, 50), with a step 

f 10, while the maximum number of branch nodes ranged within 

5, 40), with a step of 5. This search space was chosen to penalize

oo deep trees, prone to overfitting and more difficult to read. 

The LC is a binary classification model, where the dependent 

ariable is assumed to be a linear combination of the indepen- 

ent variables, transformed by the logistic function. Thus, it was 

mplemented as a generalized linear model in which the likeli- 

ood of the outcome was assumed to be a Bernoulli distribu- 

ion [40] . To avoid overfitting and deal with multicollinearity [41] , 

e resorted to the least absolute shrinkage and selection operator 

LASSO) regularization approach, that essentially consists in adding 

n L1 penalty term (i.e., a bias) to the objective function, thus 

chieving a lower variance on the TeS [42] . This leads to an overall

mprovement in the accuracy of classification [43] . The amount of 

egularization applied is controlled by the hyperparameter λ: the 

arger its value, the higher the incidence of the penalty term in the 

hole objective function and, therefore, the lower the model coef- 

cients. In this work, λ ranged within (10 −5 , 10 −1 ), with a step of

0 −3 . 

All the hyperparameters for each model were tuned by applying 

 20-fold cross validation (CV) over the TrS, to achieve the highest 

rea under the receiver operating characteristic curve (AUROC). The 

UROC is commonly employed in classification problems, since it 

uantifies to what extent the model distinguishes between classes: 

he closer the AUROC is to one, the better is the discriminatory 

ower of the model. 

.5. Feature selection 

Feature selection algorithms were implemented to eliminate 

he redundant features not relevant for the target classification 

ask. 

Regarding the DT, on one hand large DTs are often inaccu- 

ate because of a too large variance (too much sample sensitiv- 

ty), whereas on the other hand DTs with too few leaves are in- 

ccurate because of a large bias (not enough flexibility). To find 

 suitable bias-variance trade-off and to perform feature selec- 

ion, the bottom-up reduced error pruning (REP) approach was im- 

lemented [ 44 , 45 ]. Specifically, a 30% TrS data was randomly ex- 

racted as a pruning set (PrS), maintaining the same proportions 

f the labels, while the remaining 70% was used to grow the max- 

mal expanded tree. For each internal node of this tree, the algo- 

ithm compared the number of classification errors made on the 

rS when the node was turned into a leaf and associated with its 

ost popular class. If this simplified tree exhibited a non-worse 

erformance than the original one, quantified in terms of AUROC, 

runing was confirmed. This operation was repeated on the sim- 

lified tree until no more branches could be pruned. In this way, 

EP provided the small version of the most accurate subtree with 

espect to the pruning set [46] . 

For the LC, feature selection is automatically obtained by the 

ASSO regularization approach. Indeed, the LASSO model sets as 

any coefficients as possible to zero, unless they are important to 

rive the predictions right. 
4 
Lastly, DT, and LC models containing their respective subsets of 

ost predictive features were trained on the whole TrS, and their 

erformance were computed on TeS1, in terms of sensitivity, i.e., 

he true positive rate, specificity, i.e., the true negative rate, accu- 

acy, i.e., the proportion of correct predictions, precision, i.e., the 

ositive predictive value, and AUROC. These metrics were summa- 

ized in Table 1 . In this computation, we considered as true pos- 

tive both the windows correctly classified as “1”, and those win- 

ows misclassified as “1” that were located immediately before or 

mmediately after a window labelled as “1” in the original dataset. 

he choice of accepting a prediction in the windows surrounding 

hose with a correction bolus was based on the consideration that 

ometimes, based on the specific circumstances, a correction bolus 

an be delayed (e.g., a subject who is driving, first needs to stop 

efore injecting a correction bolus) or anticipated (e.g., an individ- 

al who is leaving the house may decide to anticipate the correc- 

ion bolus, thus avoiding the burden of injecting it in presence of 

riends/colleagues). 

.6. Implementation in the T1D-PDS 

Among the previous models, the one providing the best per- 

ormance was embedded into the T1D-PDS, published in Vettoretti 

t al. [17] . An ISCT involving 100 virtual subjects monitored for 7 

ays was designed. 

For each virtual subject, one breakfast, one lunch, and one din- 

er were always triggered during the day, at times selected by ex- 

racting random samples from the distributions of breakfast time, 

ime between breakfast-lunch, and time between lunch-dinner, de- 

ived in Camerlingo et al. [21] . Similarly, meal amounts were sam- 

led from the distributions of breakfast amount, lunch amount, 

nd dinner amount. Snacks were triggered according to a SVM 

odel, applied every 3 h [21] . Finally, the duration of main meals 

nd snacks was set to 15 min and 5 min, respectively. 

Both main meals and snacks were associated with insulin meal 

oluses, whose doses was set according to the standard formula 

47] , i.e., by taking into account the patient’s estimate of the car- 

ohydrates content of the meal, the mealtime CGM value, and 

atient-specific therapy-related factors. In particular, the estimated 

eal content was simulated by implementing the nonlinear model 

f carb-counting error developed in Roversi et al. [22] . 

Predictors of future correction boluses were collected in real- 

ime, and the final model was applied every 30 min, from 30 min 

fter each meal to the following meal, up to 7 h. Then, if the model

redicted a correction bolus in the following half hour, a correc- 

ion bolus was triggered at a time randomly selected, with uniform 

robability, within the time window. The correction bolus amount 

as calculated by subtracting the target blood glucose from the 

urrent blood glucose and dividing by CF. 

Once incorporated the model into the T1D-PDS, to demon- 

trate the reliability of its realizations, several insulin-related out- 

omes were computed and compared against the same metrics 

omputed over TeS2 data. Specifically, assessment metrics were: 
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Fig. 2. ROC curves of the models selected in 20-fold CV for each learning tech- 

nique: DT (blue), and LC (green), reported as mean [25–75th percentiles], compared 

against the random classifier (dashed black). 

Table 2 

Performance of the models in CV, using the entire set of features (columns 2–3) 

and on the TeS1, using the selected subset of features (columns 4–5). 

Performance 

metrics 

All features in 20-fold CV 

Selected features on 

the TeS1 

DT LC DT LC 

ACC 0.800 

[0.795–0.802] 

0.791 

[0.785–0.800] 

0.790 0.792 

SEN 0.385 

[0.375–0.397] 

0.411 

[0.389–0.447] 

0.501 0.430 

SPE 0.895 

[0.889–0.900] 

0.877 

[0.867–0.892] 

0.861 0.878 

PRE 0.459 

[0.443–0.469] 

0.435 

[0.419–0.446] 

0.467 0.455 

AUROC 0.750 

[0.743–0.757] 

0.743 

[0.738–0.749] 

0.774 0.757 
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Table 3 

Coefficients of the LC model using LASSO regularization. 

Candidate predictors Model coefficient 

Current CGM 0.4351 

Daytime = 2 0.3954 

Intercept −0.3915 

Time from last bolus 0.3433 

Delta CGM 0.2575 

Delta CGM from mealtime 0.2548 

Daytime = 1 0.2437 

Daytime = 3 −0.1587 

BW 0.1059 

Time in hyperglycemia 0 

Previous correction bolus 0 

Patient’s CF 0 

Glucose trend direction 0 

Meal type 0 

Patient’s age 0 
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1

GM value at correction bolus injection time [mg/dL], time be- 

ween consecutive correction boluses, �t CB-CB [min], time between 

 correction bolus and the previous meal, �t m-CB [min], num- 

er of correction boluses per day, #CB/day, total amount of in- 

ulin injected per day as correction boluses, Insulin CB /day [U], total 

mount of insulin injected per day as meal bolus plus correction 

olus, Insulin CB + MB /day [U]. In addition, the average numbers of CB 

er day and CB per meal over the real and the virtual populations 

ere compared. 

. Results 

The DT trained with the CART algorithm, with a minimum 

eaf size of 100 points and a maximum number of splits of 30 

howed the highest AUROC among those tested in CV, equal to 

.750 [0.743–0.757], on median [25–75th percentiles]. The high- 

st performance for LC was achieved with regularization factor 

= 2.4 × 10 −3 , which provided AUROC equal to 0.743 [0.738–

.749], on median [25–75th percentiles]. 

The 20-fold CV average ROC curves of DT and LC are reported 

n Fig. 2 , together with their [25–75th percentiles] intervals. The 

odels generate probability estimates for each prediction. In this 

ork, we tuned the threshold probability to maximize the models’ 

ccuracy. In the second column of Table 2 , the resulting values of 

ccuracy, sensitivity, specificity, and precision of the models are re- 

orted on median [25–75th percentiles]. In CV, the DT performed 
5 
etter than the LC, with higher median values of accuracy (0.800 

or the DT vs 0.791 for the LC), specificity (0.895 for the DT vs 

.877 for the LC), and precision (0.459 for the DT vs 0.435 for the 

C), and a slightly lower value of sensitivity (0.385 for the DT vs 

.411 for the LC). 

Then, the models were trained on the whole TrS. Fig. 3 re- 

orts the resulting DT, that involves the following features: current 

GM, time from the last insulin bolus, �CGM, mealtime �CGM, 

nd time of the day. 

The coefficients of the LC are reported in Table 3 . Those set to

ero were related to the features deemed poorly predictive by the 

ASSO regularization approach, while the subset of most predictive 

eatures included: current CGM, time of the day, time from the last 

nsulin bolus, �CGM, mealtime �CGM, and patient’s BW. 

The final ROC curves are reported in Fig. 4 . The thresholds on 

he posterior probability are: 0.591 for the DT, and 0.613 for the 

C, and are marked by colored dots in Fig. 4 . The corresponding 

erformance metrics evaluated on TeS1 are reported in the third 

olumn of Table 2 . 

On the TeS1, the DT performed slightly better than the LC, with 

n AUROC of 0.774, compared to 0.757 of the LC. Despite a com- 

arable accuracy (0.790 for the DT vs 0.792 for the LC), the DT ex- 

ibits a higher sensitivity (0.501 vs 0.430) and a higher precision 

0.467 vs 0.455), but a lower specificity (0.861 vs 0.878). 

Furthermore, the DT resulted easy to understand and visualize, 

roviding a simple set of rules to determine the most suitable mo- 

ent to perform a correction bolus, based on previously collected 

redictors. Thus, implementing the DT into the T1D-PDS would be 

referable. 

After embedding the DT into the T1D-PDS, a total of 2554 meals 

nd 784 post-meal correction boluses were generated. In order to 

ssess whether the model could capture the variability observed 

n real-world data, in Fig. 5 the distributions of CGM value at cor- 

ection bolus injection time (panel a), time between consecutive 

orrection boluses, �t CB-CB (panel b), time between a correction 

olus and the previous meal, �t m-CB (panel c), number of correc- 

ion boluses per day, #CB/day (panel d), total amount of insulin in- 

ected per day as correction boluses, Insulin CB /day (panel e), total 

mount of insulin injected per day as meal bolus plus correction 

olus, Insulin CB + MB /day (panel f) are shown through boxplot rep- 

esentation for both real data of TeS2 (label “Data”) and simulated 

ata (label “Sim”). The metrics present similar distributions in real 

nd simulated datasets. In Table 4 , we report the median [25–75th 

ercentiles] of these metrics, calculated on real data (second col- 

mn) and simulated data (third column). 

Lastly, the average numbers of correction bolus per day were 

.14 for the real population and 1.12 for the virtual population, 
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Fig. 3. Final DT trained on the entire TR. 

Fig. 4. Final ROC curves of the models trained on the whole TR: DT (blue curve), 

and LC (green curve). Colored dots indicates the points in which the maximum ac- 

curacy is reached. 
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Table 4 

Insulin outcomes computed on data of real population vs virtual population. 

Metric Real population Virtual population 

CGM at correction bolus 

timing [mg/dL] 

242 

[210–284] 

249 

[225–295] 

Time between consecutive 

correction boluses [min] 

125 

[115–145] 

114 

[100–130] 

Time between meal and 

correction bolus [min] 

154 

[90–205] 

138 

[114–175] 

Number of correction bolus 

per day 

1 

[0–2] 

1 

[0–2] 

Insulin amount injected as 

correction bolus [U] 

3.7 

[2.0–6.7] 

3.5 

[0.0–6.8] 

Insulin amount injected as 

meal bolus and correction 

bolus [U] 

24.3 

[16.4–33.5] 

24.2 

[18.7–31.5] 
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s
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h

m

p

t

A

s

hile the average number of correction bolus per meal were 0.22 

or the real population and 0.36 for the virtual population. 

. Discussion 

Existing simulation tools to perform ISCTs in T1D research lack 

 realistic description of some individuals’ behavior in perform- 

ng daily therapeutic tasks, that may impact on glucose control. 

n particular, the T1D-PDS of Vettoretti et al. [17] embeds a very 

implistic and empiric behavioral module that did leave room for 

mprovement. While we have already focused on the enhancement 

f meal amount and timing variability [21] and carb-counting error 

22] models, in this work we developed a realistic model of insulin 

orrection bolus timing. 

Specifically, by leveraging two datasets collected in free-living 

onditions, we implemented two different machine learning clas- 

ifiers to describe the timing of performing post-meal insulin cor- 

ection bolus injections. We developed a DT to classify whether a 

orrection bolus is injected in a future time window, based on pre- 
6 
ictors collected back in time, that could likely influence the injec- 

ion of a correction bolus and, at the same time, can be reliably 

andled by the ad-hoc models embedded in the currently available 

imulation tools. These predictors are related to CGM data, previ- 

us insulin boluses and subject’s characteristics. The model was as- 

essed both in CV and on a separate test set, and it was compared 

gainst a LC with LASSO approach. The DT showed better perfor- 

ance compared to the LC, and resulted highly interpretable, pro- 

iding a bunch of easily understandable rules, with a logical clini- 

al meaning. The final DT involved the following features: current 

GM, time from the last insulin bolus, half-hour �CGM, mealtime 

CGM, and time of the day. Specifically, in case of CGM levels 

elow 224 mg/dL, a correction bolus is injected only during the 

ay (5:00 AM–11:55 PM), if at least 118 min have passed since 

he last insulin bolus, the CGM increased of at least 8 mg/dL in 

he last half-hour and it increased of at least 18 mg/dL since the 

ast meal. On the contrary, in case of CGM levels equal to or above 

24 mg/dL, a correction bolus is injected either if at least 68 min 

ave passed since the last insulin bolus, or if the CGM increased of 

ore than 44 mg/dL since the last meal and at least 33 min have 

assed since the last insulin bolus. 

On the test set, the DT showed an accuracy of 0.790, a sensi- 

ivity of 0.501, a specificity of 0.861, a precision of 0.467 and an 

UROC of 0.774. The overall performance, despite not optimal, are 

atisfactory for the purpose of the models developed in this work, 
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Fig. 5. Boxplot representation of the distributions of CGM during correction bolus (panel a), time between consecutive correction boluses, �tCB-CB (panel b), time between 

a correction bolus and the previous meal, �tm-CB (panel c), number of correction boluses per day, #CB/day (panel d), total amount of insulin injected per day as correction 

boluses, InsulinCB/day (panel e), total amount of insulin injected per day as meal bolus plus correction bolus, InsulinCB + MB/day (panel f), obtained on real data (label “Real”) 

and simulated data (label “Sim”). The red horizontal line represents median, the blue box markes the interquartile range, dashed black lines are the whiskers and the red 

stars indicate outliers. 
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.e., realistically simulate the patients’ behavior in post-meal cor- 

ection bolus timing. 

The new DT was incorporated into the recent T1D-PDS and its 

eliability was assessed by comparing the simulated correction bo- 

uses of 100 virtual subjects to a portion of the correction boluses 

ollected in the study used in this work, but not used for training 

he model. The comparison highlighted good agreement between 

he metrics calculated on real and on simulated data. 

In the future, more complex models can be investigated to pos- 

ibly achieve better performance metrics, such as support vector 

achine, random forest, and neural networks, whose interpretabil- 

ty could be achieved by recently developed reverse-engineering 

lgorithms, e.g., SHAP [48] . Future developments could also in- 

lude the refinement of the model to capture the temporal pat- 

erns of patients’ behavior at different time scales (e.g., working 

ays vs weekend, different seasons, etc.). Moreover, the availabil- 

ty of a much larger dataset would allow both to identify other 

ubject-specific covariates (for example, linked to the education 

evel, lifestyle, and possible comorbidities), and to develop new 

ehavioral models (for example, to describe the insulin blousing 

ehavior, the probability of a missed bolus, and the responsive- 

ess to CGM alarms/alerts). This can be achieved either by im- 

lementing the same methodology presented therein, or by resort- 

ng to reinforcement-learning-based techniques to learn sequential 

ecision-making tasks (as performed in [49] ). 

In conclusion, the work carried out in this work allowed to fur- 

her enhance the reliability of the T1D-PDS in performing more in- 

ightful ISCTs. According to the “Hypo-RESOLVE” project objectives 

50] , the enhanced simulator will be used to quantify the impact 
7

f different behaviors in performing daily therapeutic tasks on glu- 

ose control. 
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