
Wellcome Open Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Living HEOR, Automating HTA with R

Robert A Smith1,2,3*, Paul P Schneider2,3, and Wael Mohammed2,3

1Lumanity, Sheffield
2Dark Peak Analytics, Sheffield
3School of Health and Related Research, University of Sheffield

Robert A Smith: rasmith3@sheffield.ac.uk
Paul P Schneider:
Wael Mohammed:
* Corresponding author

Abstract Background Requiring access to sensitive (e.g. patient level or product
price) data can be a significant obstacle for the development of health models. Se-
curity and privacy are important concerns when transferring sensitive data between
parties . Here, we demonstrate how HEOR can be conducted in a way that al-
lows clients to retain full control of their data, while automating reporting as new
information becomes available.
Method We developed an automated analysis and reporting pipeline for health eco-
nomic modelling and made the source code openly available on a GitHub reposi-
tory. The pipeline consists of three parts: An economic model is constructed by the
consultant using pseudo data (i.e. random data, which has the same format as the
real data). On the client side, an application programming interface (API), gener-
ated using the R package plumber, is hosted on a server. An automated workflow
is created. This workflow sends the economic model to the client API. The model
is then run within the client server. The results are sent back to the consultant, and
a (PDF) report is automatically generated using RMarkdown. This API hosts all
sensitive data, so that data does not have to be provided to the consultant.
Results & Discussion The application of modern data science tools and practices
(R, APIs, RMarkdown and GitHub Actions) allows the consultant to conduct health
economic (or any other) analyses on client data, without having direct access –
the client does not need to share their sensitive data. In addition, the entire work-
flow can be largely automated: the analysis can be scheduled to run at defined
time points (e.g. monthly), or when triggered by an event (e.g. an update to the un-
derlying data or model code); results can be generated automatically and then be
exported into a report. Documents no longer need to be revised manually.
Conclusions This example demonstrates that it is possible, within a HEOR setting,
to separate the health economic model from the data, and automate the main steps
of the analysis pipeline.

Keywords
HEOR, HTA, APIs, R, Plumber.

Page 1 of 7

mailto:rasmith3@sheffield.ac.uk
https://github.com/RobertASmithBresMed/plumberHE


Wellcome Open Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Introduction
The development of economic models generally involves
the transfer of sensitive data (e.g. individual patient or
price data) between parties. This paper demonstrates
how the use of APIs allows clients in the Health Eco-
nomics & Outcomes Research (HEOR) industry to collab-
orate with multiple partners on health economic decision
models, while,retaining full control of their data. The
use of an API furthermore makes it possible to stream-
line and automate reporting as new information becomes
available, significantly reducing the financial and admin-
istrative burden of economic model updates.
A recent publication by Adibi et al. [1] describes a cloud-
based model accessibility platform for models developed
in R. The authors make the case for cloud based platforms
to improve the accessibility, transparency and standardis-
ation of health economic models, particularly highlighting
the benefits of hosting computationally burdensome mod-
els on remote servers. The authors outline a framework
for hosting models, contained within R packages, which
are run using calls to an Application Program Interface
(API). A set of standardised model call functions provide
the user of the API with enough information to pass the
necessary parameters to the model, run the model, and re-
trieve the necessary results directly into an R session. The
publication is the first, to our knowledge, to discuss the
enormous implications that remote model hosting could
have in the HEOR industry.
[insert figure from the paper?]
We take this approach one step further, providing an open-
source code base which demonstrates the ease at which
APIs can be deployed on data servers to avoid the need
to share sensitive data. In short, we propose that com-
panies, with support from health economists, host their
own model accessibility platforms. Our hope is that pro-
viding these materials will encourage others to use these,
relatively new methods, to improve the transparency, ac-
cessibility and efficiency of health economic models.

Method
We developed an automated analysis and reporting
pipeline for health economic modelling It consists of three
parts:
An economic model. The model can initially be devel-
oped using pseudo data – that is randomly generated data,
which has the same formatas the actual data, but does not
contain any sensitive information.
An application programming interface (API). The API is
hosted on the company / data provider side. It can be
generated using the R package plumber.
An automated workflow is created. This workflow sends
the economic model to the company API. The model is
then run within the company server. The results are sent
back to the consultant, and a (PDF) report is automati-
cally generated using RMarkdown.

• This API server hosts all sensitive data, so that data
does not have to be provided to other project part-
ners.

• All of these processes can be controlled with a web-
based user-interface. We provide an example user-
interface built in the R shiny package, based on the
tutorial application in our previous paper [2] [3].
This application allows users to select input param-
eters with which to query the API, and view the re-
sults. This allows non-technical stakeholders to in-
teract with the model in real time, while allowing
the company to retain control of the data. The ap-
plication will always reflect the data on the company
server, and the model hosted by the consultant at the
time of use.

All of the methods discussed in this paper, as well as the
code for the demonstration app can be found contained
within an open access GitHub repository.

1. The economic model
This model code has been amended from the DARTH
group’s open source Cohort state-transition model (the
Sick-Sicker Model) which can be found in this GitHub
repository and is discussed in Alarid-Escudero et al. [4].
The code includes several functions, but for the purpose
of this example we can treat the model as a black box, as
a single function called run_model which runs the DARTH
Sick Sicker model. The run_model function takes a single
argument, psa_inputs, which is a data-frame containing
Probabilistic Sensitivity Analysis parameter inputs for the
model variables that are allowed to vary.
[a simple i -> f() -> o diagram might be useful?]
The data-frame has four columns: * parameter - the name
of the parameter (e.g. p_HS1) * distribution - the distri-
bution of that parameter (e.g. “beta”) * V1 - the first pa-
rameter for the distribution in R (for beta this would be
shape1, for normal this would be mean) * V2 - the second
parameter for the distribution in R (for beta this would be
shape2, for normal this would be sd)
The run_model function returns a data-frame with six
columns The first three columns are costs for each treat-
ment option, and the second three columns are QALY for
each treatment option. Each row represents the result of
the model run for a set of inputs.

2. The API
An application programming interface is a set of rules, in
the form of code, that allow different computers to inter-
act with one another in real time. Whereas user-interfaces
such as those generated by the R package shiny allow hu-
mans to interact with data, APIs are designed to enable
computers to interact with data [3].
When a ‘client’ application wants to access data, it initiates
an API call (request) via a web-server, to retrieve the data.
If this request is deemed valid, the API makes a call to an
external program/server, the server sends a response to
the API with the data, and the API transfers the data to
the ‘client’ application. In a sense, the API is the broker
(or middle-man) between two systems.
There are numerous benefits to APIs: - in supporting pro-
grammatic access. In contrast to what web applications

Page 2 of 7

https://github.com/RobertASmithBresMed/plumberHE
https://github.com/DARTH-git/Cohort-modeling-tutorial/
https://github.com/DARTH-git/Cohort-modeling-tutorial/


Wellcome Open Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

offer (for example shiny apps), APIs allow users to ac-
cess data, or other utilities (for example, proprietary ap-
plications) programmatically. Programmatic access en-
ables users to invoke actions through an application or
third-party tool. For example, R users can write a func-
tion that fetches or analyses data via an API and use
this function in their workflow as any other user-defined
function. This feature allows for greater data utilisation
flexibility and faster integration with other software. -
in allowing cross-platform communications. Statisticians
and decision-model developers can use different program-
ming languages or packages. For example, APIs can al-
low a decision analytic model, developed in C++, to pro-
grammatically utilise data from a bayesian meta-analysis
performed using python programming language. - in aid-
ing speed of collaboration between institutions, ensuring
inputs and outputs are standardised so that applications
can ‘talk’ to one another. Users from one institution need
not to take into account the software or package used by
their partners, but focus on how they would interact with
the expected data. - in security, eliminating the neces-
sity to share data manually (e.g. via email). All interac-
tion with data can be logged and access can be restricted
by passwords and by limiting IP address access. For ex-
ample, APIs can safely allow statisticians to programmat-
ically accumulate sub-group summary-statistics from se-
curely stored trial-data to inform a network meta-analysis.
- in expanding sharing avenues. For example, APIs can al-
low institutions to give limited access to their proprietary
tools such as in-house decision-analytic models. Users of
such tools can pass their data to the model and receive
the respective outputs via the API. - eliminating computa-
tional burden on the client side (since all computation is
done on the API owner side).
There are lots of different implementations of APIs, but
the main focus of this paper is on Partner APIs, which are
created to allow data transfer between two different insti-
tutions. This requires a medium level of security, usually
through the creation of access keys that are shared with
partners.
In the examples below we use Javascript Object Notation
(JSON), a data interchange format that is commonly used
to transfer information between computers, to pass infor-
mation to and from our API. Since the model is written in
R, we convert back and forth between JSON and R data
formats using the jsonlite R package [5].

2.2 plumber The R package plumber allows program-
mers to create web APIs by decorating R source code
with roxygen-like comments [6, R2021citation]. These
functions are then made available as API endpoints by
plumber.
The API can be called using a number of HTTP re-
quest methods (also known as HTTP verbs). The most-
commonly used methods POST, GET, PUT, PATCH, and
DELETE correspond to create, read, update, and delete
operations, respectively. These annotations generate the
API’s endpoint(s) and specify the operation(s) or re-
sponse(s) the respective R function is responsible for gen-
erating. The below example shows the ‘GET’ request (the

default for web-browsers).
The code below gives an example function which echos
a message. The function takes one input, a string with
the message, and outputs the message contained within
a list. If this function was created in R it would return a
list containing some text, like this: The message is: ‘ex-
ample_msg’.

1 #* Echo back the input
2 #* @param msg The message to echo
3 #* @get /echo
4 function(msg="") {
5 list(msg = paste0("The message is: '", msg, "'"))
6 }

The code for the model function uses the same principles,
but is much more developed. There are three arguments
to the model API; path_to_psa_inputs, model_functions
and param_updates.
The core API function created by plumber sources the
model functions from software development website
GitHub, obtains the model parameter data from within
the API, and then overwrites the rows of the parame-
ter updates that exist in param_updates. It then runs
the model functions using the updated parameters, post-
processes the results, checks that no sensitive data is in-
cluded in the results, and then returns a data-frame of
results. This entire process occurs in the server on which
the API is hosted, with inputs and outputs passed to the
API over the web in JSON format.

1 #################
2
3 library(dampack)
4 library(readr)
5 library(assertthat)
6
7 #* @apiTitle Client API hosting sensitive data
8 #*
9 #* @apiDescription This API contains sensitive data, the client does not

10 #* want to share this data but does want a consultant to build a health
11 #* economic model using it, and wants that consultant to be able to run
12 #* the model for various inputs
13 #* (while holding certain inputs fixed and leaving them unknown).
14
15 #* Run the DARTH model
16 #* @serializer csv
17 #* @param path_to_psa_inputs is the path of the csv
18 #* @param model_functions gives the github repo to source the model code
19 #* @param param_updates gives the parameter updates to be run
20 #* @post /runDARTHmodel
21 function(path_to_psa_inputs = "parameter_distributions.csv",
22 model_functions = paste0("https://raw.githubusercontent.com/",
23 "BresMed/plumberHE/main/R/darth_funcs.R"),
24 param_updates = data.frame(
25 parameter = c("p_HS1", "p_S1H"),
26 distribution = c("beta", "beta"),
27 v1 = c(25, 50),
28 v2 = c(150, 70)
29 )) {
30
31
32 # source the model functions from the shared GitHub repo...
33 source(model_functions)
34
35 # read in the csv containing parameter inputs
36 psa_inputs <- as.data.frame(readr::read_csv(path_to_psa_inputs))
37
38 # for each row of the data-frame containing the variables to be changed...
39 for(n in 1:nrow(param_updates)){
40
41 # update parameters from API input
42 psa_inputs <- overwrite_parameter_value(
43 existing_df = psa_inputs,
44 parameter = param_updates[n,"parameter"],
45 distribution = param_updates[n,"distribution"],
46 v1 = param_updates[n,"v1"],
47 v2 = param_updates[n,"v2"])
48 }
49
50 # run the model using the single run-model function.
51 results <- run_model(psa_inputs)
52
53 # check that the model results being returned are the correct dimensions
54 # here we expect a single dataframe with 6 columns and 1000 rows
55 assertthat::assert_that(
56 all(dim(x = results) == c(1000, 6)),
57 class(results) == "data.frame",
58 msg = "Dimensions or type of data are incorrect,
59 please check the model code is correct or contact an administrator.
60 This has been logged"
61 )
62
63 # check that no data matching the sensitive csv data is included in the output
64 # searches through the results data-frame for any of the parameter names,

Page 3 of 7



Wellcome Open Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

65 # if any exist they will flag a TRUE, therefore we assert that all = F
66 assertthat::assert_that(all(psa_inputs[, 1] %in%
67 as.character(unlist(x = results,
68 recursive = T)) == F))
69
70 return(results)
71
72 }

Deploying an API There are numerous other providers
of cloud computing services. The most convenient, yet
not the cheapest, service is offered by RStudio Connect.
An account is required for this, but once you have one it is
possible to deploy the API directly from the Rstudio IDE.
RStudio have a blog on how to publish an API created
using Plumber to RStudio connect here.

Interacting with the API
We first show how to run the model from an R script, call-
ing the API and retrieving the results of the model run.
We then show how to use GitHub actions to automate the
process, running the R script when triggered by an event
(e.g. a data-update) or a scheduled time (e.g. the 1st of
each month).

Interact with API from RScript We use the POST func-
tion from the httr package to query the API [7] - as shown
in the code chunk below. This function requires an inter-
net connection. We provide values for several arguments:

• url - the URL of the RStudio Connect server hosting
the API we have created using plumber.

• path - the path to the API within the server URL.
• query & body - objects passed to the API in list for-

mat, with names matching the plumber function ar-
guments.

• config - allows the user to specify the KEY needed to
access the API.

The content function attempts to determine the correct
format for the output from the API based upon the con-
tent type. This function ensures that the result object is a
dataframe.
The script then then goes on to save the data and gener-
ate a PDF report from the outputs using the RMarkdown
package [8], the code for which can be found here. The
markdown report uses functions adapted from the dark-
peak R package.

1 # remove all existing data from the environment.
2 rm(list = ls())
3
4 library(ggplot2)
5 library(jsonlite)
6 library(httr)
7
8 # run the model using the connect server API
9 results <- httr::content(

10 httr::POST(
11 # the Server URL can also be kept confidential, but will leave here for now
12 url = "https://connect.bresmed.com",
13 # path for the API within the server URL
14 path = "rhta2022/runDARTHmodel",
15 # code is passed to the client API from GitHub.
16 query = list(model_functions =
17 paste0("https://raw.githubusercontent.com/",
18 "BresMed/plumberHE/main/R/darth_funcs.R")),
19 # set of parameters to be changed ...
20 # we are allowed to change these but not some others
21 body = list(
22 param_updates = jsonlite::toJSON(
23 data.frame(parameter = c("p_HS1","p_S1H"),
24 distribution = c("beta","beta"),
25 v1 = c(25, 50),
26 v2 = c(150, 100))
27 )
28 ),
29 # we include a key here to access the API ... like a password protection

30 config = httr::add_headers(Authorization = paste0("Key ",
31 Sys.getenv("CONNECT_KEY")))
32 )
33 )
34
35 # write the results as a csv to the outputs folder...
36 write.csv(x = results,
37 file = "outputs/darth_model_results.csv")
38
39 source("report/makeCEAC.R")
40 source("report/makeCEPlane.R")
41
42 # render the markdown document from the report folder,
43 # passing the results dataframe to the report.
44 rmarkdown::render(input = "report/darthreport.Rmd",
45 params = list("df_results" = results),
46 output_dir = "outputs")

Use GitHub actions to automate the process Once the
API is created and hosted online, it can be called any time.
The advantage of this is that any updates to either the
model code, or the data used by the model, can be un-
dertaken separately and the model re-run by either party.
Calls to the API can also be scheduled at routine inter-
vals. This would enable the health economic evaluation
model report to be updated, without human interaction,
at regular intervals to reflect the most up-to-date data.
In the example below we show how a GitHub Actions
(other providers available) workflow can be used to auto-
mate an update to a health economic evaluation [9]. The
workflow runs at 0:01 on the first day of every month.
It first clones the GitHub repository on a GitHub actions
Windows 2019 server, then install the necessary depen-
dencies, before running the script described above to gen-
erate the model report. It creates a pull request to the
repo with this new updated report. If GitHub is not the
preferred location of report storage, it is possible to send
the report via email or save to cloud storage solutions such
as Google Drive or Dropbox.

1 on:
2 push:
3 branches:
4 - main
5 schedule:
6 - cron: '1 1 1 * *'
7
8 name: Run DARTH model on client API
9 jobs:

10 createPullRequest:
11 runs-on: windows-2019
12 env:
13 GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}
14 # Load repo and install R
15 steps:
16 - uses: actions/checkout@master
17 - uses: r-lib/actions/setup-r@master
18
19 - name: Setup pandoc
20 uses: r-lib/actions/setup-pandoc@v2
21 with:
22 pandoc-version: '2.17.1.1'
23
24 - name: Install TinyTeX
25 uses: r-lib/actions/setup-tinytex@v2
26 env:
27 # install full prebuilt version
28 TINYTEX_INSTALLER: TinyTeX
29
30 - name: Install dependencies
31 run: |
32 install.packages(
33 c("reshape2","jsonlite","httr", "readr", "rmarkdown", "markdown")
34 )
35 install.packages(
36 "scales", dependencies = TRUE, repos = 'http://cran.rstudio.com/'
37 )
38 install.packages(
39 "ggplot2", dependencies = TRUE, repos = 'http://cran.rstudio.com/'
40 )
41 shell: Rscript {0}
42
43 - name: Run the model from API and create report
44 env:
45 CONNECT_KEY: ${{secrets.PLUMBER_SECRET}}
46 run: |
47 source("scripts/run_darthAPI.R")
48 shell: Rscript {0}
49
50 - name: Create Pull Request
51 uses: peter-evans/create-pull-request@v3
52 with:
53 token: ${{ secrets.GITHUB_TOKEN }}
54 commit-message: Automated Model Run from API
55 title: 'Living HTA Automated Model Run'

Page 4 of 7

https://www.rstudio.com/blog/rstudio-1-2-preview-plumber-integration/#:~:text=%20Resources%20%201%20Creating%20an%20API.%20On,APIs%20defined%20in%20your%20project%20and...%20More%20
https://github.com/RobertASmithBresMed/plumberHE/blob/main/report/darthReport.Rmd
https://github.com/dark-peak-analytics/darkpeak
https://github.com/dark-peak-analytics/darkpeak


Wellcome Open Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

56 body: >
57 Automated model run
58 labels: report, automated pr

Discussion
As the collection & storage of large data sets has become
more commonplace in health & health care settings, this
data is increasingly being used to inform decision making.
However, concerns about the security of this data, and
the ethical implications about linked data sets, make the
owners of this valuable resource particularly reluctant to
share data with health economic modelling teams. The
ability to host APIs on data-owners’ servers, and send the
model to the data rather than the data to the model, is one
potential solution to this problem. The example described
in this paper may be relatively simple, but gives a tech
savvy health economist everything they need to set up a
modelling framework which does not rely on the sharing
of data by a company (or other data-owner).
The framework described has a number of benefits.

• Firstly, no data needs to leave the data-owner’s
server. This is likely to significantly reduce admin-
istrative burden for both the company and the con-
sultant, and reduce the number of data-leaks.

• Separating the data from the model has significantly
improved the transparency of the health economic
model. Allowing others to critique methods & hid-
den structural assumptions, test the code and iden-
tify bugs should improve the quality of models in the
long run. It also enables the pool of people work-
ing on developing the health economic model and
accompanying user-interface to be widened, without
concern for confidentiality & data security. For ex-
ample a shiny application could be developed for a
model built under this framework without the pro-
grammer needing access to any sensitive data or in-
formation.

• The computational burden of the model is handled
on a remote server. The power of these servers is
typically considerably greater than that of a typical
laptop, speeding up model run time considerably, es-
pecially. This is likely to be especially important for
models that incorporate uncertainty through monte-
carlo sampling algorithms which can be parallelized
on machines with multiple cores R Core Team [10],
for example probabilistic one way sensitivity analysis
[11] or partial expected value of perfect information
[12].

• The use of APIs to perform distinct tasks can im-
prove interoperability within the field of health eco-
nomics. Different modules, or tasks within a mod-
elling framework can be written in different lan-
guages (e.g. R, Python, Julia & C++) and linked us-
ing APIs. This is likely to improve collaboration be-
tween different sub-disciplines, which often use dif-
ferent languages (e.g. health economists in R and
data-scientists in Python).

• API calls can be made at any time, and will always
reflect the data held by the company. In many cases
these datasets are updated regularly, allowing com-
panies, and other stakeholders, to see the results of
the decision model based on the most up to date data,
without needing human intervention to: send new
datasets, re-run analysis, write a report, and provide
that report in a suitable format for the company. Au-
tomating model updates at set schedules, or when
data is updated, may be invaluable where data is up-
dated regularly, as has been the case throughout the
COVID-19 pandemic.

• Any model can be passed to the API, as long as the in-
puts and outputs to the model meet the requirements
of the API. This means that multiple health economic
models could be passed to the API, to be run using
the data on the company server, and compared to ac-
count for structural uncertainty.

However, the framework has a number of limitations:

• Firstly, the method is relatively complex, and re-
quires a strong understanding of health economic
modelling in R, API creation and hosting, RMark-
down or other automated reporting packages, and
GitHub Actions. While we hope that this paper pro-
vides a useful resource to health economists seek-
ing to utilise these methods, the bulk of the industry
still operates in MS Excel. Providing tuition to up-
skill health economists, or creating teams consisting
of both health economists and data-scientists & soft-
ware engineers may mediate this limitation some-
what. The R for HTA consortium has the potential
to play a crucial role in upskilling the industry.

• There are still likely to be concerns about data se-
curity, even with the authentication procedures built
in to the API functionality. Collaboration with ex-
perts in this field may mediate this significantly, since
there is no fundamental reason why health data is
any more sensitive, or vulnerable, than the plethora
of other data (including banking data) that relies on
APIs every day. It will be important to reassure com-
panies that the use of APIs is likely to reduce, not
increase the risk of data breaches, and that every in-
teraction with the data can be logged.

• There is a risk that running the model remotely will
result in the perception that the model is a ‘black
box’. The use of user-interfaces (such as those in-
creasingly being created in shiny) to interrogate the
model, as well as the increased transparency asso-
ciated with being able to share code on sites such
as GitHub, should reassure stakeholders that this
framework is more transparent than the existing
spreadsheet based solutions.

• Often, when building a model, it is helpful to have
the underlying data to be able to investigate the data,
often through the generation of descriptive statistics.

Page 5 of 7

https://r-hta.org/


Wellcome Open Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

The process of sharing pseudo-data enables mod-
ellers to ensure that the models they create conform
to the structure of the data input. However, the mod-
eller still needs to be able to write code that is versa-
tile enough to cope with data with unknown distri-
butions & ranges. Code that will not break when the
number of observations changes, or when the range
or distribution of a variable changes. This is easily
solved, again by improved training and the use of
standard packages.

The recent working paper by Adibi et al. [1] has provided
a similar call to action, extolling the virtues of the API for
decision modelling, and showing how APIs can be used to
shift much of the computational burden away from those
querying models, making models more accessible. How-
ever, there are several limitations to this brilliant paper.
Firstly, while the authors outline a framework for mak-
ing models more transparent and accessible, and describe
how they have done this for a number of models using
the PRISM server, they do not provide instruction on how
to replicate this process. Additionally, while the authors
state that “A practical model accessibility platform should
be able to protect confidential information such as patient
data and confidential pricing” (p6), the framework as de-
scribed would require companies to give the owners of the
model accessibility platform access to their confidential
data, or else host the model accessibility platform them-
selves.
This paper has attempted to address some of these limi-
tations, providing open source code for the creation and
deployment of an API with an accompanying automated
health economic evaluation update framework. It also
provides clearly described open source code on two new
pieces of additional functionality not previously described
elsewhere; firstly it demonstrates how companies can host
APIs themselves to negate the need to share data with
subject experts, and secondly it demonstrates how model
updates can be automated with scheduled workflows run
on remote servers.

Conclusions
This example framework, with accompanying open
source code base, demonstrates that it is possible, within
a HEOR setting, to separate the health economic model
from the data, and automate the main steps of the analy-
sis pipeline. We believe this is the first application of this
procedure for a HEOR project, and is certainly the first ex-
ample to be made open source for the benefit of the wider
community. We hope that this framework will improve
the transparency of health economic models, reduce the
cost & administrative burden of updating models, and in-
crease the speed at which updates can occur.

Author contributions
R.S. & P.S. developed the original concept, R.S. wrote the
source code & the original article. W.M. & P.S. reviewed
both the source code and article. All errors are the fault
of R.S.

Competing interests
R.S., P.S. & W.M have no competing interests to declare.

Grant information
R.S., P.S. & W.M. are jointly funded by the Wellcome
Trust Doctoral Training Centre in Public Health Economics
and Decision Science [108903] and the University of
Sheffield.
The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the
manuscript.

Software availability
Source code is available on GitHub at Insert Final GitHub
repo Link.
Archived source code at the time of publication can be
found at Insert Zenodo Link.
Licence: MIT

Acknowledgements
We would like to thank the participants at R-HTA Oxford,
Richard Birnie (Lumanity) and Dawn Lee (Lumanity) for
feedback on the original concept and manuscript. All er-
rors are the fault of the authors.

References
[1] Amin Adibi, Stephanie Harvard, and Mohsen Sadat-

safavi. Programmable interface for statistical & simu-
lation models (prism): Towards greater accessibility of
clinical and healthcare decision models. arXiv preprint
arXiv:2202.08358, 2022.

[2] Robert Smith and Paul Schneider. Making health economic
models shiny: A tutorial. Wellcome Open Research, 5, 2020.

[3] Winston Chang, Joe Cheng, JJ Allaire, Carson Sievert,
Barret Schloerke, Yihui Xie, Jeff Allen, Jonathan McPher-
son, Alan Dipert, and Barbara Borges. shiny: Web Ap-
plication Framework for R, 2021. URL https://CRAN.
R-project.org/package=shiny. R package version
1.7.1.

[4] Fernando Alarid-Escudero, Eline Krijkamp, Eva A Enns,
Alan Yang, Myriam Hunink, Petros Pechlivanoglou, and
Hawre Jalal. Cohort state-transition models in r: A tu-
torial. arXiv preprint arXiv:2001.07824, 2020.

[5] Jeroen Ooms. The jsonlite package: A practical and
consistent mapping between json data and r objects.
arXiv:1403.2805 [stat.CO], 2014. URL https://arxiv.
org/abs/1403.2805.

[6] Barret Schloerke and Jeff Allen. plumber: An API Genera-
tor for R, 2021. URL https://CRAN.R-project.org/
package=plumber. R package version 1.1.0.

[7] Hadley Wickham. httr: Tools for Working with URLs and
HTTP, 2020. URL https://CRAN.R-project.org/
package=httr. R package version 1.4.2.

Page 6 of 7

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://arxiv.org/abs/1403.2805
https://arxiv.org/abs/1403.2805
https://CRAN.R-project.org/package=plumber
https://CRAN.R-project.org/package=plumber
https://CRAN.R-project.org/package=httr
https://CRAN.R-project.org/package=httr


Wellcome Open Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

[8] Yihui Xie, Christophe Dervieux, and Emily Riederer. R
Markdown Cookbook. Chapman and Hall/CRC, Boca
Raton, Florida, 2020. URL https://bookdown.org/
yihui/rmarkdown-cookbook. ISBN 9780367563837.

[9] Chaminda Chandrasekara and Pushpa Herath. Introduc-
tion to github actions. In Hands-on GitHub Actions, pages
1–8. Springer, 2021.

[10] R Core Team. R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Computing,
Vienna, Austria, 2020. URL https://www.R-project.
org/.

[11] Christopher McCabe, Mike Paulden, Isaac Awotwe, An-
drew Sutton, and Peter Hall. One-way sensitivity analy-
sis for probabilistic cost-effectiveness analysis: conditional
expected incremental net benefit. PharmacoEconomics, 38
(2):135–141, 2020.

[12] Alan Brennan, Samer Kharroubi, Anthony O’hagan, and
Jim Chilcott. Calculating partial expected value of perfect
information via monte carlo sampling algorithms. Medical
Decision Making, 27(4):448–470, 2007.

Page 7 of 7

https://bookdown.org/yihui/rmarkdown-cookbook
https://bookdown.org/yihui/rmarkdown-cookbook
https://www.R-project.org/
https://www.R-project.org/


Wellcome Open Research 2016 - DRAFT ARTICLE (PRE-SUBMISSION)

Figure 1. Schematic showing the interaction between the Company API and the Consultant Automated Workflow


	Introduction
	Method
	1. The economic model
	2. The API
	Interacting with the API

	Discussion
	Conclusions
	Author contributions
	Competing interests
	Grant information
	Software availability
	Acknowledgements

