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Abstract
We report on the data from a numerical benchmark
of a stationary axisymmetric droplet on viscoelastic
Neo-Hookean substrates obtained using FEniCS [3].
Numerical results using our Lagrangian phase-field
approach [4] are compared with results by Van Brum-
melen et al. [6] and by Aland & Mokbel [2].

1 Problem description

Figure 1: Sketch of axisymmetric droplet on vis-
coelastic substrate
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We derived in [4] that the corresponding model of
Neo-Hookean viscoelastic droplet relaxation can be
written as a gradient flow, which we formulate in
terms of a weak formulation, where we seek q :
[0, T ] → Q such that

s(∂tq, v) = −〈DL (q), v〉, (1)

for all v from suitable spaces Q. The state variable
q contains displacements u and possible multiplier
λ. The Lagrangian L defined in (2) is the sum of a
free energy and possible incompressibility constraints
using the deformation gradient F = I + ∇u. The
bilinear form s is the Stokesian dissipation defined in
(3). The liquid, solid and gas phase are encoded using
phase indicator fields ϕi : Ω → R with 0 ≤ ϕi ≤ 1
and

∑3
i=1 ϕi(x) = 1 for every x ∈ Ω.

For this specific benchmark problem the phase in-
dicators ϕi do not evolve in time, which for the con-
tinuous displacement field u corresponds to a no-slip
boundary condition (continuous displacements and
velocities) at the interface. The phase indicators are
chosen so that the solid reference ϕ1 has a flat inter-
face at z = h with the liquid and with the gas phase.
The entire computational domain itself is

Ω = {(r, z) ∈ R2 : 0 < z, r < L}.

Note that parts of the energy are written in terms
of −1 ≤ ψi = 2ϕi − 1 ≤ 1. We use the spaces u ∈
U = H1

0 (Ω) and λ ∈ Λ = L2(Ω) for displacement and
multiplier, where the displacements vanish at z =
0 and z = H and the horizontal component of the
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Figure 2: Locally refined undeformed mesh (white lines) of phase fields (color shading) at the interfaces
showing substrate (blue), fluid (green) and gas (red).

displacements vanishes at r = 0 and r = L. The
Lagrangian is has elastic, surface and compressibility
contributions, where

L (q) =

∫
Ω

(
Eelast + Ephase + Ecomp

)
dV (2)

Eelast =
G(ϕi)

2
tr(FTF − I)

Esurf =

3∑
i=1

3σi

2
√
2

[ε
2
|F−T∇ψi|2 +

1

4ε
(ψ2

i − 1)2
]
J

Ecomp =

{
λ(J − 1) incompressible
κ(J − 1)2 compressible

with volume element dV = 2π r dr dz and J = detF .
Note that for incompressible materials the second
term in Esurf vanishes upon differentiation w.r.t u.
For compressible solids the elastic energy Eelast con-
tains a term − log(J), which we neglect since we are
interested in the limit κ → ∞. In the compress-
ible case q = u ∈ U = Q with large penaliza-
tion constant κ ∈ R and in the incompressible case
q = (u, λ) ∈ U × Λ = Q with Lagrange multiplier λ.
The axisymmetric deformation gradient and scalar
gradient that appear above are

∇u =

∂rur 0 ∂zur
0 1

rur 0
∂ruz 0 ∂zuz

 , ∇ψ =

∂rψ0
∂zψ

 .

The elastic modulus is defined as the linear combina-
tion G

(
ϕi

)
(x) =

∑3
i=1Giϕi(x) with constant Gi ≥ 0.

For the viscous dissipation we use a (Lagrangian)
Kelvin-Voigt Stokesian dissipation

s(w, v) =

∫
Ω

µ∇w : ∇v dV, (3)

which is sufficient, since we are only interested in en-
ergy minimizers. We denote A : B =

∑
ij AijBij

the Frobenius inner product between matrices A,B ∈
Rd×d. In principle, one would have to use a Eulerian
Kelvin-Voigt rheology with the viscosity µ = µ(ϕi)
and ∇w : ∇v → sym(∇wF−1) : sym(∇vF−1)J with
symA = 1

2 (A + AT ) to be more realistic but should
end up with the same energy minimizers (assuming
uniqueness).

In the following we shortly elaborate on the used
finite element space and time discretization. For this
we are going to present result from an incompressible
and a compressible model, where for the incompress-
ible model we discretize the problem using P1/P1 el-
ements for displacement and multiplier und for the
compressible model we discretize the problem using
P2 elements to avoid locking phenomena common for
nearly incompressible problems. After discretization
in space we solve the fully implicit problem

s(q
n−qn−1

/τ, v) = −〈DL (qn), v〉,

which guarantees descent of the free energy, see [4].
At the interfaces set by the indicator functions ϕi

we perform local refinement of the mesh as shown in
Fig. 2 to resolve the interface thickness ε = 1/800.
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Figure 3: Stationary axisymmetric droplet (blue) on viscoelastic Neo-Hookean substrate (gray), where darker
shading indicates larger energy density Eelast. Grid visualizes displacement of uniform planar substrate.

Figure 4: Stationary droplet for the axisymmetric domain Ω = [0, 10] × [0, 10] showing (top left) phase
fields combined into ϕ =

∑3
i=1 iϕi(x) and (botton left) elastic energy density Eelast in the solid substrate

(blue=low, red=high) and (right column) corresponding quantities near the contact line. In lines in the
lower left image highlight the displacement, while all other lines (black or white) show the mesh.
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Figure 5: Benchmark comparison of experiments by Style et al. [5] in comparison with simulations by van
Brummelen et al. [6] and Aland & Mokbel [1] compared to our simulations for incompressible materials with
P1/P1 elements and compressible materials with P2 elements and κ = 104G1.

2 Results
Following [6, 2] we choose the model parameters in
Table 1 for the benchmark. Note the the surface ten-
sions σi are related to the standard interfacial ten-
sions via σsl = σ1 + σ2 (solid-liquid), σsa = σ1 + σ3
(solid-air), σla = σ2 + σ3 (liquid-air) where

σsl = 36 · 10−3Jm−2,

σsa = 31 · 10−3Jm−2,

σla = 46 · 10−3Jm−2.

The corresponding stationary solutions with P1/P1

FE are shown in Fig. 3 and Fig. 4. A direct com-
parison of the solid/liquid and solid/gas interface
shape with the ones in [6, 2, 5] are shown in Fig. 5.
For this benchmark comparison we provide the data
summarized in Tab. 2. We provide a dataset for
stationary solutions of the incompressible model
with P1/P1 elements and for the compressible models
with P2 elements. Except for the csv files, each
dataset comes with the computational mesh. The
pvd/vtu/xdmf files were created in Python/FEniCS
and imported and postprocessed with ParaView and
FEniCS itself. The comparison of interface shapes
stored in csv files were performed with MATLAB.

The overall agreement between the simulation ap-
pears good, taking into account the different numer-
ical methods used, i.e.,

• phase fields vs sharp interfaces between the solid
and the other two phases,

• Eulerian vs Lagrangian description of elasticity,

• the involved scaling limits ε → 0 and vanishing
Cahn-Hilliard mobility.
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name G1 G2,3 σ1 σ2 σ3 L R ε

unit Pa Pa J/m2 J/m2 J/m2 h h h

value 103 0 10.5 · 10−3 25.5 · 10−3 20.5 · 10−3 10 176.7/50 1/800

Table 1: Benchmark parameters with lengths L,R, ε rescaled by substrate thickness h = 5 · 10−5 m
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filename description

stationary_P1P1.h5 FEniCS readable HDF5 file: postprocessing_P1P1.py generates the P1P1 files below

P1P1_phi1.pvd incompressible P1/P1: ϕ1 on deformed domain (plus vtu file)

P1P1_phi2.pvd incompressible P1/P1: ϕ2 on deformed domain (plus vtu file)

P1P1_phi3.pvd incompressible P1/P1: ϕ3 on deformed domain (plus vtu file)

P1P1_u.pvd incompressible P1/P1: u on reference domain (plus vtu file)

P1P1_mesh1.pvd incompressible P1/P1: deformed solid domain (plus vtu file)

P1P1_mesh2.pvd incompressible P1/P1: deformed fluid domain (plus vtu file)

P1P1_elastic.pvd incompressible P1/P1: elastic energy density on deformed domain (plus vtu file)

P1P1_solution.xdmf incompressible P1/P1: elastic energy density, ϕi, u on reference domain (plus h5 file)

P1P1_solution.png incompressible P1/P1: png image of solution

stationary_P2.h5 FEniCS readable HDF5 file: postprocessing_P2.py generates the P2 files below

P2_phi1.pvd compressible P2: ϕ1 on deformed domain (plus vtu file)

P2_phi2.pvd compressible P2: ϕ2 on deformed domain (plus vtu file)

P2_phi3.pvd compressible P2: ϕ3 on deformed domain (plus vtu file)

P2_u.pvd compressible P2: u on reference domain (plus vtu file)

P2_mesh1.pvd compressible P2: deformed solid domain (plus vtu file)

P2_mesh2.pvd compressible P2: deformed fluid domain (plus vtu file)

P2_elastic.pvd compressible P2: elastic energy density on deformed domain (plus vtu file)

P2_solution.xdmf compressible P2: elastic energy density, ϕi, u on reference domain (plus h5 file)

P2_solution.png compressible P2: png image of solution

benchmark.m MATLAB file reading csv data below & comparison with data from [1]

P1P1_interface.csv interface shape data for incompressible simulation in benchmark folder

P2_interface.csv interface shape data for compressible simulation in benchmark folder

Table 2: Description of data/files for the benchmark. The files stationary_P1P1.h5 and stationary_P2.h5
are readable in FEniCS using the postprocessing_P1P1.py and postprocessing_P2.py scripts. The
pvd/vtu/xdmf files are readable with the ParaView visualization tool. The csv data tables are readable
using the MATLAB script benchmark.m.

6


	Problem description
	Results

