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ABSTRACT We investigate a passive linear time-invariant 2-port, having a port coupled to a generator and

a port coupled to a load, in the harmonic steady state. Two configurations are considered, in which the port at

which the generator is connected and the port at which the load is connected are exchanged. We investigate

8 power ratios for each configuration. Under different assumptions, we establish several reciprocal relations

between the 16 power ratios, some of which are known and some of which are new. Our results are used to

discuss and generalize the Friis transmission formula.

INDEX TERMS Operating power gain, transducer power gain, available power gain, power transfer ratio,

unnamed power gain, insertion power gain, passive circuits, linear circuits, reciprocity, circuit theory.

I. INTRODUCTION

In this article, a device under study (DUS) is a linear time-

invariant (LTI) and passive 2-port operating in the harmonic

steady state, at a given frequency. It is used in two configura-

tions, which are shown in Fig. 1. In configuration A (CA), its

port 1 is connected to an LTI generator of internal impedance

ZS1 and its port 2 is connected to an LTI load of impedance

ZS2. In configuration B (CB) its port 1 is connected to an LTI

load of impedance ZS1 and its port 2 is connected to an LTI

generator of internal impedance ZS2.

The average power available from a port, also referred

to as “available power”, is defined as the greatest average

power that can be drawn from this port by an arbitrary

LTI and passive load [1, Sec. 3-8]. Ignoring noise power

contributions, we consider 10 average powers:

• PAAVG1 is the average power available from the gener-

ator connected to port 1 in CA;

• PARP1 is the average power received by port 1, in CA;

• PAAV P2 is the average power available from port 2, in

CA;

• PADP2 is the average power delivered by port 2, in CA;

• PAW is the average power which would be received by

the load connected at port 2 in CA, if the DUS was

not present and this load was directly connected to the

generator connected at port 1 in CA;

• PBAVG2 is the average power available from the gener-

ator connected to port 2, in CB;

• PBRP2 is the average power received by port 2, in CB;

FIGURE 1. The two configurations, CA and CB.

• PBAV P1 is the average power available from port 1 in

CB;

• PBDP1 is the average power delivered by port 1, in CB;

and

• PBW is the average power which would be received

by the load connected at port 1 in CB, if the DUS was

not present and this load was directly connected to the

generator connected at port 2 in CB.

Our assumptions and the computation of the 10 average

powers defined above, from the open-circuit voltages or

the short-circuit currents of the generators, are covered in

Section II. A new theorem on power products is stated and

proven in Section III. It provides equalities between some

products of average powers. In Section IV, we study 8 power

ratios for each configuration, use this theorem to obtain recip-

rocal relations between the 16 power ratios, and discuss the

novelty of these relations. Said power ratios include operating

power gains, transducer power gains, available power gains,

power transfer ratios, insertion power gains, and “unnamed

power gains” defined in Section IV.
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In Section V, we derive relations applicable to a lossless

DUS, among which several new results. Examples are pro-

vided in Section VI. In Section VII, our results are used to

discuss and generalize the Friis transmission formula [2],

considered as a result on an unnamed power gain.

II. ASSUMPTIONS AND POWER COMPUTATIONS
A. ASSUMPTIONS, BASIC RESULTS AND NOTATIONS

As said above, we assume that the DUS is LTI and passive,

and that the generators and the loads are LTI, so that ZS1 and

ZS2 exist. Using Re(z) to denote the real part of a complex

number z, we assume that Re(ZS1) > 0 and Re(ZS2) > 0.

This ensures that the loads are passive and that PAAVG1 and

PBAVG2 are defined. The DUS being passive, it follows that

0 6 PADP2 6 PARP1 6 PAAVG1 ; (1)

PAAV P2 is defined and satisfies

0 6 PADP2 6 PAAV P2 6 PAAVG1 ; (2)

0 6 PAW 6 PAAVG1 ; (3)

0 6 PBDP1 6 PBRP2 6 PBAVG2 ; (4)

PBAV P1 is defined and satisfies

0 6 PBDP1 6 PBAV P1 6 PBAVG2 ; (5)

and

0 6 PBW 6 PBAVG2 . (6)

It follows from Re(ZS1) > 0 that YS1 = 1/ZS1 exists

and Re(YS1) > 0. It follows from Re(ZS2) > 0 that YS2 =
1/ZS2 exists and Re(YS2) > 0. Also, instead of assuming

that ZS1 and ZS2 exist and have positive real parts, we could

equivalently have assumed that YS1 and YS2 exist and have

positive real parts.

We use VO1 and IS1 to denote the rms open-circuit voltage

and the rms short-circuit current, respectively, of the genera-

tor connected to port 1 in CA. We use VO2 and IS2 to denote

the rms open-circuit voltage and the rms short-circuit current,

respectively, of the generator connected to port 2 in CB. We

use V1 and I1 to denote the rms voltage across port 1 and the

rms current flowing into port 1, respectively. We use V2 and

I2 to denote the rms voltage across port 2 and the rms current

flowing into port 2, respectively.

B. AUGMENTED MULTIPORTS

To avoid unnecessary assumptions, we will use the theory of

parallel-augmented multiports and series-augmented multi-

ports presented in Section II of [3]-[4] and also in Section II

of [5].

Following Section II of [5], we introduce a parallel-

augmented multiport composed of the DUS (as original mul-

tiport), a load of impedance ZS1 connected in parallel with

port 1, and a load of impedance ZS2 connected in parallel

with port 2. The admittance matrix of the added multiport is

YADD =

(

YS1 0
0 YS2

)

. (7)

Since Re(YS1) > 0 and Re(YS2) > 0, the hermitian part

of YADD is positive definite. By Theorem 1 and Corollary 1

of [5], the parallel-augmented multiport has an impedance

matrix

ZPAM =

(

ZPAM11 ZPAM12

ZPAM21 ZPAM22

)

, (8)

and, in the special case where the DUS has an admittance

matrix Y, then: ZPAM is invertible;

Z
−1
PAM = Y +YADD ; (9)

and ZPAM is symmetric if and only if Y is symmetric.

According to Section II of [5], we can also introduce a

series-augmented multiport composed of the DUS (as origi-

nal multiport), a load of impedance ZS1 connected in series

with port 1, and a load of impedance ZS2 connected in series

with port 2. The impedance matrix of the added multiport is

ZADD =

(

ZS1 0
0 ZS2

)

= Y
−1
ADD . (10)

Since Re(ZS1) > 0 and Re(ZS2) > 0, the hermitian part

of ZADD is positive definite.

By Theorem 2 and Corollary 2 of [5], the series-augmented

multiport has an admittance matrix

YSAM =

(

YSAM11 YSAM12

YSAM21 YSAM22

)

, (11)

and, in the special case where the DUS has an impedance

matrix Z, then: YSAM is invertible;

Y
−1
SAM = Z+ ZADD ; (12)

and YSAM is symmetric if and only if Z is symmetric.

C. FORMULAS USING THE OPEN-CIRCUIT VOLTAGES

We want to compute the above-defined average powers, using

the open-circuit voltages of the generators to define the

excitations, and YSAM to define the DUS. By inspection,

we find

PAAVG1 =
|VO1|2

4Re(ZS1)
, (13)

PARP1 =
[

Re(YSAM11)− |YSAM11|2Re(ZS1)
]

|VO1|2 , (14)

PAAV P2 =


























0 W if C1 is true
∣

∣

∣

∣

YSAM21

YSAM22

∣

∣

∣

∣

2

|VO1|2

4Re

(

1

YSAM22
− ZS2

) else
, (15)

PADP2 = Re(ZS2) |YSAM21 VO1|2 , (16)

PAW =
Re(ZS2)

|ZS1 + ZS2|2
|VO1|2 , (17)

PBAVG2 =
|VO2|2

4Re(ZS2)
, (18)
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PBRP2 =
[

Re(YSAM22)− |YSAM22|2Re(ZS2)
]

|VO2|2 , (19)

PBAV P1 =


























0 W if C2 is true
∣

∣

∣

∣

YSAM12

YSAM11

∣

∣

∣

∣

2

|VO2|2

4Re

(

1

YSAM11
− ZS1

) else
, (20)

PBDP1 = Re(ZS1) |YSAM12 VO2|2 , (21)

and

PBW =
Re(ZS1)

|ZS1 + ZS2|2
|VO2|2 , (22)

where the propositions C1 and C2 are

C1 ⇔
(

Re(YSAM22) = |YSAM22|2Re(ZS2)
)

, (23)

and

C2 ⇔
(

Re(YSAM11) = |YSAM11|2Re(ZS1)
)

. (24)

To obtain (13), (15), (18) and (20), we have used the

classic maximum power transfer theorem for a single-port

generator [6, Sec 7.4], [7, Sec. 11.1]. The propositions C1

and C2 deserve additional explanations. If YSAM22 = 0 S,

then C1 is true, and (15) says that PAAV P2 = 0 W because

we must have YSAM21 = 0 S since, if this was not the case,

port 2 of the series-augmented multiport and port 2 of the

DUS would, for VO1 6= 0V, behave like current sources of

nonzero current, so that we would obtain an infinite PAAV P2,

which is incompatible with (13) and PAAV P2 6 PAAVG1. If

YSAM22 6= 0 S and the real part in (15) is zero, then C1 is

true, and (15) says that PAAV P2 = 0 W because we must

have YSAM21 = 0 S since, if this was not the case, port 2 of

the DUS would, for VO1 6= 0V, behave like a generator of

nonzero open-circuit voltage having a zero resistance, so that

we would obtain an infinite PAAV P2, which is incompatible

with (13) and PAAV P2 6 PAAVG1. If YSAM22 6= 0 S

and the real part in (15) is not zero, then C1 is false, and

the second line of (15) can be computed. This explains the

proposition C1. We note that, if the proposition C1 is true,

then YSAM21 = 0 S. The explanation for the proposition C2

is similar, and we find that, if the proposition C2 is true, then

YSAM12 = 0 S.

D. FORMULAS USING THE SHORT-CIRCUIT CURRENTS

We now wish to compute the above-defined average powers,

using the short-circuit currents of the generators to define the

excitations, and ZPAM to define the DUS. By inspection, we

find

PAAVG1 =
|IS1|2

4Re(YS1)
, (25)

PARP1 =
[

Re(ZPAM11)− |ZPAM11|2Re(YS1)
]

|IS1|2 , (26)

PAAV P2 =


























0 W if C3 is true
∣

∣

∣

∣

ZPAM21

ZPAM22

∣

∣

∣

∣

2

|IS1|2

4Re

(

1

ZPAM22
− YS2

) else
, (27)

PADP2 = Re(YS2) |ZPAM21 IS1|2 , (28)

PAW =
Re(YS2)

|YS1 + YS2|2
|IS1|2 , (29)

PBAVG2 =
|IS2|2

4Re(YS2)
, (30)

PBRP2 =
[

Re(ZPAM22)− |ZPAM22|2Re(YS2)
]

|IS2|2 , (31)

PBAV P1 =


























0 W if C4 is true
∣

∣

∣

∣

ZPAM12

ZPAM11

∣

∣

∣

∣

2

|IS2|2

4Re

(

1

ZPAM11
− YS1

) else
, (32)

PBDP1 = Re(YS1) |ZPAM12 IS2|2 , (33)

and

PBW =
Re(YS1)

|YS1 + YS2|2
|IS2|2 , (34)

where the propositions C3 and C4 are

C3 ⇔
(

Re(ZPAM22) = |ZPAM22|2Re(YS2)
)

, (35)

and

C4 ⇔
(

Re(ZPAM11) = |ZPAM11|2Re(YS1)
)

. (36)

To obtain (25), (27), (30) and (32), we have used an

equivalent form of the maximum power transfer theorem

for a single-port generator. The propositions C3 and C4

deserve some explanations. If ZPAM22 = 0 Ω, then C3

is true, and (27) says that PAAV P2 = 0 W because we

must have ZPAM21 = 0 Ω since, if this was not the case,

port 2 of the parallel-augmented multiport and port 2 of the

DUS would, for IS1 6= 0A, behave like voltage sources of

nonzero voltage, so that we would obtain an infinite PAAV P2,

which is incompatible with (25) and PAAV P2 6 PAAVG1.

If ZPAM22 6= 0 Ω and the real part in (27) is zero, then

C3 is true, and (27) says that PAAV P2 = 0 W because

we must have ZPAM21 = 0 Ω since, if this was not the

case, port 2 of the DUS would, for IS1 6= 0A, behave like

a generator of nonzero short-circuit current having a zero

conductance, so that we would obtain an infinite PAAV P2,

which is incompatible with (25) and PAAV P2 6 PAAVG1.

If ZPAM22 6= 0 Ω and the real part in (27) is not zero, then

C3 is false, and the second line of (27) can be computed.

This explains the proposition C3. The explanation for the

proposition C4 is similar.

Copyright © 2022 by Excem 3
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III. THE THEOREM ON POWER PRODUCTS
In what follows, when we write that the DUS is a reciprocal

device, we refer to the definitions of reciprocal networks

provided in [6, Ch. 16] or [8, Ch. 1], which are not limited

to lumped networks.

Theorem on power products. Ignoring noise power contri-

butions, we have

PADP2PBAVG2 = PAAV P2PBRP2 , (37)

PBDP1PAAVG1 = PBAV P1PARP1 , (38)

and

PBWPAAVG1 = PBAVG2PAW . (39)

Moreover, if the DUS is reciprocal and ignoring noise

power contributions, we have

PADP2PBAVG2 = PAAV P2PBRP2

= PBDP1PAAVG1 = PBAV P1PARP1 , (40)

and

PBDP1PAW = PADP2PBW . (41)

Proof: Using (16) and (18), we get

PADP2PBAVG2 =
1

4
|YSAM21VO1VO2|2 . (42)

Using (15) and (19), we get

PAAV P2PBRP2 =
1

4
|YSAM21VO1VO2|2 , (43)

since, as explained in Section II.C, if the proposition C1 is

true, we must have YSAM21 = 0 S. A comparison of (42)

and (43) leads us to (37).

Using (13) and (21), we get

PBDP1PAAVG1 =
1

4
|YSAM12VO1VO2|2 . (44)

Using (14) and (20), we get

PBAV P1PARP1 =
1

4
|YSAM12VO1VO2|2 , (45)

since, as explained in Section II.C, if the proposition C2 is

true, we must have YSAM12 = 0 S. A comparison of (44)

and (45) leads us to (38).

Using (13) and (22), we get

PBWPAAVG1 =
1

4|ZS1 + ZS2|2
|VO1VO2|2 . (46)

Using (17) and (18), we get

PBAVG2PAW =
1

4|ZS1 + ZS2|2
|VO1VO2|2 , (47)

so that a comparison of (46) and (47) leads us to (39).

Using (17) and (21), we get

PBDP1PAW =
Re(ZS1)Re(ZS2)

|ZS1 + ZS2|2
|YSAM12 VO1VO2|2 .

(48)

Using (16) and (22), we get

PADP2PBW =
Re(ZS1)Re(ZS2)

|ZS1 + ZS2|2
|YSAM21 VO1VO2|2 .

(49)

If we now assume that the DUS is reciprocal, it follows

from Theorem 2 of [5] that YSAM is symmetric, so that: a

comparison of (42), (43), (44) and (45) leads us to (40); and

a comparison of (48) and (49) leads us to (41).

In this proof, we have used the series-augmented mul-

tiport and the results of Section II.C, but we could have

alternatively, and just as easily, used the parallel-augmented

multiport and the results of Section II.D.

IV. AN INVESTIGATION OF 16 POWER RATIOS
A. INITIAL ASSUMPTIONS AND OBSERVATIONS

In what follows, we assume VO1 6= 0 V and VO2 6= 0 V, or

equivalently IS1 6= 0 A and IS2 6= 0 A. This ensures that

PAAVG1 6= 0 W and PBAVG2 6= 0 W.

Section II.C and Section II.D allow us to observe that:

• we have PARP1 6= 0 W if and only if C2 is false (or

equivalently if and only if C4 is false);

• we have PAAV P2 6= 0 W if and only if C1 is false and

YSAM21 6= 0 S (or equivalently if and only if C3 is false

and ZPAM21 6= 0 Ω);

• we have PBRP2 6= 0 W if and only if C1 is false (or

equivalently if and only if C3 is false); and

• we have PBAV P1 6= 0 W if and only if C2 is false and

YSAM12 6= 0 S (or equivalently if and only if C4 is false

and ZPAM12 6= 0 Ω).

In CA, if PARP1 6= 0 W, we see that: a nonzero I1 flows

into port 1 and a nonzero V1 exists across port 1; the generator

connected to port 1 sees a nonzero impedance ZAPP1, which

satisfies V1 = ZAPP1I1 and has a positive real part; ZAPP1

is only determined by the DUS and the load connected to

port 2; and, since C2 is false, YSAM11 6= 0 S so that

ZAPP1 =
1

YSAM11
− ZS1 . (50)

In CB, if PBRP2 6= 0 W, we see that: a nonzero I2 flows

into port 2 and a nonzero V2 exists across port 2; the generator

connected to port 2 sees a nonzero impedance ZBPP2, which

satisfies V2 = ZBPP2I2 and has a positive real part, ZBPP2

is only determined by the DUS and the load connected to

port 1; and, since C1 is false, YSAM22 6= 0 S so that

ZBPP2 =
1

YSAM22
− ZS2 . (51)

B. POWER TRANSFER RATIOS

We define the power transfer ratio in CA at port 1 of the DUS,

given by

tA1 =
PARP1

PAAVG1
, (52)

and the power transfer ratio in CA without the DUS, given by

tAW =
PAW

PAAVG1
, (53)

which by (1) and (3) satisfy 0 6 tA1 6 1 and 0 6 tAW 6 1.

4 Copyright © 2022 by Excem
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If PAAV P2 6= 0 W, we define the power transfer ratio in

CA at port 2 of the DUS, given by

tA2 =
PADP2

PAAV P2
, (54)

which by (2) is such that 0 6 tA2 6 1.

We define the power transfer ratio in CB at port 2 of the

DUS, given by

tB2 =
PBRP2

PBAVG2
, (55)

and the power transfer ratio in CB without the DUS, given by

tBW =
PBW

PBAVG2
, (56)

which by (4) and (6) satisfy 0 6 tB2 6 1 and 0 6 tBW 6 1.

If PBAV P1 6= 0 W, we define the power transfer ratio in

CB at port 1 of the DUS, given by

tB1 =
PBDP1

PBAV P1
, (57)

which by (5) is such that 0 6 tB1 6 1.

The results of Section II.C can be used to easily show that

the 6 power transfer ratios defined above neither depend on

VO1 nor on VO2.

Any one of the 6 power transfer ratios defined above is

equal to one if and only if the condition of the maximum

power transfer theorem is satisfied [6, Sec. 7.4], [7, Sec.

11.1]. For instance, using z̄ to denote the complex conjugate

of a complex number z, tA1 = 1 if and only if PARP1 6= 0 W

and ZS1 = ZAPP1. For instance, tB2 = 1 if and only

if PBRP2 6= 0 W and ZS2 = ZAPP2. For instance,

tAW = tBW = 1 if and only if ZS1 = ZS2.

It follows from (37)-(39) of the theorem on power products

that:

(PBAV P1 6= 0 W) =⇒ (tA1 = tB1) ; (58)

(PAAV P2 6= 0 W) =⇒ (tA2 = tB2) ; (59)

and

tAW = tBW . (60)

The reciprocal relations (58)-(60) are based on (37)-(39),

and therefore valid whether the DUS is reciprocal or not.

These reciprocal relations are not new since, for instance,

according to [9, Appendix A], they are closely related to

results on “power transmission coefficients” established in

[10, Sec. III] using power waves.

According to [9, Sec. V], the power match figure at port 1

is FM1 =
√
1− tA1, and the power match figure at port 2 is

FM2 =
√
1− tB2.

C. TRANSDUCER POWER GAINS

We can define two transducer power gains [1, Sec. 21-18]:

the transducer power gain in CA, given by

GAT =
PADP2

PAAVG1
, (61)

and the transducer power gain in CB, given by

GBT =
PBDP1

PBAVG2
. (62)

It follows from (1) and (4) that they satisfy 0 6 GAT 6 1
and 0 6 GBT 6 1. The results of Section II.C can be used to

easily show that GAT and GBT neither depend on VO1 nor

on VO2.

It follows from (40) of the theorem on power products that,

if the DUS is reciprocal, then

GAT = GBT . (63)

This reciprocal relation was stated and proven in [10], us-

ing power waves. A less general version had been established

35 years earlier, using the entries of the impedance matrix of

the DUS, in the case where this matrix exists [11].

D. INSERTION POWER GAINS

We can define two insertion power gains [1, Sec. 21-18]: the

insertion power gain in CA, given by

GAI =
PADP2

PAW

, (64)

and the insertion power gain in CB, given by

GBI =
PBDP1

PBW

. (65)

GAI and GBI are nonnegative, but they need not be less

than or equal to one. The results of Section II.C can be used

to easily show that GAI and GBI neither depend on VO1 nor

on VO2.

It follows from (41) of the theorem on power products that,

if the DUS is reciprocal, then

GAI = GBI . (66)

This reciprocal relation is not new, since it is a special case

of Theorem 6 of [5]. It seems likely that (66) was known

before [5], but we have not found any evidence of this.

E. OPERATING POWER GAINS

The operating power gains is sometimes called “power gain”

[12, Sec. 3.2], and it could also be called “efficiency” since

we are considering a passive DUS.

If PARP1 6= 0 W, we can define the operating power gain

in CA, given by

GAO =
PADP2

PARP1
=

GAT

tA1
. (67)

If PBRP2 6= 0 W, we can define the operating power gain

in CB, given by

GBO =
PBDP1

PBRP2
=

GBT

tB2
. (68)

It follows from (1) and (4) that we have: 0 6 GAO 6 1 if

GAO is defined; and 0 6 GBO 6 1 if GBO is defined. The

results of Section II.C can be used to easily show that GAO

and GBO neither depend on VO1 nor on VO2.

In CA, if PARP1 6= 0 W, for a specified DUS and a

specified load connected to port 2, it follows from (50) that

PADP2 and PARP1 are completely determined by I1, so that

any change in ZS1 can be compensated by a change in VO1 to

obtain the same nonzero I1 and the same nonzero V1, hence

Copyright © 2022 by Excem 5
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the same PADP2 and the same PARP1, hence the same GAO,

so that GAO does not depend on ZS1.

In CB, if PBRP2 6= 0 W, for a specified DUS and a

specified load connected to port 1, it follows from (51) that

PBDP1 and PBRP2 are completely determined by I2, so that

any change in ZS2 can be compensated by a change in VO2 to

obtain the same nonzero I2 and the same nonzero V2, hence

the same PBDP1 and the same PBRP2, hence the same GBO,

so that GBO does not depend on ZS2.

We have just shown that, for a specified DUS: if GAO is

defined, it may depend on ZS2 but not on ZS1; and, if GBO

is defined, it may depend on ZS1 but not on ZS2.

F. AVAILABLE POWER GAINS

We can define two available power gains [1, Sec. 21-18]: the

available power gain in CA, given by

GAA =
PAAV P2

PAAVG1
, (69)

and the available power gain in CB, given by

GBA =
PBAV P1

PBAVG2
. (70)

It follows from (2) and (5) that they satisfy 0 6 GAA 6 1
and 0 6 GBA 6 1. The results of Section II.C can be used to

easily show that GAA and GBA neither depend on VO1 nor

on VO2.

If PAAV P2 6= 0 W, we have

GAA =
GAT

tA2
. (71)

If PBAV P1 6= 0 W, we have

GBA =
GBT

tB1
. (72)

We observe that: in CA, PAAVG1 depends on the generator

connected to port 1, but neither on the DUS nor on the

load connected to port 2; in CA, PAAV P2 depends on the

generator connected to port 1 and on the DUS, but not on

the load connected to port 2; in CB, PBAVG2 depends on the

generator connected to port 2, but neither on the DUS nor on

the load connected to port 1; and in CB, PBAV P1 depends on

the generator connected to port 2 and on the DUS, but not on

the load connected to port 1.

It follows that, for a specified DUS: GAA may depend on

ZS1 but not on ZS2; and GBA may depend on ZS2 but not

on ZS1.

It follows from (40) of the theorem on power products that,

if the DUS is reciprocal and GBO is defined, then

GAA = GBO ; (73)

and, if the DUS is reciprocal and GAO is defined, then

GAO = GBA . (74)

As far as we know, these reciprocal relations are new.

G. UNNAMED POWER GAINS

We are now considering a power gain which does not seem to

have been named, so that we call it “unnamed power gain”.

If PARP1 6= 0 W, we can define the unnamed power gain

in CA, given by

GAU =
PAAV P2

PARP1
=

GAA

tA1
=

GAO

tA2
. (75)

If PBRP2 6= 0 W, we can define the unnamed power gain

in CB, given by

GBU =
PBAV P1

PBRP2
=

GBA

tB2
=

GBO

tB1
. (76)

If they exist, GAU and GBU are nonnegative, but they need

not be less than or equal to one. The results of Section II.C

can be used to easily show that GAU and GBU neither depend

on VO1 nor on VO2.

It follows from (40) of the theorem on power products that,

if the DUS is reciprocal, if GAU is defined and if GBU is

defined, then

GAU = GBU . (77)

This reciprocal relation was stated and proven in [10],

using power waves.

V. SPECIAL CASE OF A LOSSLESS DUS
The DUS is lossless if and only if, for any ZS1 and ZS2 such

that Re(ZS1) > 0 and Re(ZS2) > 0, we have

PADP2 = PARP1 and PBDP1 = PBRP2 . (78)

In this Section V, we now use the assumptions of Sec-

tion IV.A, and we assume that the DUS is lossless. It follows

from (67) and (78) that, if PARP1 6= 0 W,

GAO = 1 and GAT = tA1 . (79)

Also, it follows from (68) and (78) that, if PBRP2 6= 0 W,

GBO = 1 and GBT = tB2 . (80)

Thus, it follows from (63), (79) and (80) that, if the lossless

DUS is reciprocal, PARP1 6= 0 W and PBRP2 6= 0 W, then

tA1 = tB2 . (81)

If PARP1 6= 0 W, since ZAPP1 is defined and determined

only by the DUS and by ZS2, we can assume that we have

chosen the generator in such a way that ZS1 = ZAPP1.

In this case, PARP1 = PAAVG1, so that, by (78), we have

PADP2 = PAAVG1. Thus, (2) leads us to PAAV P2 =
PAAVG1 > 0. By the maximum power transfer theorem,

ZAPP2 is defined and nonzero, and ZS2 = ZAPP2.

Let us no longer assume that ZS1 = ZAPP1. We have just

shown that, if PARP1 6= 0 W, then

(ZS1 = ZAPP1 ) =⇒ (PBRP2 6= 0 W

and ZS2 = ZAPP2 ). (82)

Using CB, we can also prove that, if PBRP2 6= 0 W, then

(ZS2 = ZAPP2 ) =⇒ (PARP1 6= 0 W

and ZS1 = ZAPP1 ). (83)
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TABLE 1. Results for the first example, in the case ZS1 = (320 + 39j) Ω
and ZS2 = (51 + 87j) Ω.

Quantity CA CB

power transfer ratio at port 1 of the DUS 0.209313 0.209313

power transfer ratio at port 2 of the DUS 0.131104 0.131104

power transfer ratio without the DUS 0.425230 0.425230

transducer power gain 0.060841 0.095689

insertion power gain 0.143077 0.225028

operating power gain 0.290669 0.729867

available power gain 0.464063 0.457156

unnamed power gain 2.217077 3.486959

Let us assume that PBRP2 6= 0 W. In CA, if we choose

ZS2 such that ZS2 = ZBPP2, we get: PADP2 = PAAV P2;

and PARP1 = PAAVG1 by (83). It follows from PADP2 =
PARP1 that PAAV P2 = PAAVG1. It must be stressed that this

result is independent of the value of ZS2, because ZS2 has no

effect on PAAVG1 and no effect on PAAV P2. Thus, in CA,

for any value of ZS2, we have PAAV P2 6= 0 W, GAA = 1
and tA1 = tA2 because PADP2 = PARP1. If, instead of

assuming PBRP2 6= 0 W, we assume that PARP1 6= 0 W and

consider CB, we likewise obtain PBAV P1 6= 0 W, GBA = 1
and tB1 = tB2.

Consequently, we have just shown that:

(PBRP2 6= 0 W) =⇒ (GAA = 1) , (84)

(PBRP2 6= 0 W) =⇒ (PAAV P2 6= 0 W

and GAT = tA1 = tA2 = tB2 = GBT ), (85)

(PARP1 6= 0 W) =⇒ (GBA = 1) , (86)

and

(PARP1 6= 0 W) =⇒ (PBAV P1 6= 0 W

and GBT = tB2 = tB1 = tA1 = GAT ), (87)

where we have used (58) and (59) to obtain (85) and (87).

Note that (85) and (87) are much stronger results than (81),

because they apply to a non-reciprocal DUS, as well as a

reciprocal one. It follows from (75), (76), and (84)-(87) that

(PARP1 6= 0 W and PBRP2 6= 0 W) =⇒
(

GAU =
1

tA1
=

1

tB2
= GBU

)

. (88)

According to (61), (62), (85) and (87), if PARP1 6= 0 W or

PBRP2 6= 0 W, then PADP2PBAVG2 = PBDP1PAAVG1,

so that according to (42) and (44), we have |YSAM12| =
|YSAM21|, so that according to (48) and (49), we have

PBDP1PAW = PADP2PBW . Thus, using (64) and (65), we

obtain

(PARP1 6= 0 W or PBRP2 6= 0 W) =⇒
(GAI = GBI) . (89)

The results (84)-(89) are new.

TABLE 2. Results for the first example, in the case ZS1 = (22 − 72j) Ω and
ZS2 = (51 + 87j) Ω.

Quantity CA CB

power transfer ratio at port 1 of the DUS 0.998007 0.998007

power transfer ratio at port 2 of the DUS 0.615677 0.615677

power transfer ratio without the DUS 0.808066 0.808066

transducer power gain 0.290089 0.456245

insertion power gain 0.358992 0.564613

operating power gain 0.290669 0.741045

available power gain 0.471171 0.457156

unnamed power gain 0.472112 0.742525

TABLE 3. Results for the first example, in the case ZS1 = (320 + 39j) Ω
and ZS2 = (74 − 225j) Ω.

Quantity CA CB

power transfer ratio at port 1 of the DUS 0.863586 0.863586

power transfer ratio at port 2 of the DUS 0.999862 0.999862

power transfer ratio without the DUS 0.498968 0.498968

transducer power gain 0.463999 0.729766

insertion power gain 0.929919 1.462551

operating power gain 0.537294 0.729867

available power gain 0.464063 0.845041

unnamed power gain 0.537368 0.845158

VI. SOME EXAMPLES
A. FIRST EXAMPLE

In a first example, we assume that the DUS has an impedance

matrix, given by

Z =

(

11 + 125j 15 + 150j
−7 + 120j 30 + 250j

)

Ω . (90)

Here, Z has a positive definite hermitian part and is not

symmetric. Thus, the DUS is passive, not reciprocal, and

not lossless. For each value of ZS1 and ZS2 considered

below, the 16 power ratios defined in Section IV have been

computed a first time using the formulas of Section II.C and

YSAM given by (12), and a second time using the formulas

of Section II.D and ZPAM given by (9). Both methods give

exactly the same values, shown in Table 1 to Table 3.

In Table 1, we assume that ZS1 = (320 + 39j) Ω and

ZS2 = (51+87j) Ω. In Table 2, we use ZS1 = (22−72j) Ω
and ZS2 is the same as in Table 1. In Table 3, ZS1 is the same

as in Table 1, and we use ZS2 = (74− 225j) Ω.

A comparison of Table 1 to Table 3 teaches that tA1, tA2,

tAW , tB1, tB2, tBW , GAT , GBT , GAI , GBI , GAU and GBU

depend on ZS1 and ZS2. A comparison of Table 1 to Table 3

also teaches that: GBO and GAA depend on ZS1; and GAO

and GBA depend on ZS2. The results shown in Table 1

to Table 3 are compatible with the fact that, as shown in

Section IV.E and Section IV.F: GBO and GAA do not depend

on ZS2; and GAO and GBA do not depend on ZS1.

The results shown in Table 1 to Table 3 are compatible

with the fact that, as shown in Section IV.B, Section IV.C,

Section IV.E and Section IV.F, tA1, tA2, tAW , tB1, tB2, tBW ,

GAT , GBT , GAO, GBO, GAA, GBA are less than or equal to

one.
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The results shown in Table 1 and Table 3 teach that GBI ,

GAU and GBU can be greater than one, in line with the

assertions found in Section IV.D and Section IV.G, according

to which GAI , GBI , GAU and GBU need not be less than or

equal to one.

We find that the computed values are compatible with (58)-

(60). We also find that (63), (66), (73)-(74) and (77) need not

be true in a case where the DUS is not reciprocal, and not

lossless.

B. SECOND EXAMPLE

In a second example, we assume that ZS1 = (32 + 39j) Ω
and ZS2 = (51+87j) Ω, and that the DUS has an admittance

matrix, given by

Y =

(

5 + 28j −3− 22j
−3− 22j 2 + 14j

)

mS . (91)

Here, Y has a positive definite hermitian part and is

symmetric. Thus, the DUS is passive, reciprocal, and not

lossless. The 16 power ratios defined in Section IV have been

computed a first time using the formulas of Section II.C and

YSAM given by (12), and a second time using the formulas

of Section II.D and ZPAM given by (9). Both methods give

exactly the same values, shown in Table 4.

TABLE 4. Results for the second example.

Quantity CA CB

power transfer ratio at port 1 of the DUS 0.534733 0.534733

power transfer ratio at port 2 of the DUS 0.539872 0.539872

power transfer ratio without the DUS 0.286756 0.286756

transducer power gain 0.439568 0.439568

insertion power gain 1.532900 1.532900

operating power gain 0.822034 0.814209

available power gain 0.814209 0.822034

unnamed power gain 1.522646 1.522646

The results shown in Table 4 teach that GAI , GBI , GAU

and GBU can be greater than one, in line with the assertions

found in Section IV.D and Section IV.G.

We find that the values computed for this reciprocal DUS

are compatible with (58)-(60), (63), (66), (73)-(74) and (77).

C. THIRD EXAMPLE

In a third example, the DUS is an ideal transformer, which

has neither an impedance matrix nor an admittance matrix.

However, we can directly compute ZPAM and YSAM , by

inspection. Let n be the ratio of the number of turns in the

secondary to the number of turns in the primary. We obtain:

ZPAM =
1

YS1 + n2YS2

(

1 n
n n2

)

(92)

and

YSAM =
1

n2ZS1 + ZS2

(

n2 n
n 1

)

. (93)

ZPAM and YSAM are singular. For ZS1 = (32 + 39j) Ω,

ZS2 = (111− 120j) Ω and n = 2, we get:

ZPAM ≃
(

33.98− 3.07j 67.96− 6.14j
67.96− 6.14j 135.92− 12.29j

)

Ω (94)

and

YSAM ≃
(

16.37− 2.47j 8.18− 1.23j
8.18− 1.23j 4.09− 0.62j

)

mS . (95)

Here, the DUS is passive, reciprocal, and lossless. The 16

power ratios defined in Section IV have been computed a first

time using the formulas of Section II.C and YSAM given by

(93), and a second time using the formulas of Section II.D

and ZPAM given by (92). Both methods give exactly the

same values, shown in Table 5.

TABLE 5. Results for the third example.

Quantity CA CB

power transfer ratio at port 1 of the DUS 0.972867 0.972867

power transfer ratio at port 2 of the DUS 0.972867 0.972867

power transfer ratio without the DUS 0.526027 0.526027

transducer power gain 0.972867 0.972867

insertion power gain 1.849462 1.849462

operating power gain 1.000000 1.000000

available power gain 1.000000 1.000000

unnamed power gain 1.027889 1.027889

The results shown in Table 5 teach that GAI , GBI , GAU

and GBU can be greater than one, in line with the assertions

found in Section IV.D and Section IV.G.

We find that the values computed for this reciprocal DUS

are compatible with (58)-(60), (63), (66), (73)-(74) and (77).

We also find that the values computed for this lossless DUS

are compatible with (79)-(80) and (84)-(89).

D. FOURTH EXAMPLE

In a fourth example, we assume that ZS1 = (320 + 39j) Ω
and ZS2 = (51+87j) Ω, and that the DUS has an impedance

matrix, given by

Z =

(

125j 15 + 200j
−15 + 200j 250j

)

Ω . (96)

Here, Z has a null hermitian part and is not symmetric.

Thus, the DUS is passive, not reciprocal, and lossless. The

16 power ratios defined in Section IV have been computed a

first time using the formulas of Section II.C and YSAM given

by (12), and a second time using the formulas of Section II.D

and ZPAM given by (9). Both methods give exactly the same

values, shown in Table 6.

TABLE 6. Results for the fourth example.

Quantity CA CB

power transfer ratio at port 1 of the DUS 0.194438 0.194438

power transfer ratio at port 2 of the DUS 0.194438 0.194438

power transfer ratio without the DUS 0.425230 0.425230

transducer power gain 0.194438 0.194438

insertion power gain 0.457254 0.457254

operating power gain 1.000000 1.000000

available power gain 1.000000 1.000000

unnamed power gain 5.143022 5.143022

We find that the values computed for this lossless DUS are

compatible with (79)-(80) and (84)-(89).
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VII. ABOUT THE FRIIS TRANSMISSION FORMULA
The original Friis transmission formula is about “a radio

circuit made up of a transmitting antenna and a receiving

antenna in free space”, and it reads [2]:

Pavr

Pt

=
ArAt

d2λ2
, (97)

where: Pavr is the power available at the port of the receiving

antenna; Pt is the power fed into the transmitting antenna at

its port; Ar is the effective area of the receiving antenna, in

the direction of the transmitting antenna; At is the effective

area of the transmitting antenna, in the direction of the

receiving antenna; d is the distance between the antennas; and

λ is the wavelength. The correct definition of the effective

area of an antenna, to be used in (97), is: “the ratio of the

available power at the terminals of a receiving antenna to the

power flux density of a plane wave incident on the antenna

from that direction, the wave being polarization matched to

the antenna” [13].

As pointed out in [2], (97) is not based on any assumption

regarding antenna efficiency or antenna losses. However, it

assumes that the antennas are polarization matched, that d is

sufficiently large (far field condition), and that the transmit-

ting antenna is reciprocal. Here, “reciprocal antenna” means

an antenna to which we could apply the Lorentz reciprocity

theorem if it was used in free space [14, Sec. 13.1].

For polarization-matched antennas and sufficiently large

values of d, another form of (97) is [14, Sec. 4.4.2], [15]:

Pavr

Pt

=
ArGt

4πd2
, (98)

where Gt is the gain of the transmitting antenna, in the

direction of the receiving antenna. The gain of an antenna in

a given direction being defined as “the ratio of the radiation

intensity in a given direction to the radiation intensity that

would be produced if the power accepted by the antenna were

isotropically radiated” [13], (98) directly follows from the

definitions of Ar and Gt, and therefore does not require any

assumption on the reciprocity of the transmitting antenna.

Another common form of (97) for polarization-matched

antennas and sufficiently large values of d is [14, Sec. 4.4.2]:

Pavr

Pt

= GrGt

(

λ

4πd

)2

, (99)

where Gr is the effective area of the receiving antenna, in the

direction of the transmitting antenna. This formula applies

only to a reciprocal receiving antenna.

From our perspective, the ratio Pavr/Pt is an unnamed

power gain. Thus, (97)-(99) are suitable for computing this

unnamed power gain, and they are valid for any LTI generator

connected to the transmitting antenna, and any LTI load

connected to the receiving antenna, provided Pt 6= 0 W.

Some authors use “Friis transmission formula” to designate

formulas which, instead of providing the value of the un-

named power gain, give the value of other power ratios, such

as the ratio of the power delivered by the receiving antenna to

Pt [16, Sec. 3-12], [17, Sec 5.3], [18, Sec. 2.17.1], [19]. We

believe that this is regrettable.

FIGURE 2. The configurations considered in Section VII, in which the DUS
comprises antenna 1 and antenna 2.

In the case where both antennas are reciprocal, the original

Friis transmission formula (97) conveys two teachings: how

to compute the unnamed power gain Pavr/Pt; and that, if,

without moving the antennas, their roles are reversed (i.e.,

the receiving antenna becomes the transmitting antenna and

vice versa), then the unnamed power gain does not change.

These teachings are also imparted by (99). The first teaching

is specific to the configuration of two polarization-matched

antennas in free space, at a sufficient distance from one

another, at least one of them being reciprocal, as explained

above. The second teaching can be generalized.

To this end, we now consider a DUS comprising two an-

tennas and whatever lies around them, as shown in Fig. 2. We

neither assume polarization-matched antennas, nor a large

value of d, nor a free space environment. In CA, antenna 1

is used for emission and antenna 2 for reception. In CB, an-

tenna 2 is used for emission and antenna 1 for reception. We

assume, however, that both antennas are reciprocal and that

the medium surrounding them is reciprocal [20, Sec. 13.06].

Thus, we can use theorem II of [21], known as the “Rayleigh-

Carson reciprocity theorem” and corresponding to [20, eq.

(13-40)], to assert that ZPAM and YSAM are symmetric.

The DUS being consequently reciprocal, (77) holds, that is:

if PARP1 6= 0 W and PBRP2 6= 0 W, then GAU = GBU .

This reciprocal relation generalizes said second teaching

of the original Friis transmission formula (97). Other recip-

rocal relations obtained above for a reciprocal DUS can also

be used, such as (63), (66) and (73)-(74). Note, however,

that lossless antennas operating in a lossless medium do not

lead to a lossless DUS, in the meaning of Section V. Note

also that ionospheric propagation may involve a significant

Faraday rotation, which makes the propagation medium non-

reciprocal [17, Sec. 6.6], [20, Sec. 17.10], [21].

In CA, PAAV P2 depends on the generator connected to

port 1 and on the DUS, but not on ZS2. For sufficiently large

values of d (far field condition), and if PARP1 6= 0 W, we can

say that ZAPP1 depends very little on ZS2, so that PARP1

depends very little on ZS2. Thus, in this case, GAU depends

very little on ZS2. Likewise, for sufficiently large values of

d and if PBRP2 6= 0 W, GBU depends very little on ZS1.

If follows that, if the DUS is reciprocal, PARP1 6= 0 W,

and PBRP2 6= 0 W, then GAU = GBU depends very little

on ZS1 and very little on ZS2. However, the dependence of

GAU = GBU on ZS1 and ZS2 exists, as shown in Section

VI.A. Thus, (97)-(99) must be considered as approximations,

because they ignore this dependence.
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VIII. CONCLUSION
We have stated and proven a new theorem on power products,

which can be used to directly obtain 8 reciprocal relations

between 16 power ratios. Five of these reciprocal relations

hold for a reciprocal DUS. The beauty of the theorem on

power products lies in its simplicity and generality, whereas

5 of the reciprocal relations between power ratios necessitate

assumptions ensuring nonzero denominators. We have also

directly derived several results on power ratios, applicable to

a lossless DUS that need not be reciprocal.

We used our results on the unnamed power gain to discuss

and generalize the Friis transmission formula.

The formulas (63) and (66) were generalized to a DUS

having more than two ports, in [5]. The formula (60) has

been generalized to multiport generators and loads, in [9].

We plan to generalize other results of this article, to a DUS

having more than two ports.
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