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Abstract

Transverse thermoacoustic modes may occur in gas turbines, aero-engines, and

rocket engines. Various scenarios of flame excitation can be observed, depend-

ing on the type of transverse mode and the location of the flame relative to

the mode shape. If an acoustically compact, symmetric flame is exposed to

transverse velocity fluctuations of uniform strength and direction, the resulting

modulation of the overall heat release rate is invariant to the direction of the ve-

locity perturbation. It follows that the dominant flame response occurs at twice

the forcing frequency, even for an infinitesimally small oscillation amplitude.

The present study proposes a modeling framework for this inherently non-linear

phenomenon, which relies on a second-order kernel of the Volterra series. As

a possible realization of the Volterra series, an ad-hoc model is proposed and

validated with CFD for mono-frequency forcing. Furthermore, a mechanism of

modal interaction is established by which frequency doubling in the flame re-

sponse causes an unstable transverse mode to drive a higher order stable mode,

such that at near-resonance conditions the higher order mode exhibits elevated

amplitude. This mechanism can explain the observations made by Urbano et

al. [Combustion and Flame 169, 2016] in a small-scale rocket thrust chamber,

where a radial mode appears at exactly twice the frequency of the dominant

transverse mode. A simple representative setup of a cylindrical combustion
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chamber is used to explain this mechanism analytically.

Keywords: Transverse mode, Transverse Velocity excitation, invariance,

Volterra series, Resonance

1. Introduction

The development of low emission gas turbines, aero-engines, and rocket en-

gines is often thwarted by thermoacoustic instabilities. This type of combus-

tion instability occurs due to a coupling between unsteady combustion and the

system acoustics with positive feedback and can cause mechanical failure. Un-

steady combustion generates acoustic energy if the heat release fluctuation q′ is

in phase with the pressure fluctuation p′ at the flame. This condition is known

as the Rayleigh criterion. One distinguishes between longitudinal and transverse

thermoacoustic modes, with acoustic displacement parallel and perpendicular

to the direction of the mean flow, respectively. In rocket engines as well as gas

turbines, thermoacoustic instabilities are associated frequently with transverse

modes [1–8]. Depending on the combustor topology and geometry as well as

frequency, transverse modes will appear in a variety of shapes. In combustion

chambers with annular or circular cross-sections, amplitudes vary with the az-

imuthal and/or radial coordinates, whereas in a rectangular chamber, they vary

with the principal directions of the cross-section. Generally, a transverse mode

can be decomposed into standing and traveling wave components. For the for-

mer, there are nodes and anti-nodes of pressure p′ and transverse velocity v′.

In the following, we will discuss acoustic-flame interactions in terms of standing

waves. No essential loss of generality results from this choice, because traveling

waves may be represented as superpositions of standing waves and vice versa.

When interacting with transverse modes, flames may be perturbed by axial

as well as transverse velocity fluctuations, as reviewed by O’Connor et al. [8].

Figure 1 shows a generic schematic of a flame located at the interface between a

burner or injector nozzle and a combustion chamber (c.f. comparable schematics

in refs. [8–10]). The flame is assumed to be symmetric about a line (or plane) of
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symmetry indicated by the thin, dashed, black line in the figure. This requires

that there is no mean transverse flow, but other than that, we make no specific

assumptions on the nature of the flame at this point of the discussion. In other

words, the figure is to represent in a general manner premixed as well as non-

premixed flames with liquid or gaseous fuel.

The precise nature of acoustic-flame interaction depends – among other

things – on the position of the flame relative to the mode shape and in particular

the (anti-)nodes. Figure 1a depicts a scenario of thermoacoustic interaction –

described or modeled, e.g., in refs. [4–8, 11–14] – where pressure oscillation p′

in the combustion chamber due to a transverse mode modulates axial velocity

u′ according to the acoustic impedance of the nozzle, which in turn perturbs

the heat release rate q′ of the flame. In addition, the flame may be perturbed

directly by transverse velocity oscillations v′, see for example refs. [9, 15–25]

and Fig. 1b. Assuming the flame to be acoustically compact, one concludes

that at a pressure anti-node, fluctuations of axial velocity u′ and axisymmetric

vortical disturbances govern the flame response. Conversely, at a pressure node

with p′ = 0, v′ and non-axisymmetric hydrodynamic disturbances dominate.

Flames located between anti-nodes of a standing wave or exposed to a traveling

wave are subjected to a combination of these types of excitation.

Which one of the two excitation pathways represented by Figs. 1a and 1b is

more important and more prevalent in thermoacoustic instability? Heidmann

and co-workers [15, 16], e.g., argue that combustion processes in liquid propel-

lant rocket engines, such as atomization and droplet evaporation, are sensitive

to both p′ and v′. A number of studies focus on the spatial distribution of heat

release response of a flame to transverse forcing [17, 20–22, 24, 25]. These in-

vestigations are not directly relevant in the present study, which focuses on the

global heat release fluctuation of an acoustically compact flame. When limiting

the discussion to this scope, the majority of studies agrees that axial veloc-

ity perturbation u′ dominates the overall flame response [16, 19, 26–28]. On

the contrary, transverse velocity fluctuations v′, although causing strong flame

wrinkling, result only in small modulation of the overall heat release rate q′ and
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are indeed considered of secondary importance for thermoacoustic instability1

by many authors [1, 8–10, 15, 19, 29].

Nevertheless, this study is concerned with the flame response to transverse

velocity v′, as shown in Fig. 1b, with a focus on the intriguing property of

nonlinear frequency doubling as a result of flame and flow symmetries [15, 30–

32]. Fundamentally, this idea may be explained as follows: Excitation by a

uniform field of transversal velocity v′ is anti-symmetric, because v′, being a

vector quantity, is anti-symmetric about the center axis of the flame. Figure 2

illustrates reflection symmetry and when a vector field is symmetric and anti-

symmetric. Let operator Π be defined for 1D vector field
−→
V as Π(

−→
V (y)) =

−(
−→
V (−y)). This operator performs reflection of

−→
V about y = 0. The vector

field v′ is reflection-symmetric if Π(v′) = v′ (Fig. 2 (left)) and reflection-anti-

symmetric if Π(v′) = −v′ (Fig. 2 (right)). Thus, a uniform transverse velocity

field v′ is anti-symmetric at v′ anti-node about the center axis of the flame. Here,

we focus on flame excitation by this type of v′ field. For such an excitation, the

flame exhibits invariance to the direction of v′, which results in an inherently

non-linear dynamics that exhibits frequency doubling in its response to harmonic

excitation – even at infinitesimal amplitude!

The phenomenon of frequency doubling as a result of the (anti-)symmetry

of flow perturbations and flame, respectively, has been discussed repeatedly

in the literature on rocket engines [15, 30, 31, 33], but has been mentioned

only once in the literature on gas turbines [32]. This inherently non-linear

behavior is fundamentally different from the saturation non-linearity related to

large amplitude excitation. For the latter, the dominant flame response is at the

forcing frequency, while higher harmonics appear with lower amplitudes. For

the former, there is no response at the forcing frequency. Instead, the dominant

response is at twice the forcing frequency – even for excitation with infinitesimal

1Cases where the flame is asymmetric, or where large amplitude transverse fluctuations v′

change the mean flame shape or interact in a nonlinear fashion with axial velocity fluctuations

represent notable exceptions to this general sentiment
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amplitude.

Let us review previous studies that investigated the flame response to trans-

verse excitation v′ with frequency doubling. Heidmann and co-workers [15, 16,

34] explain the phenomenon of frequency doubling in liquid fuel flames as a con-

sequence of the fact that the evaporation rate of fuel droplets is a function of

the absolute value of the relative velocity between the gas phase and droplets,

and thus invariant to the sign of v′. Zellhuber et al. [32] and Schmid and

Sattelmayer [33] showed frequency doubling in the flame response to forcing in

transverse direction with unsteady RANS of a premixed swirl flame and a non-

premixed flame, respectively, and provided the reasoning of invariant response

for it. Given that the response is at a different frequency than the forcing,

the aforementioned studies concluded that the unsteady heat release resulting

from transversal forcing makes no contribution to the Rayleigh index and thus

is insignificant to thermoacoustic stability analysis. Knapp et al. [28, 30] specu-

lated that frequency doubling should occur in LOX/GH2 spray combustion due

to direction-invariant coupling of v′ with q′, and indeed Pomeroy et al. [31],

Hardi et al. [35] and Hakim et al. [36] actually observed – or at least gathered

indirect evidence for – this phenomenon in experiment and numerical simu-

lations. In other experimental and computational studies of liquid-propellant

rocket engine instability, the v′ anti-node of the fundamental transverse mode

coincides with the p′ anti-node of the second order mode in their respective

combustion chambers, and thus, the flame is subjected to excitation from both

perturbations [12, 37, 38]. Therefore, the flame response at twice the frequency

of the fundamental mode may be due to excitation by both transverse velocity

and pressure oscillations, making analysis of the flame response difficult.

Complementary to experimental and high-fidelity computational studies,

low- or reduced-order models of the flame response to transverse velocity exci-

tation have also been put forward. Crocco et al. [39, 40] proposed a model of

q′ based on an evaporation rate model, where q′ is expressed as an even func-

tion of v′, such as v′2, |v′|. Sliphorst et al. [41] also used |v′| to formulate a

local response factor of q′ due to transverse velocity excitation. Ghirardo and
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Juniper [42] modeled v′ excitation using non-linear functions based on the argu-

ment of asymmetric perturbation of the two sides of the flame. However, Harrje

and Reardon cautioned in Ch. 4 of ref. [1] against using an even function for

phenomena with a symmetric response, since this leads to a discrepancy of the

mean heat release with the steady heat release. Acharya et al. [18] and Li et

al. [23] used the linearized G-equation to show that the linear response of a

symmetric premixed flame to v′ is zero. Unfortunately, the response at higher

harmonics was not investigated. To summarize, a viable low-order model of

the inherently nonlinear flame response to v′ excitation has not yet been de-

veloped. The present study advocates Volterra series as an adequate modeling

framework for this phenomenon, and proposes a first implementation of such a

model, which is admittedly ad-hoc and simplistic, but compares favorably with

simulation results.

This model is then used to explore modal coupling in a thermoacoustic sys-

tem with the inherent non-linearity of the flame response to v′ excitation. The

results suggest that a dominant transverse mode can drive a higher order mode

because of frequency doubling in the flame response caused by the v′ field of the

dominant mode. At near-resonance conditions, i.e., if the eigenfrequency of the

higher order mode is close to twice the frequency of the dominant mode, the

higher order mode can grow to significant amplitudes. This modal interaction

mechanism is structurally different from the established scenarios for non-linear

modal interaction, where large amplitude perturbations of the flame leads to

unsteady heat release oscillations at higher harmonics, which may couple with

a higher order mode, even though the dominant response is at the fundamental

frequency [43, 44]. Contrarily, mode coupling due to v′ excitation is caused

by a flame response with the dominant response at twice the fundamental fre-

quency, and even for infinitesimal small amplitudes. Thus, the present study

offers a new perspective to modal interaction caused by the flame response to

transversal excitation.

The concepts and models developed are used to develop an alternative ex-

planation of the results of Urbano et al. [45, 46] on thermoacoustic instability
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in the so-called BKD research combustor, i.e., a small-scale rocket thrust cham-

ber complete with injection manifold and nozzle outlet investigated by Gröning

et al. [14, 47–49]. Specifically, Urbano et al. [45, 46] observed in large eddy

simulation (LES) of this combustor a strong transverse mode (1T) and simul-

taneously a radial mode (1R) with considerable amplitude at exactly (!) twice

the frequency of the 1T mode. Also, Gröning [49] reports that in experiments,

the 1R mode was observed at twice the frequency of the 1T mode with good

accuracy. Urbano and Selle [50] provide an explanation of the observed am-

plitudes of the 1T and 1R modes by quantifying the Rayleigh index and the

interaction of acoustics with hydrodynamics. They argue that both modes are

unstable, and although the 1T mode has significantly higher Rayleigh index, the

1R mode reaches comparable strength because it has less dissipation than the

1T mode. A low-order model representative of the configuration investigated

in refs. [14, 45, 49] is used in this study to demonstrate that the mechanism

of modal coupling due to the inherently non-linear flame response to transverse

velocity excitation can also explain the aforementioned observation.

The paper is structured as follows: In the next section (Section 2), the non-

linear framework for flame response, on which our study is based, is presented

and an ad-hoc model based on this framework is proposed for specific applica-

tions. CFD simulations of a 2D laminar symmetric flame with v′ excitation (c.f.

Fig. 1b) are employed to provide direct evidence of the non-linearity and vali-

date the ad-hoc model (Section 3). The proposed ad-hoc model is then applied

to model the flame response to v′ excitation in a cylindrical combustion cham-

ber (Section 4). Finally, it is shown that the dominant 1T mode drives the 1R

mode through transverse excitation at a frequency close to the eigenfrequency

of 1R mode, which results in near-resonant amplification. Before proceeding,

please note that this paper concentrates on the flame response to a uniform v′

only (shown in Fig. 1b). For the sake of brevity, “flame response” will be used

in place of “flame response to uniform v′”, unless explicitly stated.
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2. Non-linear model for flame response (compact flame)

When a flame is excited by transverse velocity perturbation, it responds with

fluctuation in heat release rate. The flame response involves many complex phys-

ical processes, which depend on the flame type, e.g., premixed, non-premixed,

or partially premixed flame, or the flame stabilization mechanism, i.e., bluff

body, or swirl, etc. Other processes, like evaporation, droplet breakup, occur in

combustion of liquid fuel. As mentioned in the Introduction, the flame response

is invariant to the direction of v′ irrespective of the type of flame. Therefore,

we seek to develop a lumped low-order model describing the dynamics of the

global response of the flame instead of developing detailed models for individual

processes. Apart from the flame being acoustically compact and symmetric, it

is important that for both excited and unexcited flame, there is a complete con-

sumption of fuel or oxidizer before the flow exits the confinement. To this end,

we treat the flame as a dynamical system and introduce a framework based on

Volterra series, which appears suitable for modeling the inherent non-linearity

(the invariant behavior) of the flame response.

In a linear time-invariant (LTI) dynamic system, output y(t) and input can

be linked by convolution of the input u(t) and its unit impulse response h(t)

[51]:

y(t) =

∫ t

0

h(τ)u(t− τ)dτ (1)

Such system allows superposition and exhibits linear scaling properties. As a

generalization of (1), input and output of a Non-linear Time Invariant (NLTI)

system can be related using Volterra series [51, 52]:

y(t) =

∫ t

0

h1(τ)u(t− τ)dτ

+

∫ t

0

∫ t

0

h2(τ1, τ2)u(t− τ1)u(t− τ2)dτ1dτ2 + ...

+

∫ t

0

...

∫ t

0

hn(τ1, ..., τn)u(t− τ1)...u(t− τn)dτ1...dτn

(2)

where the nth-order Volterra kernel hn is real.
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Let us formulate the invariant behavior of heat release fluctuation to the

direction of v′ in mathematical terms. Denoting the convolution-operation in

Eq. (2) as q′(t) = H(v′(t)), the property of invariance to the direction of v′

says:

H(v′(t)) = H(−v′(t)) (3)

Equation (3) holds for arbitrary v′. Applying this property to Eq. (2), the even

Volterra kernels on the left and the right hand side of Eq. (3) cancel, leaving

only the odd Volterra kernels:∫ t

0

..

∫ t

0

hn(τ1, .., τn)v′(t− τ1)..v′(t− τn)dτ1..dτn =

−
∫ t

0

..

∫ t

0

hn(τ1, .., τn)v′(t− τ1)..v′(t− τn)dτ1..dτn

(4)

where n is an odd number. If Eq. (4) is to hold for any input v′, hn is identically

zero when n is an odd number. It follows that the Volterra series of q′(t)

comprises of only even-order kernels. The second-order kernel is the leading

term and is expected to dominate the response for small v′. Hereon, we will

restrict our consideration to the second-order kernel for modeling the flame

response as in Eq. (5).

q′(t) =

∫ t

0

∫ t

0

h2(τ1, τ2)v′(t− τ1)v′(t− τ2)dτ1dτ2 (5)

2.1. Frequency domain response of 2nd order NLTI system

When an NLTI system as defined in (5) is excited with mono-frequency

harmonic input, its output will in general be a combination of a constant offset

and a harmonic component at twice the input frequency. This can be shown as

follows: Substituting v′(t) = A cosωt = A(eiωt+e−iωt)/2 in Eq. (5), one obtains

(details of the derivation are given in the Appendix provided as Supplemental

material):

q′(t) =
A2

2
<[e2iωtψ(ω, ω) + ψ(ω,−ω)] (6)

with a second order transfer function ψ derived as:

ψ(±ω1,±ω2) ≡
∫ t

0

∫ t

0

h2(τ1, τ2)e∓iω1τ1e∓iω2τ2dτ1dτ2 (7)
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The first term in angular brackets on the r.h.s. of Eq. (6) represents an out-

put component that oscillates at frequency 2ω, i.e., twice the frequency of the

input. Gain and phase of the response at that frequency is governed by the sec-

ond order transfer function ψ. The second term in angular brackets ψ(ω,−ω)

is time-independent, i.e., it represents a constant offset. However, transverse

excitation does not change the amount of fuel or oxidizer consumed in combus-

tion (if one excludes events such as incomplete consumption of fuel/oxidizer,

or even extinction due to very large amplitudes). It follows from fundamental

conservation laws that the mean heat release rate for a transversaly forced flame

must not deviate from its steady-state value (c.f. arguments given in ref. [53]

for the low frequency limit of flame transfer functions). Hence ψ(ω,−ω) = 0 in

the present case – a conclusion that will be confirmed by numerical results in

Section 3.

Note that a second order transfer function has two frequencies as input

variables. To understand the importance of these two frequencies, we first re-

capitulate the concept of transfer function. In an LTI system, the output is at

the same frequency as the input. Thus, the output can be linked to the input

through a transfer function in frequency domain and harmonic probing with

mono-frequency input provides quantitative information on the transfer func-

tion in an LTI system. Contrarily, in a purely second order system, like the one

studied here, one must use two independent frequencies in harmonic probing to

obtain full knowledge of the second order transfer function (ψ). Thus, ψ varies

over a 2D plane of frequencies (Fig. 3). Harmonic probing with single frequency

gives the variation of ψ only along the diagonal ω1 = ω2. This plot is symmetric

with respect to ω1 = ω2 line. At the ω1 = −ω2 line, ψ should be zero, as there

should be no bias in the output.

2.2. Time Domain ad-hoc model

As described in Eq. (5), the flame response can be represented in the time

domain by a second-order convolution integral. Thus, if we know or are able to

obtain the h2 kernel, we can compute the time domain response for any input
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signal. In this study, we do not aim to identify this kernel because its quantita-

tive properties would be case dependent. Instead, we propose an ad-hoc model,

which has minimal properties of the h2 kernel and can be used for a specific type

of input signal. Here, we focus only on mono-frequency harmonic input signals.

This ad-hoc model can be substituted for the complete h2 kernel for qualitative

analysis in time-domain low-order modeling. This model is applied in Section 4

to demonstrate its convenient behavior. The ad-hoc model for single frequency

forcing is presented as follows:

q′(t) = kv′(t− τ)
dv′(t− τ)

dt
(8)

where, k is a coefficient corresponding to the gain and τ is an overall time delay.

It should be noted that we do not provide theoretically derived values for k and

τ , and their values must be set to match the actual levels of q′ from the flame

as will be demonstrated in Section 3. Thus, k and τ are parameters which are

expected to vary with forcing frequency. It can be noted that the presented ad-

hoc model is similar to the commonly used n−τ model of Crocco and Cheng [54]

as both require two parameters which need to be determined from the actual

response of the flame. However, the n− τ model is used to model linear flame

response, whereas Eq. 8 can model a second order flame response.

Here we give a brief argument to demonstrate that this ad-hoc model (Eq.

(8)) is a suitable candidate for the flame response. The ad-hoc model needs to

satisfy two conditions:

(i) it should be possible to represent this model in terms of the second-order

kernel of the Volterra series as in Eq. (5).

(ii) the model output should have a zero offset because the mean heat release

of the flame with excitation remains unchanged.

To satisfy the first condition, we assume a functional form of h2 kernel, which

when substituted in Eq. (5) results in Eq. (8). Let us assume h2 kernel as:

h2(τ1, τ2) =
k

dτ
[δ(τ1 − τ)δ(τ2 − τ)− δ(τ1 − τ)δ(τ2 − τ − dτ)] (9)
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where, δ(t) is a delta function. Substituting this kernel in Eq. (5), integrating

over dτ1 and dτ2 and replacing dτ with dt, we get in the limit of infinitesimal

dt:

q′(t) = lim
dt→0

k

dt
[v′(t− τ) v′(t− τ)− v′(t− τ) v′(t− τ − dt)]

= k v′(t− τ) lim
dt→0

v′(t− τ)− v′(t− τ − dt)
dt

= k v′(t− τ)
d(v′(t− τ))

dt

(10)

This shows that the proposed ad-hoc model is one possible realization of

the Volterra series. Please note that the chosen h2 kernel is valid only for a

mono-frequency input. To examine the second requirement, we give a harmonic

input (v′(t) = A cosω0t) to this model and get:

q′(t) = k
A2

4
<[iω0(e2iω0(t−τ) − e−2iω0(t−τ))] = −kA

2

2
ω0 sin 2ω0(t− τ) (11)

It is evident that the model gives an output oscillating at frequency 2ω0. More-

over, there is no constant bias. Here, we emphasize this important feature be-

cause a constant offset is present in the models for the flame response proposed

previously by Crocco et al. [39, 40], which were based on using symmetric func-

tions, like v′2 or |v′|. Such a symmetric function changes the mean heat release

[1], whereas the proposed ad-hoc model does not suffer from this shortcoming.

It can be noted that the term v′(t − τ) d(v′(t − τ))/dt in Eq. (8) has an

undesirable feature as it increases without bounds for higher frequencies of v′.

However, the term k can compensate as it is a parameter that can vary with

the forcing frequency and lead to physical values of q′. In the absence of the

actual q′ from the flame response, k can be chosen such that it exhibits low-pass

filter behavior for modeling the flame response over a wide frequency range to

avoid divergent response at high frequencies. It is demonstrated in Section 3

that this model can give quantitative agreement for mono-frequency input. This

ad-hoc model can be added to the model of flame response to axial excitation to

perform low-order modeling of transverse modes. An application of this model

is discussed in Section 4. The combined model in the application has the axial
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excitation model based on Noiray et al. [55] and Bonciolini [56] and takes the

following form:

q′ax+trans(t) = nu′(t− τax)− µu′3(t− τax) + kv′(t− τ)
dv′(t− τ)

dt
(12)

where, the first term gives the time delayed linear response to axial velocity per-

turbation u′, the second term corresponds to the saturation non-linearity due to

u′ and the third term comes from the ad-hoc model for v′ excitation. The results

of ref. [16, 32, 33] are reiterated here again that q′ due to v′, being at twice

the frequency of the excitation, cannot lead to self-excited instability. However,

it can cause modal coupling and near-resonance amplification of amplitudes of

other modes (demonstrated in Section 4).

3. CFD simulation with v′ excitation

In this section, the results of the theoretical analysis in Section 2 are con-

firmed by the means of CFD. We study the response of a 2D laminar premixed

slit flame subjected to v′ forcing as indicated in Fig. 4. While the considered

generic configuration is computationally inexpensive, we expect it to contain all

the features relevant in the present context. The results from other studies, like

refs. [32, 33, 36], suggest that more applied configurations, like turbulent or

non-premixed flames, show qualitatively the same behavior.

The present setup is inspired by the laminar slit burner from ref. [57].

This configuration was simulated with CFD in numerous previous studies, for

example, refs. [58, 59], although not in the context of transverse excitation.

Nevertheless, the numerical setup used in these studies is very similar to the

present one.

The solver employed here is a customary low Mach number formulation of

the rhoReactingFoam solver from the open-source package OpenFOAM, which

was also used in ref. [58]. In this weakly compressible approach, where the

density depends only on temperature but not on pressure, acoustic waves do

not exist. This simplification is valid here, because the flame is acoustically
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compact, with its length and width being much smaller than the acoustic wave-

lengths considered. The advantage of this formulation is that the transverse

forcing does not excite axial perturbations, as it would be the case in a fully

compressible setup like in ref. [60]. The flame response to v′ excitation can thus

be studied independently from any axial excitation.

The solver settings, spatial and temporal schemes and the two-step chemistry

model of methane-air combustion are identical to those used in ref. [58]. The

mesh is uniform and orthogonal with a cell size of 25 µm corresponding to 18

grid points in the reactive zone. The time step is set to δt = 5e−7 s resulting in

a Courant number well below 0.1.

At the inlet, Dirichlet-type boundary conditions are set for flow velocity,

species mass fractions and temperature, while a Neumann-type condition (zero

gradient) is set for pressure. At the outlet, the pressure is fixed at 105 Pa

(Dirichlet-type), while a zero gradient condition is imposed for all other vari-

ables. The inlet temperature is 293 K and the equivalence ratio is 0.8. A

constant velocity profile with an area weighted mean value of 1 m/s is imposed

at the inlet. The flame is anchored at an adiabatic non-slip plate (see Fig. 4).

At the boundaries on the left and right side of the flame the steady axial

mean velocity is superposed with a mono-frequent velocity forcing in transverse

direction (Fig. 4). The normalized (global) heat release fluctuation

q′(t) =
q(t)− q

q
(13)

is obtained by subtracting the steady state heat release rate q from the instan-

taneous q(t).

Figures 5 and 6 show the resulting q′ for a mono-frequent transverse forcing

at f = 400Hz. Figure 5 shows that the output is seen only at twice the frequency

of the input thus providing the evidence of q′ being invariant to the direction of

transverse velocity v′ (refer to Section 2). The output at the forcing frequency is

negligible. There is no offset in the response as there is no discernible amplitude

at 0 Hz, confirming the statement made in Section 2.1 regarding the constant

term in Eq. (6) to be equal to 0. Figure 6 depicts that q′ scales with the square
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of amplitude of the input as predicted in Eq. (6). In addition to this, the ad-hoc

model, proposed in Section 2.2, is able to reproduce the output of CFD in time-

domain (Fig. 6). The parameters k and τ are obtained by minimizing the error

between CFD and the ad-hoc model output. It is important to note that in the

case simulated here, k and τ do not vary with amplitudes (even up to a forcing

amplitude of 50% of the axial mean flow), but only with frequency. However,

it is possible in other cases that at higher amplitudes, when other higher order

even kernels become significant, k and τ might vary with amplitude as this ad-

hoc model can only model the second order response. Although the normalized

q′ is very small compared to the normalized v′ for the simulated flame setup, it

can be significantly higher for other flame setups (for example Zellhuber et al.

[32]).

4. Application to thermoacoustic instability in a research combustor

In the previous sections, we have proposed a simple low-order model to

capture the inherent non-linearity in flame response to excitation by transverse

velocity v′. As suggested in other studies, this response is generally weaker than

the flame response to axial velocity perturbations. However, the oscillation of

heat release rate q′ caused by v′ can result in coupling of a transverse mode

to another higher order mode at twice the frequency. The resulting oscillation

amplitudes will depend on the closeness of the eigenfrequencies of higher order

modes to the frequency of excitation by q′ oscillation: if the eigenfrequency of

a higher order mode is close to twice the eigenfrequency of the fundamental

transverse mode, significant amplitudes may be achieved due to (near-)resonant

amplification – even if the flame response to v′ as such is weak. The relevant

thermoacoustic interaction mechanisms of this scenario are depicted in Fig. 7.

Häringer et al. [43] demonstrated a comparable phenomenon in a longitudinal

combustor with a laminar flame, where the second harmonic of a linearly unsta-

ble mode at large oscillation amplitude causes resonance with another acoustic

mode, resulting in higher amplitude for the latter compared to the unstable
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mode.

We shall demonstrate in the following that a stable radial mode in a cylin-

drical combustion chamber may be forced by an unstable transverse mode. This

mechanism of modal coupling is then put forward as a possible explanation of

the observation of frequency-doubled modes made by Urbano et al. [45] and

Gröning [49]. We briefly discuss these observations here.

Gröning [14, 47–49] conducted experiments on a small-scale rocket thrust

chamber designated as BKD combustor. This setup included injection domes,

injectors, a combustion chamber, and a nozzle outlet. Urbano et al. [45] carried

out a Large-Eddy Simulation (LES) of this configuration and ascertained that

power spectral densities (PSD) obtained from the LES show good agreement

with the experiments. In particular, the PSD of pressure fluctuations from the

LES (reproduced in Fig. 8) shows two peaks at frequencies f1 = 10, 700Hz and

f2 = 21, 400Hz, which correspond to transverse (1T) and radial (1R) modes,

respectively, according to the spatial structure of the perturbations. Corre-

sponding peaks in the experimental time series data are observed at 10,260 Hz

and 20,500 Hz [45]. This is confirmed by Gröning [49], who commented that

“with good accuracy” the 1R mode is at twice the frequency of the 1T mode.

In a subsequent study, Urbano et al. [46] argue – in line with Gröning et

al. [14] – that the heat release oscillation at f1 is predominantly driven by axial

velocity perturbations u′ at the fuel injector exit, which in turn are induced by

pressure fluctuations p′ of the 1T mode.

To substantiate this argument, Urbano and Selle [50] quantified the Rayleigh

index and the interaction of acoustics with hydrodynamics for both modes. For

both modes, the Rayleigh index is positive, and it is concluded that both modes

are unstable. The Rayleigh index of the 1R mode is significantly lower than that

of the 1T mode, but the comparatively lower dissipation of the 1R mode can

account for the fact that the amplitude of this mode is nevertheless considerable.

In the current study, we put forward an alternative explanation to the ob-

servation of significant amplitude of the 1R mode on the basis of frequency

doubling in the flame response due to v′ excitation. In this context, it is im-
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portant that the observed frequency of the 1R mode (f1R) is exactly twice the

frequency of the dominant 1T mode (f1T ) in the LES results [45] and within

0.1% in the experimental results [49]. This observation is relevant because the

acoustic eigenfrequency of the 1R mode (f1R,eigen) is not necessarily exactly

equal to twice the eigenfrequency of the 1T mode (f1T,eigen). One can show

analytically (see Section 4.1) that for a cylindrical chamber f1R,eigen is close to

2f1T,eigen (within 4.05% from 2f1T,eigen, to be precise), but not exactly equal.

Similarly, Schulze and Sattelmayer [61] computed via 3D numerical solution of

the linearized Euler equations the eigenfrequencies of the 1T and 1R modes

of the BKD setup for non-reacting mean flow conditions to find that f1R,eigen

lies close to 2f1T,eigen (within 3.7 %). Finally, Urbano et al. [45] computed

the eigenfrequencies of the 1T and 1R modes in the BKD setup (but without

the hydrogen dome and with equivalent impedances in place of the hydrogen

stream and the nozzle outlet) with a Helmholtz solver. It was observed that the

eigenfrequencies are quite sensitive to the spatial distribution of the speed of

sound, and exact equality between the eigenfrequencies f1R,eigen and 2f1T,eigen

was found for a particular spatial distribution of the speed of sound.

To conclude, while it can be said with confidence that f1R,eigen is close to

2f1T,eigen, exact equality should be considered to be a mere coincidence, if one

regards the observed oscillation frequencies as eigenfrequencies of two uncou-

pled, unstable modes. Conversely, if one argues that there is mode coupling

with frequency doubling, such that the 1R mode is driven at near-resonance

conditions by the unstable 1T mode (see Fig. 7), the oscillation frequencies

must obey the relation f1R = 2f1T,eigen.

To provide further support for this scenario of modal coupling with near-

resonant driving of the 1R mode, we apply the model developed for v′ excitation

in the above sections to a rocket thrust chamber represented by a cylindrical

chamber. We make some assumptions based on conclusions from previous stud-

ies to make our analytical explanation simpler. From a study on cumulated

Rayleigh index along the axial direction, Urbano et al. [45] conclude that it

might be possible to assume the flame to be acoustically compact even though
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the frequencies of the modes are above 10kHz. This conclusion is important for

our explanation, because the model of flame response to v′ is valid for compact

flames. We reduce the order of model by considering only the early flame region

(Fig. 9) because this region drives the combustion instability [45]. Thus, we

neglect the longitudinal distribution of the acoustic variables in the combustion

chamber and injectors. Although it has been shown in refs. [14, 45, 46] that

injectors play an important role in determining the stability and the oscillation

amplitude of the 1T mode, we do not include the acoustics of the injectors in

our analysis because we consider it to be given that the 1T mode is dominant

and unstable. Instead, we focus on the dynamics of the 1R mode and including

injectors in our analysis is not essential for the proposed mode coupling mech-

anism. It is only essential that f1R,eigen is close to 2f1T,eigen.2 It is shown

later in Section 4.1 that this condition is satisfied even without injectors and

the longitudinal extension of the chamber. We also assume a homogeneous field

of speed of sound and no mean flow in the chamber for the reason mentioned

previously. Thus, the acoustic modes in the combustion chamber are confined

to the early flame region and depend spatially only on r and θ.

Harrje and Reardon in Ch. 4 of ref. [1] provide extensive information about

modeling acoustic modes in rocket engines. We use a simplified model to show

mode coupling. In the BKD setup, injectors are placed axisymmetrically around

the center axis of the chamber with three concentric rings. Similarly, we assume

that the distribution of acoustic sources (flames) in our model is axisymmetric

around the center axis of the cylindrical chamber and also uniform in both

circumferential and radial directions. The assumption of uniform distribution

of flames does not affect our explanation to the observations in ref. [45], which

will be detailed later in Section 4.1. Flames are assumed to respond to axial

velocity perturbation induced by p′ (based on the conclusions from Urbano et

2This mechanism of modal coupling is not possible for 2T and 3T modes because f2T,eigen

and f3T,eigen are not close to 2f1T,eigen. Schmid and Sattelmayer [33] provide the same

argument, but they do not consider the possiblity of coupling with the 1R mode.
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al. [46]) and v′ perturbations. The modeling of flame response is done with

the lumped low-order model presented in Eq. 12. We reiterate here that we do

not analyse the stability of the 1T mode and assume it to be given that it is

dominant and unstable. We rather focus on the dynamics of the 1R mode.

4.1. Oscillator model

First, the oscillator model for a cylindrical combustion chamber with no

mean flow and homogeneous field of speed of sound is derived from the acoustic

wave equation with unsteady heat source term :

∂2p′

∂t2
− c2∇2p′ = (γ − 1)

∂q′

∂t
(14)

where,

∇2p′ =
1

r

∂

∂r
(r
∂p′

∂r
) +

1

r2
∂2p′

∂θ2
. (15)

Please note that all partial derivatives with respect to the longitudinal direction

are neglected. p′ is expressed in complex terms as p̂′(r, θ)eiωt. Similarly, v′r and

v′θ (velocity in radial and azimuthal direction, respectively) can also be expressed

in terms of complex amplitudes. Solution of these complex amplitudes for purely

transverse modes are given as in ref. [1]:

p̂′(r, θ) = Pψνη(r)eiνθ + ...

v̂′r(r, θ) = Vr
dψν,η(r)

dr
eiνθ + ...

v̂′θ(r, θ) = Vθ
ψν,η(r)

r
eiνθ + ...

(16)

where ψνη(r) = Jν(sνηr) is described by a Bessel function of the first kind.

The value of sνη is obtained by applying the boundary conditions. Here, we

assume a solid wall at r = R. Hence, v̂′r(r = R) = dJν(sνηr)/dr|r=R = 0. As

we are interested only in the 1T and 1R modes, we get s1,1R = s1TR = 1.8413

and s0,2R = s1RR = 3.8317. This gives the ratio f1R,eigen = 2.081f1T,eigen.

Therefore, the eigenfrequency of the 1R mode is close to twice the eigenfrequency

of the 1T mode. Here, we only consider standing modes because Urbano et al.

[45] also observed a standing 1T mode in their simulation. However, the model
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can be easily extended to rotating modes. Now, with the values of s1,1 and s0,2

known, p′ can be written as:

p′(r, θ, t) = <[A1J1(s1T r) cos θeiω1T t +A2J0(s1Rr)e
iω1Rt]

= η1(t)J1(s1T r) cos θ + η2(t)J0(s1Rr)
(17)

Figures 10c and 10d show the spatial distributions of pressure fluctuations p′

of the 1T and 1R mode according to Eq. (17). Figure 10e shows the transversal

velocity v′ of the 1T mode according to Eq. (16). It is evident that the spatial

distribution of v̂′ of the 1T mode (v′1T ) and p̂′ of the 1R mode (p′1R) have

common features: the v′ anti-nodal line passes through the center of the chamber

and coincides with the p′ anti-node of the 1R mode. As v′1T leads to q′ at twice

the frequency, which is close to f1R,eigen, near-resonance thermoacoustic driving

of the 1R mode may occur. This resonance is expected to be strong because

the region of maximum amplitude of q′ driven by v′1T coincides with the p′

anti-node of the 1R mode. This hypothesis is supported by the distributions of

q′ from ref. [46], which are reproduced in Figs. 10a and 10b. Figs. 10a and

10c clearly show that for the 1T mode, the maximum amplitude regions of q′

and p′ distributions coincide. For the 1R mode, Fig. 10b shows that the center

of the chamber has the maximum amplitude for q′, which is also the region of

maximum amplitude for both v′1T and p′1R (Fig. 10e and 10d). In summary,

we can state that the spatial distributions of fluctuations of pressure, velocity

and heat release rate support the hypothesis of near-resonance thermoacoustic

driving of the 1R mode.

Another important question is whether the positive Rayleigh index observed

by Urbano et al. [50] for the 1R mode necessitates indeed that this mode is un-

stable and conversely rules out the possibility that the 1R mode is driven by the

frequency-doubled heat release fluctuations that originate with the 1T mode?

In general, the answer to this question is negative! Consider a mode that is

linearly stable against self-excited fluctuations, because the Rayleigh index that

results from acoustic-flame feedback is negative or not large enough to overcome

acoustic dissipation. If such a mode is forced by externally imposed unsteady
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heat release to oscillate with some finite amplitude, the thermoacoustic inter-

actions between unsteady heat release and pressure must provide the acoustic

energy that is consumed by dissipation. In other words, the Rayleigh index

that is observed in this case must be positive, even though without external

thermoacoustic driving a negative Rayleigh index would be observed. In com-

plete agreement with this general argument, we show below that the Rayleigh

index predicted with the oscillator model of the BKD developed in this section

is indeed positive at near-resonance.

Close observation of Fig. 10b brings further insight. It can be noticed that

the spatial distribution of q′ of the 1R mode (Fig. 10b) is elliptical with the

major axis along the p′1T nodal line (corresponding to the region with q′ ≈ 0 in

Fig. 10a). This indicates that the spatial distribution of total q′ at frequency f1R

is a superposition of q′ from axial velocity oscillation induced by p′1R (Fig. 10d)

and q′ from v′1T (Fig. 10e). Expressing this mathematically, q′f1R = q′axial,1R +

q′trans,1T . Therefore, q′trans,1T cannot be ignored if it is significant in comparison

to q′axial,1R. Same observation was made in refs. [12, 37, 38], where the v′ anti-

node of the fundamental mode coincided with the p′ anti-node of the second

order mode, suggesting that the flame responds to both perturbations. Due to

this superposition, a positive Rayleigh index computed with q′f1R and p′1R does

not indicate that q′ provides a constructive feedback to the 1R mode causing

instability because q′f1R contains q′trans,1T , which is forcing by another mode. If

the stability of the 1R mode is to be determined, a Rayleigh index computed

with q′axial,1R should be compared with the damping. However, q′axial,1R and

q′trans,1T are at the same frequency and thus, decomposition of q′f1R in these

two components is not straightforward. This results in two possibilities: (1) the

1R mode is unstable and reaches a limit cycle at high amplitudes even without

decisive influence of q′trans,1T ; (2) the 1R mode is stable and forced by q′trans,1T

at near-resonance conditions. The available data do not allow to rule out any

one of the two scenarios with confidence. In the following, we explore the second

possibility with an analytical model and elucidate in more detail the mechanism

of the 1T mode forcing the 1R mode through frequency-doubled flame response.
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Recall Fig. 7, which shows a schematic of the modal coupling between an

unstable transverse mode and a stable higher order mode through v′ excitation.

As mentioned earlier, pressure oscillation p′ of the 1T mode induces axial veloc-

ity oscillation at the injector exit u′inj according to the acoustic impedance at

the injector exit Zinj . Heat release rate fluctuations q′ driven by this velocity

oscillation may provide constructive feedback [46]. Indeed, we consider the 1T

mode to be linearly unstable (the unstable transverse mode in Fig. 7). On the

contrary, according to the mechanism proposed in this study, the 1R mode is

forced by q′ due to v′1T . Thus, even if the 1R mode is linearly stable, forcing

close to the eigenfrequency of the 1R mode will lead to high amplitude of this

mode. To explore this possibility, we consider the 1R mode to be stable (the

stable higher order mode in Fig. 7). In the following, we simplify the oscillator

models for the 1T and 1R modes separately after modeling the source terms in

the acoustic wave equation.

Let us first write separate wave equations for the oscillator variables of the

1T and 1R modes (η1 and η2 respectively) without source terms :

J1(s1T r)η̈1 − c2
[

1

r

dJ1(s1T r)

dr
+
d2J1(s1T r)

dr2
− J1(s1T r)

r2

]
η1 = 0 (18)

J0(s1Rr)η̈2 − c2
[

1

r

dJ0(s1Rr)

dr
+
d2J0(s1Rr)

dr2

]
η2 = 0 (19)

Unstable 1T mode :

For linear analysis, q′ due to u′ can be modeled in terms of η1 with a gain

G and a time delay τl [54, 55]. Assuming a uniform distribution of heat sources

in the combustion chamber, ∂q′/∂t can be added to the right side of Eq. (18).

The resulting equation can be multiplied with r2 and integrated from 0 to R.

After rearrangement and renaming of the constants, it can be reduced to:

η̈1 + α1η̇1 + ω2
1η1 = β1η̇1,τl (20)
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where, α1 is added to account for damping. It should be noted that in our

analytical model, flames are assumed to be distributed uniformly in radial and

azimuthal direction. However, in the BKD setup, injectors are placed within

three concentric rings and at discrete uniform azimuthal intervals, which makes

the distribution axisymmetric about the center of the chamber. The integration

performed to obtain Eq. 20 with a discrete axisymmetric distribution of flames

only affects the coefficient on the right side of Eq. 20 and does not change the

dynamics of this mode qualitatively. Therefore, our assumption of uniform dis-

tribution of flames is valid. Saturation of the flame response at high amplitudes

is taken into account with following modification as in ref. [56]:

η̈1 + α1η̇1 + ω2
1η1 = (β1 − κ1η21,τl)η̇1,τl (21)

where, κ1 is the coefficient of the cubic saturation non-linearity. One can also

derive the right side of Eq. 21 using the model of flame response to axial

excitation from the first two terms on the right side in Eq. 12. As the 1T mode

is linearly unstable, β1 > α1 and any other type of forcing is neglected. For

demonstration, let us assume τl = 0. Limit cycle amplitude and frequency for

the 1T mode is calculated as in ref. [56]:

A1,lc = 2

√
β1 − α1

κ1
(22)

and

ω1,lc = ω1 (23)

Stable 1R mode :

A similar approach can be applied to the 1R mode to simplify the oscillator

model for η2 (Eq. (24)). As the 1R mode is stable, β2 < α2. Thus, external

forcing plays a dominant role which is also added in the oscillator model. It

should be noted that the saturation non-linearity term from the axial excitation
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is dropped as this oscillator is linearly stable with respect to axial excitation.

η̈2 + α2η̇2 + ω2
2η2 = β2η̇2,τl + F (24)

Now, we need to model F . As mentioned earlier, this external forcing originates

from q′ at frequency 2ω1 due to v′1T . The spatial distribution of v′1T can be

derived from Eq. (16).

v′(r, θ, t) = v′r êr + v′θ êθ = χ1(t)φ(r, θ) (25)

where, χ̇1(t) = η1(t). q′ due to v′1T is modelled according to the ad-hoc model

proposed in Section 2.2. Substituting v′ from Eq. (25) in Eq. (8) leads to:

q′(t, r, θ) = kφ2(r, θ)χ1(t− τ)χ̇1(t− τ) = kφ2(r, θ)χ1(t− τ)η1(t− τ) (26)

Again, for demonstration purpose, τ is taken to be 0 in Eq. 26 and τl = 0 in

Eq. 24. In order to apply this source term in the oscillator model, we need to

add ∂q′/∂t from Eq. (26) in Eq. (19) along with ∂q′/∂t due to axial excitation

(similar to the derivation for 1T mode). Multiplying with r2 and integrating

over the volume gives the oscillator model for the 1R mode with forcing from

the 1T mode as:

η̈2 + α2η̇2 + ω2
2η2 = β2η̇2 + σ(χ̇1η1 + η̇1χ1)

= β2η̇2 + σ(η21 + η̇1χ1)
(27)

where, σ is the integral of r2φ2(r, θ) multiplied with a coefficient. When the

1T mode reaches limit cycle, η1 = A1,lc cos(ω1t+ ϕ) and it can be shown that

η21 + η̇1χ1 = A2
1,lccos(2ω1t + 2ϕ). As the 1R oscillator is forced at frequency

2ω1, η2 can be expressed as Γe2iω1t. Replacing this in Eq. (27), we derive:

Γ =
σA2

1,lce
2iϕeiξ

[(ω2
2 − 4ω2

1)2 + 4ω2
1(α2 − β2)2]1/2

(28)

where,

ξ = − arctan

(
2ω1(α2 − β2)

ω2
2 − 4ω2

1

)
for ω2 > 2ω1

= −π + arctan

(
2ω1(α2 − β2)

4ω2
1 − ω2

2

)
for ω2 < 2ω1

(29)
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The phase of q′trans,1T can be derived from the phase of η1χ1. Given η1 =

A1,lc cos(ω1t + ϕ), the phase of q′trans,1T and η2 are (2ω1t + 2ϕ − π/2) and

(2ω1t+ 2ϕ+ ξ), respectively. From Eq. 29, ξ tends to −π/2 close to resonance.

Therefore, the phase difference between q′trans,1T and η2 tends to zero and the

Rayleigh index computed with q′trans,1T and p′1R (η2) is positive. This shows that

if the overall q′ for a mode contains q′ driven by itself and by another mode, a

positive Rayleigh index does not necessarily indicate that it is an unstable mode

because this positive Rayleigh index can be due to the forcing from another mode

also.

4.1.1. Time-domain oscillator simulation:

The analytical expressions derived in the previous section are validated with

a time-domain simulation of the coupled oscillators. The two oscillators (Eq.

(21) and (27)) are modeled in MATLAB Simulink with fourth order Runge-

Kutta formulation for time-stepping. As this is a representative model, simple

values for parameters can be chosen. The choice of parameters should satisfy

certain conditions which are discussed in the Appendix (Supplemental material).

Model parameters are as follows: c = 1; R = 1; β1 = 0.5; α1 = 0.4; κ1 = 2;

β2 = 0.4; α2 = 0.5; σ = 0.2.

Figures 11a and 11b show the time-domain oscillations of oscillator variables

η1 and η2. In Fig. 11a, we observe that η1 grows until it reaches limit cycle. For

η2, the amplitude decreases at the very beginning because this mode is linearly

stable. However, once η1 reaches sufficient amplitude, the second oscillator is

forced resulting in increasing amplitude for η2. Figure 11c shows the frequency

spectrum of overall oscillation (η1 + η2). The analytical values of the limit

cycle amplitudes are also marked and show very good agreement with the time-

domain results. Similar to the frequency spectrum of Urbano et al. [45] (Fig.

8), Fig. 11c displays two distinct peaks with the second peak exactly at twice

the frequency of the first peak. Therefore, near-resonance with the 1R mode

caused by q′ due to v′1T can explain the high amplitude of the 1R mode even

though it is linearly stable.
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4.1.2. Sensitivity study

A parametric study is conducted to investigate the dependence of amplitude

of the second mode on parameters β2 and ω2 (the eigenfrequency of the second

mode). Figure 12 shows the variation of amplitude of the second peak with

changing of these parameters. Here, only the second peak is shown because the

first peak is not affected by changes in β2 and ω2. For comparison of amplitudes

of the first and second peaks, the amplitude of the first peak shown in Fig. 11c

(at about 0.44) should be used. By increasing β2 up to α2, it can be observed

that the amplitude of the second peak increases as the effective damping of this

mode decreases (Fig. 12a). This behavior is expected from the expression of

amplitude of the 1R mode (Eq. 28), where increasing β2 decreases (α2 − β2)

and thus, the amplitude increases.

In Fig. 12b, ω2 is brought closer to 2ω1. In our analytical explanation

of the coupling mechanism, we assumed that the mean flow in the cham-

ber is zero and speed of sound is homogeneous. Therefore, ω2 was shown

to be at 2.081ω1. However, with other mean fields or by taking longitudi-

nal direction and injectors into consideration, ω2 can be different, but still

close to 2ω1. Thus, it would be interesting to know how the amplitude of

the mode changes with decreasing difference between ω2 and 2ω1. As ω2 is

brought closer to 2ω1, the amplitude increases significantly. Bringing ω2 closer

to 2ω1 by even 1% causes amplification of the amplitude by 1.5 times thus

showing high sensitivity of the amplitude to the difference between ω2 and 2ω1.

Our study uses a cylindrical combustion chamber to explain the coupling

mechanism between a dominant transverse mode and a higher order mode

through flame response to transverse velocity excitation and relates it to the ob-

servation made by Urbano et al. [45] in a rocket thrust chamber. This coupling

mechanism is not restricted to only a cylindrical or rocket engine combustion

chamber, but is applicable to any combustion chamber with transverse modes

and symmetric compact flames. For example, in an annular gas turbine, the
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eigenfrequency of the second azimuthal mode is twice the frequency of the first

azimuthal mode. If the first azimuthal mode is dominant, transverse velocity

excitation of the flames can force the second azimuthal mode and even if the

second mode is linearly stable, resonance can cause its amplification (similar to

ω2 = 2ω1 in Fig. 12b).

5. Summary and Conclusions

In this study, the response of a symmetric, acoustically compact flame to

uniform transverse velocity excitation v′ was investigated. As described previ-

ously, in such a configuration heat release fluctuations q′ are invariant to the

direction of v′ and thus the flame response is inherently non-linear, i.e., even

for infinitesimal amplitudes the heat release response at the forcing frequency

is zero and the dominant response is observed at twice the forcing frequency.

This study provides a novel approach to formulate a lumped low-order model for

such non-linear behavior in terms of Volterra series, which constitutes a general

framework to model non-linear, time invariant, dynamical systems. We demon-

strated that Volterra series comprising only even-order kernels can represent the

inherently nonlinear dynamics of a flame excited by transverse velocity. This

suggests that Volterra series can be a suitable framework for system identifica-

tion of the flame response to v′ and for modeling other kinds of non-linearity in

the flame response in future investigations.

As a possible realization of a Volterra series, an ad-hoc model for the in-

herently nonlinear flame response to transverse excitation was proposed and

validated with good success against CFD results. In its current form, this low-

order model is applicable only with single-frequency forcing. Given that in

thermoacoustics one often focuses on the flame response at certain frequencies,

this restriction is acceptable, but nevertheless should be eliminated in future

studies.

Although the flame response to v′ is in general significantly weaker than the

response to axial velocity excitation, frequency doubling can lead to coupling
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of a dominant transverse mode with a higher order mode. At near resonance

conditions, i.e., if the eigenfrequency of the higher order mode is close to twice

the frequency of the dominant mode, significant amplitudes may result. This

mechanism of modal coupling was put forward as an explanation of the ob-

servations of Urbano et al. [45, 46] in a small-scale thrust chamber, where a

radial mode displays significant amplitude at exactly twice the frequency of an

unstable transverse mode. As the eigenfrequency of the radial mode is close

to twice the frequency of the unstable transverse mode, unsteady heat release

q′ driven by the v′ field of the transverse mode causes near-resonance with the

radial mode and thus the radial mode can reach significant amplitude even if it

is linearly stable.

Modal coupling due to v′ excitation as described in the present study for

the case of a cylindrical combustion chamber may also play a role in other

combustor configurations, e.g., annular combustors of gas turbines. Therefore,

it is important to take into account the frequency-doubled flame response to

transversal excitation. The coupled dynamics of thermoacoustic modes in com-

bustor configurations, where the flames are perturbed simultaneously by axial

and transverse velocity excitation, appears to be a worthy subject of further

studies.
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Figure 1: Excitation of a compact symmetric flame at (a) a pressure anti-node (v′ node)

and (b) a pressure node (v′ anti-node). The flame (mean shape represented by red lines) is

anchored at the flame holder (outline with black shaded lines). Dashed vertical black lines

along the flame center indicate the symmetry line. Bold black arrows depict the mean flow

of fuel and oxidizer. Wavy arrows depict the direction of velocity fluctuation at an instant

(wavy shape of arrow does not represent wavelength). Axial velocity fluctuation u′ is induced

due to pressure oscillation p′, which is strongest at the p′ anti-node.

Figure 2: Example to demonstrate reflection-symmetric (left) and reflection-anti-symmetric

(right) vector field about centre axis y = 0 (dashed lines).
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Figure 3: 2D mapping of the second-order transfer function ψ at input frequencies along ω1

and ω2 axes (denoted by the blue dot). The red dots signify the output frequencies at - (1)

2ω1, (2) 2ω2, (3) ω1 + ω2 and (4) ω1 − ω2.

Figure 4: 2D symmetric flame setup for CFD. Arrows depict v′ forcing at a time instance.
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Figure 5: Frequency spectrum of v′ (blue) and q′ (red) at forcing frequency of 400 Hz at 10%

forcing, i.e., the amplitude of v′ is 10% of the axial mean velocity UMean. Note: The FFT of

q′ has been scaled with a factor of 103.
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Figure 6: q′(t) from CFD with two amplitudes of v′ : 2.5% (solid black line) and 10% (solid

red line) of the axial mean velocity. Amplitudes of normalized q′ (Eq. (13)) at 2.5% and 10%

forcing are 2.76× 10−6 and 4.40× 10−5 respectively. Outputs from the ad-hoc model shown

in dashed lines (green and blue for 2.5% and 10% forcing, respectively) are with same k and

τ for both amplitudes. The values of parameters for this frequency are : k = 3.5× 10−6 and

τ = 8.9× 10−4s.

39



Figure 7: A transverse mode (red, top) with eigenfrequency ω1 is unstable due to the ther-

moacoustic feedback through axial velocity perturbation at injector exit u′inj induced by p′ of

this mode. The flame response to u′inj is governed by a flame model (for example, n − τax
model). A higher order mode (green, bottom) with eigenfrequency ω2 ≈ 2ω1 is stable and

thus, thermoacoustic feedback is not significant for this mode. Frequency-doubled flame re-

sponse to transverse velocity fluctuation v′ of the unstable mode causes forcing of the stable

mode.

Figure 8: PSD of pressure perturbation from the LES of a small-scale rocket thrust chamber

reproduced from ref. [45].

40



x

θ

Figure 9: Schematic of the meridional cross-section of the cylindrical combustion chamber of

a rocket thrust chamber with region of interest shown as the early flame region.
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(a) (b)

(c) (d)

(e)

Figure 10: Local spatial integrated heat release around each flame for (a) 1T mode and (b)

1R mode reproduced from ref. [46]. Spatial distribution of (c) p̂′ from 1T mode, (d) p̂′ from

1R mode, (e) |v̂′| =
√
v̂′r

2
+ v̂′θ

2
from 1T mode according to Eq. (16). Distribution has been

normalized with the respective maximum value for (c)-(e). Arrows in (e) depict direction of

transverse velocity at a time instance. The orientation of 1T mode in (c) and (e) is adjusted

to match the orientation in (a).
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Figure 11: Time evolution of (a) η1 and (b) η2. (c) Frequency spectrum of η1 + η2 showing

a second peak at twice the frequency of the first peak. Red crosses denote the limit cycle

amplitudes of two frequencies calculated analytically from Eq. (22) and (28). Three dashed

lines in (c) denote the frequencies at ω1, 2ω1, and ω2 from left to right.
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Figure 12: The amplitude of second peak with changing (a) β2 (coefficient of flame response

to u′ excitation for the 1R mode), (b) ω2 (the eigenfrequency of the second mode).
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