

INTRODUCTION

- Gravitational waves are 'ripples' in space-time caused by some of the most violent and energetic processes in the Universe.
- K means algorithm is used in this project to investigate the distribution of False alarm rates of Gravitational waves and to classify them.
- Here, false alarm means unwanted events (not GW events) which are detected by GW detectors.
- The data has 3 time scales :2 hour, 1 day, 1 week. It refers that data was collected with the time window of 2 hours, 1 day and 1 week.
- K-means clustering is one of the simplest and popular unsupervised machine learning algorithms.
- The K-means algorithm identifies k number of centroids, and then allocates every data point to the nearest cluster, while keeping the centroids as small as possible.
- The 'means' in the K-means refers to averaging of the data; that is, finding the centroid.

METHODOLOGY

Using O4 PSD, we simulated an O4 run and ran the SPIIR pipeline to produce the FAR dataset.

Implementing K means in our False Alarm rate dataset:

Step-1: We need to choose the number of clusters k Step-2:Select k random points from the dataset as centroids Step-3:Assign all the points to the closest cluster centroid Step-4:Recompute the centroids of newly formed clusters Step 5: Repeat steps 3 and 4

Investigating the efficiency of the SPIIR pipeline in O3 offline Gravitational wave search

¹Indian Institute Of Science Education And Research kolkata

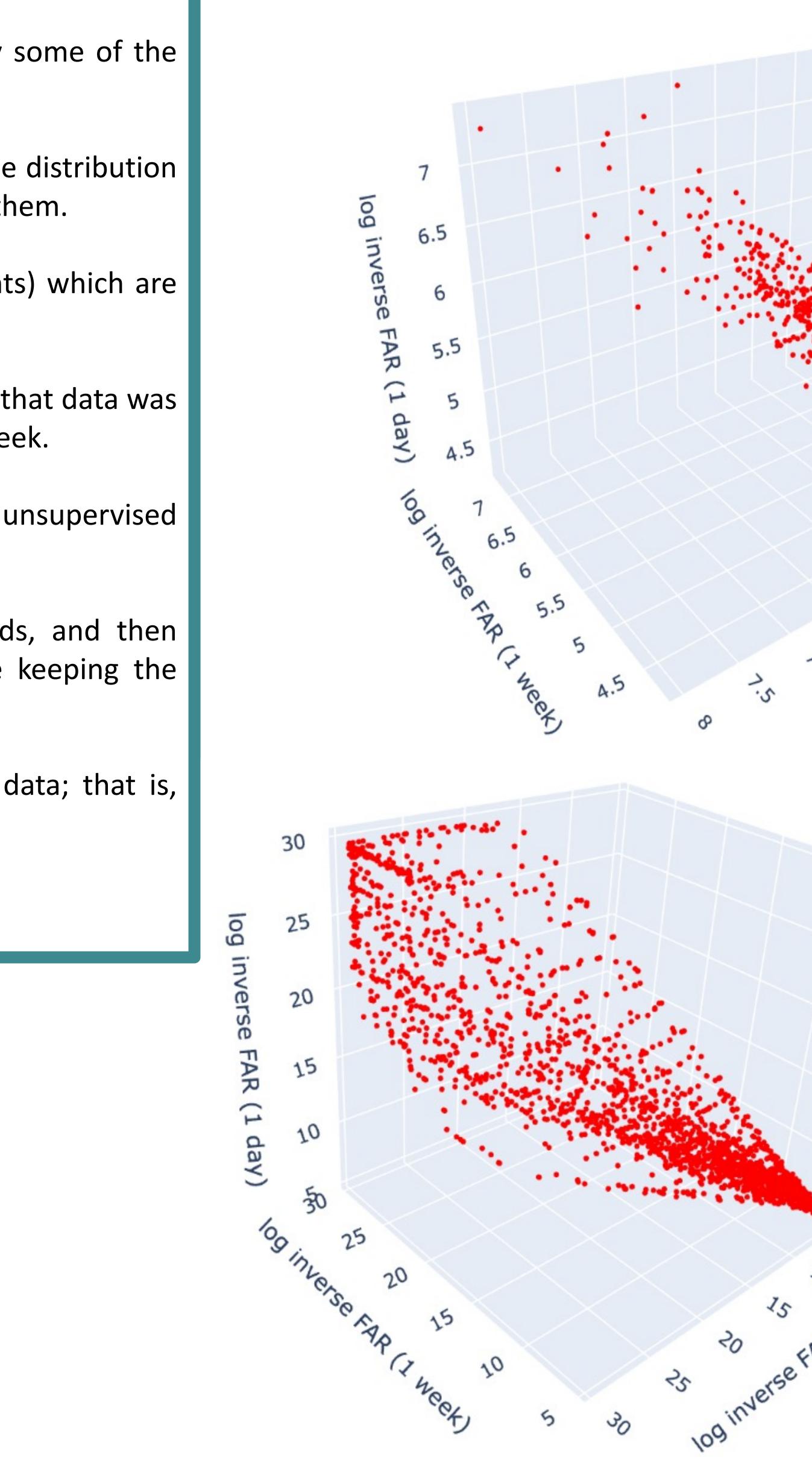


Fig 1:3d plot of background data of inverse far including clusters are given where 1st cluster is shown as Blue , 2nd cluster is shown as Green , and 3rd cluster is shown as Red

Fig 2: 3-d plot of injection data of inverse far including clusters are given where 2nd cluster is shown as Green and 3rd cluster is shown as Red. In both of the plots, the red points are potentially be GW signals, Blue is likely a noise, Green could be ambiguous.

Md Redyan Ahmed ^{1,2}, SPIIR collaboration² THE UNIVERSITY (²The University of Western Australia **WESTERN AUSTRALIA** RESULTS Clusterings of the background data of inverse FARS are given below in this table : 5298 5822 1905310 1906220 Clusterings of the injection data of inverse FARS are given below in this table : Figure-1 **Conclusion and future research** • Most of the time, we miss some important gravitational waves because we think that the event is a false alarm. Classification of false alarms will prevent it. • The future research will be to implement this algorithm in real LIGO noise. Figure-2 ACKNOWLDGEMENTS

	ifar_1d	ifar_2h	ifar_1w	cluster	color
37	4.312791	4.312791	4.312791	0	blue
16	4.489428	4.489428	4.489428	0	blue
89	5.311368	5.311368	5.311368	1	green
03	4.711959	4.711959	4.711959	1	green
20	4.353763	4.353763	4.353763	0	blue
04	4.676020	4.742496	4.674872	0	blue
12	5.199852	5.221358	5.190794	1	green
04	4.656902	4.831009	4.494729	0	blue
04	5.743004	5.765505	5.702971	2	red
04	4.525623	4.658288	4.577817	0	blue

	ifar_1d	ifar_2h	ifar_1w	cluster	color
0	29.429491	29.625818	23.186479	2	red
1	6.626939	6.346666	6.661309	2	red
2	29.410623	29.365795	29.404005	2	red
3	17.137266	20.451085	13.383019	2	red
4	29.345164	29.089653	29.339473	2	red
037	8.015959	11.999055	8.471357	2	red
038	20.141793	29.453066	20.184462	2	red
039	5.965681	5.946524	5.943210	2	red
040	29.429491	29.625818	29.488818	2	red
041	5.743004	6.004442	5.814653	2	red

I would like to thank the University of Western Australia, SPIIR group, IISER Kolkata for their support throughout this project.