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Abstract

INTRODUCTION: Although accurate segmentation of the prostatic subregions is a crucial step for prostate
cancer diagnosis, it remains a challenge.
OBJECTIVES: To propose a deep learning (DL)-based cropping pipeline to improve the performance of DL
networks for segmenting the prostate’s peripheral zone.
METHODS: A U-net network was trained to crop the area around the peripheral zone on MRI in order to
reduce the class imbalance between foreground and background pixels. The DL-cropping was compared with
the standard center-cropping using three segmentation networks.
RESULTS: The DL-cropping improved significantly the segmentation performance in terms of Dice score,
Sensitivity, Hausdorff Distance, and Average Surface Distance, for all three networks. The improvement in
Dice Score was 34%, 13% and 16% for the U-net, Dense U-net and Bridged U-net, respectively.
CONCLUSION: For all the evaluated networks, the proposed DL-cropping technique outperformed the
standard center-cropping.
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1. Introduction

Prostate cancer is one of the most malignant tumors
and the second cause of cancer-related death in
males. Nevertheless, early detection and staging of
the disease is associated with nearly 100% 5-year
survival rate [1]. One of the critical steps for accurate
prostate cancer diagnosis and efficient treatment is
the precise delineation of the prostate gland and its
sub-divisions. Today, the T2-weighted (T2w) magnetic
resonance imaging (MRI) is considered the state-of-the-
art imaging modality for prostate segmentation as it
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provides superior resolution and contrast in soft tissues
compared to other imaging techniques [2].

The prostate gland is subdivided into zones, namely
the peripheral zone (PZ), the transitional zone (TZ),
and the central zone (CZ), with tumor properties
differing significantly depending on which zone they
are found [3]. Since most commonly prostatic tumors
are identified in the PZ (70%–80%) [4], it is imperative
to segment this area with high accuracy.

In clinical setting, the contouring of the prostate
and prostatic zones is performed manually. However
this requires a significant amount of time and is
highly dependent on the experience and expertise of
the practitioner. Automating PZ delineation may allow
overcoming the shortcomings of manual annotation.

1

EAI Endorsed Transactions  
on Bioengineering and Bioinformatics Research Article 

EAI Endorsed Transactions on 
   Bioengineering and Bioinformatics 

08 2021 - 04 2022 | Volume 1 | Issue 4 | e3

https://creativecommons.org/licenses/by/4.0/
mailto:<fotiadis@uoi.gr>


Dimitris Zaridis et al.

Nonetheless, the wide range of prostate shape variation
among patients and the heterogeneous pixel represen-
tation surrounding the PZ boundary, renders the auto-
matic PZ segmentation a daunting task [5].

Over the past decade, the advances in Deep Learning,
and particularly in convolutional neural network
(CNN) based concepts, have significantly improved the
performance of automatic prostate segmentation. In the
field of medical imaging in general, a plethora of deep
learning (DL) architectures have been proposed, with
the original U-net [6] being a remarkable achievement
that consists today the backbone of several more
sophisticated models. Despite recent advances in DL-
based segmentation methods, the performance of
existing models for prostate, and particularly for PZ
segmentation, is not considered sufficient to enable
their transfer and deployment in clinical practice.

Novel image preprocessing approaches are com-
monly applied to boost networks’ performance and to
enhance segmentation accuracy. A common but critical
issue that may hamper model’s performance is the
presence of imbalanced data that characterize the image
labels [7]. Specifically in medical imaging, class imbal-
ance refers to the situation were the number of pixels in
the region of interest (ROI) is significantly smaller that
the number of pixels in the background. The presence
of class imbalance in the dataset used for model training
might result to inconsistent segmentation networks. A
workaround to overcome this problem is to crop the
image around the ROI before training the DL network.
To automate this process, conventional center cropping
is commonly used under the premise that the ROI is
located at image center [8]. While this practice is best
suited for large and consistent ROIs, for PZ segmenta-
tion this risks producing faulty segmentation results [9].

In this paper we propose a smart DL-cropping
pipeline that permits cropping around the PZ of
the prostate on T2w MR images with the objective
to improve DL models’ segmentation accuracy. The
efficacy of DL-cropping for improving segmentation
performance was assessed on three state-of-the-art
segmentation networks and was compared to the
conventional center-cropping approach.

2. Materials and Methods
2.1. Dataset
For the purpose of this study, the publicly available
Cancer Imaging Archive (TCIA) PROSTATEx dataset
was used [10]. This includes T2w MRI images of
98 patients along with their annotations, manually
delineated by experts. The main MRI vendors was
Siemens (MAGNETON Trio and Skyra models) with a
magnetic field 3 Tesla. In total, the number of annotated
2D frames on the PZ is 1319, the slice thickness was
3.6mm and the number of slices ranged from 15-22.

The frames were 384X384 pixels in size before being
resized to 256X256 to match the models’ specifications.
To increase model variability and generalizability,
data augmentation was used to apply a set of affine
transformations to the original image, including (i)
image rotation in varying predetermined degrees (-
20, -10, -5, 5, 10, 20), and (ii) image shifting in any
direction by a factor of 0.5.

2.2. DL cropping pipeline
In this paper, we suggest a deep learning cropping
strategy for reducing the pixels’ class imbalance
between the PZ of the prostate and the background
pixels in the frame. This can be considered as a pre-
processing step for PZ segmentation where a bounding
box enclosing the ROI is created on each frame. The ROI
box is then extended by 40 pixels either horizontally
as well as vertically from the original mask, and the
training frames are clipped around the bounding box
region [12]. A U-net network [6] was trained to trim
the region surrounding the PZ in the testing dataset
for this purpose, resulting in a more equal mixture
of foreground and background pixels. Fig. 1 shows
the pipeline that was used to define the bounding
box. A sample from the center-cropped images and
the related annotation are presented in steps (i) &
(ii). These frames are sent into the U-net model (step
(iii)), which was previously trained to detect the region
surrounding the PZ using the larger bounding boxes.
The predictions are taken from the initial frames in
step (iv), approximately defining the region of interest.
Furthermore, the bounding boxes are constructed in
step (v) utilizing the amorphous masks’ minimum and
maximum coordinates on the x and y axes from step
(iv). The original annotations are always included in
the final cropped image thanks to this approach. In
step (vi), the frames are resampled to 256X256 pixels
in order for the input frames to meet the network’s
criteria. Finally, the cropped frames and annotations are
displayed in steps (vii) and (viii), and the data resulted
from the previous stages may be utilized to train the
networks.

2.3. Deep Learning segmentation networks
For the comparison of the DL-cropping technique to the
traditional center-cropping method, the original ver-
sions of three state-of-the-art segmentation networks
were used. The first is the U-net model [6], which
employs an encoder-decoder layer combination, with
the layers coupled in serial and parallel to increase
the network’s capacity to learn spatial features. Fur-
thermore, Dense U-net [13] is an encoder-decoder net-
work in which dense blocks [14] are used to propa-
gate information from previous layers forward, while
transitional blocks flatten the feature maps and keep
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Figure 1. Cropping pipeline based on DL approach.

the most important features, lowering the network’s
computational cost. The third network, Bridged U-net
[11], is comprised of two inter-connected U-nets, with

cross linkages across levels from the first U-net to the
second, enabling the models to interact and collaborate
further on feature extraction.

2.4. Network training
Two pipelines were used to train and test the network
designs. The networks were trained using the frames
after conventional center-cropping in the first(Fig.1,
steps i, ii) while the suggested DL cropping technique
was utilized to crop the frames into variable size slices
ranging from 90 to 140 pixels for the second pipeline,
and the generated images (Fig.1, steps vi, vii) were used
to train the networks.

Regarding the training parameters in the DL models,
the cost functions employed were the training accuracy
and binary cross-entropy loss. The optimization method
used was the Adam algorithm [16] instead of the
Stochastic gradient descent [17] since it has been
shown that the former converges faster. For all
architectures, the model was trained for 120 epochs.
To decrease calculation time, a checkpoint technique
and early stopping were utilized, as well as tensorflow’s
tensorboard for monitoring the training and validation
process.

Training was performed in 5-fold cross validation
pipeline to properly evaluate the generalizability of
the models. The partition of the images within each
fold was done patient-wised to ensure unbiased model
training by preserving the intra-individual size and
shape variations of prostate’s PZ. For all models and
both DL-crop and center-crop techniques, the patients
were segregated in the folds in identical way. A total of
78 patients were used in each training and validation
set, with the remaining 20 patients being used for
testing. In terms of frames’ distribution (2D slices), each
training fold had 891 slices prior data augmentation
and 1692 slices post data augmentation, with an image
size of 256x256 pixels. There were roughly 152 slices in
each validation set and 276 slices in each testing fold.

2.5. Performance evaluation
Several metrics were used to assess the segmentation
performance, including the Dice Score coefficient, the
Balanced Accuracy, the Hausdorff distance, the Average
Surface Distance, the Rand Error index, the Sensitivity
and the Specificity [18]. The performance of the trained
models was calculated by averaging the 5-fold cross
validation results over the test-sets. The non-parametric
Wilcoxon matched-pairs signed rank test was used to
compare the center-crop and DL-crop for each metric
and architecture.

3. Results
The performance of the three segmentation algorithms
was evaluated for both the proposed DL-cropping and
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the standard center-cropping using seven performance
metrics. The average values and standard deviation are
shown in Table 1. Comparing the scores in Table 1,
the DL-cropping resulted to better performance for all
the metrics, except specificity. Besides, the proposed
pipeline has the lowest standard deviation values for all
the metrics, except specificity. It is worth mentioning
that the increased specificity achieved with center-
cropping is directly associated with the higher class
imbalance in the resulting images in favor of the
background pixels leading to a considerably larger
number of true negative predictions.

Overall, the proposed pipeline outperformed the
center-cropping method with significant improvements
for all architectures (p<0.001) in terms of Dice score,
Sensitivity, Hausdorff Distance and Average Surface
Distance.The improvement in mean Dice Score was
34%, 13% and 16% for the U-net, Dense U-net and
Bridged U-net, respectively. Regarding the Hausdorff
Distance, there was an improvement of 53%, 76%
and 39% for U-net, Dense U-net and Bridged U-net,
respectively. The corresponding boxplots of of the seven
metrics for the three segmentation networks using
center-cropping and DL-cropping are shown in Fig. 2.

In Fig. 3 an indicative example of the segmentation
performance for the three DL networks after DL-
cropping and center-cropping is provided. The blue
contours originate from the original PZ mask, while the
predicted mask is depicted with orange. The qualitative
assessment through visual inspection of the segmented
regions using the three networks, also confirmed that
image preprocessing with DL cropping instead of center
cropping, improved the performance of the algorithms.

Metric Cropping technique
Segmentation Networks

Bridged Unet Dense Unet Unet

Dice Score center-crop 0.51±0.31 0.53±0.28 0.41±0.28
DL-crop 0.60±0.25 0.61±0.26 0.58±0.25

p-value <0.001 <0.001 <0.001

Balanced accuracy center-crop 0.78±0.17 0.80±0.16 0.71±0.16
DL-crop 0.81±0.14 0.83±0.14 0.80±0.13

p-value <0.405 0.012 0.001

Sensitivity center-crop 0.61±0.32 0.56±0.34 0.43±0.32
DL-crop 0.64±0.28 0.68±0.27 0.64±0.27

p-value <0.001 0.001 <0.001

Specificity center-crop 0.99±0.006 0.99±0.004 0.99±0.004
DL-crop 0.97±0.02 0.98±0.02 0.97±0.02

p-value 1 1 1

Rand error index center-crop 0.27±0.26 0.30±0.29 0.34±0.30
DL-crop 0.22±0.17 0.22±0.19 0.24±0.18

p-value <0.001 0.15 <0.001

Hausdorff Distance (mm) center-crop 9.39±7.57 14.35±13.45 11.60±7.97
DL-crop 6.45±5.15 6.35±4.40 6.75±4.78

p-value <0.001 <0.001 <0.001

Average surface distance (mm) center-crop 2.72±3.45 3.89±5.60 3.51±3.52
DL-crop 1.80±1.84 1.79±2.34 1.98±2.03

p-value <0.001 <0.001 <0.001

Table 1. For three DL models, Performance of
segmentation using center-crop and DL-crop

4. Discussion

The current study presents a novel preprocessing
technique for increasing the efficiency and effectiveness
of established PZ segmentation DL architectures on
T2w MR images. To address the problem of class
imbalance between background and foreground pixels
in the image, a DL-based framework for image cropping
is presented. As it was shown, the suggested DL
cropping approach outperformed the traditional center
cropping for all of the prostate segmentation networks
considered in this work.

The prostate gland, particularly the PZ, consist just a
small component of the typical pelvic MRI. At the same
time, it is well-documented that when machine- and
deep-learning algorithms are trained on unbalanced
data, may suffer from restricted prediction accuracy
[19]. In the case of imbalanced representation between
two classes in the training image (i.e. foreground and
background pixels), then the most frequently occurring
class will be favored during training. A potential
solution is to tackle this issue during model training
by opting for a loss functions able to compensate for
the presence of class imbalance. With the weighted
cross-entropy loss, for example, class weights inversely
related to the incidence of each class are assigned,
thereby penalizing the most frequently occurring
class. Nonetheless, the choose of the most efficient
weighting function is cumbersome and application-
specific [20]. In [21], the authors compared the effects
on PZ segmentation of some of the most popular loss
functions.

Some authors have leveraged object detection
approaches to improve segmentation performance in
various medical imaging applications. Jaeger et al.
[22], proposed the Retina Unet, which combines the
RetinaNet’s one-stage detector with the standard U-Net
architecture. Training both segmentation and detection
tasks simultaneously was able to improve detection
rate, compared to U-net-like models. Based on the 3D
Retina Unet, recently, a fully automatic DL-based model
was proposed to perform at the same time prostate
cancer detection, segmentation and Gleason Grade
estimation, achieving a state-of-the-art performance
level [23]. Nevertheless, the original U-Net architecture
has 30 million parameters and the Resnet model,
which is the backbone of RetinaNet, has 25 million
parameters. Conversely, our proposed smart-crop
U-Net, with only 1.94 million parameters, maintains
the same performance to crop efficiently the area of
interest. Apart from two-stage detectors, some works
have also implemented one-stage detectors to directly
localize ROIs without requiring candidate regions to be
proposed [24]. These detectors have shown to be more
flexible, straightforward, and computationally efficient.
Additionally, novel object detection approaches, such
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Figure 2. Boxplots of the PZ segmentation performance for center-cropping and DL-cropping using three networks.
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Figure 3. PZ outlines for three segmentation networks
using center-cropping (left) and DL-cropping (right)
approaches.

as the CaraNet [25], are particularly attractive for the
segmentation of small objects in medical images with
some recent works, demonstrating promising results.
In future studies, it would be of particular interest
to compare emerging object detection methods with
the proposed DL-based smart cropping for addressing
challenging task of prostate cancer segmentation.

The present work has some limitations. First, we have
not been able to reach the performance scores reported
in the literature for the different DL segmentation
networks, possibly due to the lower number of patients
included in our study. For instance, using a training
sample of 141 patients for PZ segmentation, the U-
net and Dense U-net models have achieved 75% and
78% Dice scores, respectively [21]. Herein, models’
performance was maximum 61% but model training
was performed on a dataset of 78 patients. These
differences in model performance can also be attributed
to the fact than in [21], the authors have only estimated
segmentation performance on the mid-gland region
of the prostate where segmentation models tend to
perform better than the apex, since the later may

present important shape and size variations. Despite
all, additional evidence is required to prove that
the suggested approach is superior to conventional
methods like center-cropping.

5. Conclusion
A preprocessing technique is proposed to effectively
overcome the class imbalance problem in prostate MRI
segmentation tasks. The improvement in PZ segmenta-
tion performance of DL networks was significant when
the proposed method was employed in comparison with
the conventional center-cropping method. In the future,
the generalizability of the proposed pipeline needs to
be demonstrated on independent populations through
external validation including images acquired by dif-
ferent MRI vendors, field properties and acquisition
protocols.
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