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An Inconsistency 
 

 Ralf Wüsthofen 
 

 
 
 
 
 
Abstract. This paper proves an inconsistency in ZFC. We show that under two 
assumptions – a strengthened form of the strong Goldbach conjecture and its negation – a 
specific set is equal on the one hand and different on the other. 
 
 
Notations. Let  denote the natural numbers starting from 1, let n denote the natural 
numbers starting from n > 1 and let 3 denote the prime numbers starting from 3. 

Furthermore, we denote the exclusive OR by ”v”. 

Strengthened strong Goldbach conjecture (SSGB): Every even integer greater than 6 can 
be expressed as the sum of two different primes. 
 
 
Theorem.  ZFC is contradictory, i.e. the statement FALSE can be derived. 
 
Proof. We define the set Sg := { (pk, mk, qk) | k, m  ; p, q  3, p < q; m = (p + q) / 2 }. 
 
SSGB is equivalent to saying that every integer x ≥ 4 is the arithmetic mean of two different 
odd primes and so it is equivalent to saying that all integers x ≥ 4 appear as m in a middle 
component mk of Sg. So, by the definitions we have 
 
  SSGB  <=>   x  4   Ǝ (pk, mk, qk)  Sg     x = m. 

SSGB  <=>  Ǝ x  4    (pk, mk, qk)  Sg     x ≠ m. 
 
 
The set Sg has the following two properties. 
 
First, the whole range of 3 can be expressed by the triple components of Sg (”covering”), 
because every integer x ≥ 3 can be written as some pk with k = 1 when x is prime, as some 
pk with k ≠ 1 when x is composite and not a power of 2, or as  (3 + 5)k / 2  when x is a 
power of 2; p  3, k  . So we have 
 
(C)   x  3   Ǝ (pk, mk, qk)  Sg     x = pk      x = mk = 4k. 
 
 
Second, due to the definition of the set Sg, all pairs (p, q) of distinct odd primes are used 
(“maximality”). So we have 

(M)   p, q  3, p < q    k       (pk, mk, qk)  Sg, where m = (p + q) / 2. 
 

http://en.wikipedia.org/wiki/Even_and_odd_numbers
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Prime_number
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There are two possibilities for Sg, exactly one of which must occur: Either there is an           
n  4  in addition to all the numbers m defined in Sg or there is not. The latter is equivalent 
to SSGB and the former is equivalent to SSGB. 
 
 
The following proof is independent of the choice of n if there is more than one. For example, 
the minimal such n works. The basic idea is this: 
 
Since, due to (C), every n given by SSGB as well as every multiple nk, k  , equals a 
component of some Sg triple that exists by definition, Sg in the case n exists ( SSGB) is 
equal to Sg in the case n does not exist (SSGB). This leads to a contradiction because in 
the case SSGB the numbers m defined in Sg take all integer values x ≥ 4 whereas in the 
case SSGB they don’t. 
 
 
 
The above properties (C) and (M) rule out the two possibilities that an n different from all m 
exists because n is different from all Sg triple components pk, mk, qk  or because n is the 
arithmetic mean of a pair of primes not used in Sg. That is, we have the logical structure     
((C)    (M))  =>  (F),  where (F) is the statement FALSE which we will now derive. 
 
 
We split Sg into two complementary subsets: For any y  3, Sg = Sg+(y) ∪ Sg-(y), where 

Sg+(y) := { (pk, mk, qk)  Sg | Ǝ k'     pk = yk'    mk = yk'    qk = yk' }  and  

Sg-(y) := { (pk, mk, qk)  Sg |  k'     pk ≠ yk'    mk ≠ yk'    qk ≠ yk' }. 
 
 
 
Let  n  4  be given by SSGB as above. Then, we have 

 
(*)  SSGB  =>  Sg = Sg+(n) ∪ Sg-(n). 

 
More precisely, under the assumption SSGB with the associated n the set Sg can be 
written as the disjoint union of the following triples. 

(i) Sg triples of the form (pk = nk', mk, qk) with k = k' in case n is prime, due to (C) 

(ii) Sg triples of the form (pk = nk', mk, qk) with k ≠ k' in case n is composite and not a 
power of 2, due to (C) 

(iii) Sg triples of the form (3k, 4k = nk', 5k) in case n is a power of 2, due to (C) 

(iv) all remaining Sg triples of the form (pk = nk', mk, qk), (pk, mk = nk', qk) or                  
(pk, mk, qk = nk') 

and 

(v) Sg triples of the form (pk ≠ nk', mk ≠ nk', qk ≠ nk'), i.e. those Sg triples where none of the 
nk' equals a component. 
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So, Sg+(n) is the union of the triples of the above types (i) to (iv) and Sg-(n) is the union of 
the triples of type (v). 

 
 
Now, we define 

S1 := { (pk, mk, qk)  Sg | SSGB holds } 

S2 := { (pk, mk, qk)  Sg |   SSGB holds }. 
 
 
Since Sg is non-empty, we have 
 
(1)  SSGB  <=>  Sg = S1 
 
(2)     SSGB  <=>  Sg = S2. 
 
 
 
So, by (*) and (1) we obtain 

(3)  SSGB  =>  S1 = Sg = Sg+(n) ∪ Sg-(n). 
 
 
Since  Sg+(n) ∪ Sg-(n)  is independent of n, we can write 
 
(3')   y  3     SSGB  =>  S1 = Sg = Sg+(y) ∪ Sg-(y). 
 
 

Under the assumption SSGB there is no n as above. Therefore, under this assumption, we 

can choose an arbitrary  y  3  such that  Sg = Sg+(y) ∪ Sg-(y). So, using (2), we obtain 

(4)   y  3     SSGB  =>  S2 = Sg = Sg+(y) ∪ Sg-(y). 

 

 

So, by (3') and (4) we have 

 

(5)   y  3 
 
       ( ( SSGB  =>  S1 = Sg = Sg+(y) ∪ Sg-(y)) 

          

       (     SSGB  =>  S2 = Sg = Sg+(y) ∪ Sg-(y)) ). 
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We will make use of the following trivial principle. 

If two sets of (possibly infinitely many) x-tuples are equal, then the sets of their 
corresponding i-th components are equal; 1 ≤ i ≤ x. 

 

To this end, for each k ≥ 1 we define 

M(k)  := { mk | (pk, mk, qk)  Sg } 

M1(k) := { mk | (pk, mk, qk)  S1 } 

M2(k) := { mk | (pk, mk, qk)  S2 }. 
 
 
 
Then, applying the principle above to the middle component of the triples (pk, mk, qk),      
(5) implies 
 
 

 k     y  3 
 
( ( SSGB  =>  M1(k) = M(k) = { mk | (pk, mk, qk)   Sg+(y) ∪ Sg-(y) }) 

 

(     SSGB  =>  M2(k) = M(k) = { mk | (pk, mk, qk)   Sg+(y) ∪ Sg-(y) }) ). 
 
 
 
Since by definition Sg+(y) ∪ Sg-(y) equals Sg for every y  3 regardless of whether or not 
SSGB holds and since for every k   and every y  3 
 
{ mk | (pk, mk, qk)   Sg+(y) ∪ Sg-(y) }  =  k 4 

v 

{ mk | (pk, mk, qk)   Sg+(y) ∪ Sg-(y) }  ≠  k 4, 

 

we obtain 

 

 k    ( SSGB  =>  M1(k) = M(k) = k 4          SSGB  =>  M2(k) = M(k) = k 4) 

v 

 k    ( SSGB  =>  M1(k) = M(k) ≠ k 4          SSGB  =>  M2(k) = M(k) ≠ k 4). 
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For k = 1 we set M := M(1), M1 := M1(1) and M2 := M2(1), and we obtain 

 

( SSGB  =>  M1 = M = 4          SSGB  =>  M2 = M = 4) 

v 

( SSGB  =>  M1 = M ≠ 4          SSGB  =>  M2 = M ≠ 4). 

 

 

Since M is non-empty, we have 
 
(1')  SSGB  <=>  M = M1 
 
(2')     SSGB  <=>  M = M2. 

 

Since under the assumption SSGB the numbers m defined in Sg take all integer values       
x ≥ 4 whereas under SSGB they don’t, we have 

(6)  SSGB  <=>  M = 4. 

 

Because of  SSGB => M1 = { }  and  SSGB => M2 = { }  and because M is non-empty in 
any case, the implications above are in fact equivalences. Then, using (1'), (2') and (6), we 
obtain 

 

(M1 = M ≠ 4  <=>  M1 = M = 4          M2 = M = 4  <=>  M2 = M = 4) 

v 

(M1 = M ≠ 4  <=>  M1 = M ≠ 4          M2 = M = 4  <=>  M2 = M ≠ 4). 

 

 

So, we get 

 

(FALSE        TRUE) 

v 

(TRUE          FALSE). 
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This yields  FALSE  v  FALSE, which is equivalent to FALSE. 

                                                                                                                          □ 


