An Inconsistency

Ralf Wüsthofen

Abstract. This paper proves an inconsistency in ZFC. We show that under two assumptions – a strengthened form of the strong Goldbach conjecture and its negation – a specific set is equal on the one hand and different on the other.

Notations. Let \mathbb{N} denote the natural numbers starting from 1, let \mathbb{N}_n denote the natural numbers starting from n > 1 and let \mathbb{P}_3 denote the prime numbers starting from 3. Furthermore, we denote the exclusive OR by "<u>V</u>".

Strengthened strong Goldbach conjecture (SSGB): Every even integer greater than 6 can be expressed as the sum of two different primes.

Theorem. ZFC is contradictory, i.e. the statement FALSE can be derived.

Proof. We define the set $S_g := \{ (pk, mk, qk) \mid k, m \in \mathbb{N}; p, q \in \mathbb{P}_3, p < q; m = (p + q) / 2 \}.$

SSGB is equivalent to saying that every integer $x \ge 4$ is the arithmetic mean of two different odd primes and so it is equivalent to saying that all integers $x \ge 4$ appear as m in a middle component mk of S_g. So, by the definitions we have

SSGB <=> $\forall x \in \mathbb{N}_4 \exists (pk, mk, qk) \in S_g \quad x = m.$ ¬SSGB <=> $\exists x \in \mathbb{N}_4 \forall (pk, mk, qk) \in S_g \quad x \neq m.$

The set S_g has the following two properties.

First, the whole range of \mathbb{N}_3 can be expressed by the triple components of S_9 ("covering"), because every integer $x \ge 3$ can be written as some pk with k = 1 when x is prime, as some pk with $k \ne 1$ when x is composite and not a power of 2, or as (3 + 5)k / 2 when x is a power of 2; $p \in \mathbb{P}_3$, $k \in \mathbb{N}$. So we have

(C) $\forall x \in \mathbb{N}_3 \exists (pk, mk, qk) \in S_g \quad x = pk \lor x = mk = 4k.$

Second, due to the definition of the set S_9 , all pairs (p, q) of distinct odd primes are used ("*maximality*"). So we have

(M) $\forall p, q \in \mathbb{P}_3, p < q \quad \forall k \in \mathbb{N}$ (pk, mk, qk) $\in S_g$, where m = (p + q) / 2.

There are two possibilities for S_g , exactly one of which must occur: Either there is an $n \in \mathbb{N}_4$ in addition to all the numbers m defined in S_g or there is not. The latter is equivalent to SSGB and the former is equivalent to \neg SSGB.

The following proof is independent of the choice of n if there is more than one. For example, the minimal such n works. The basic idea is this:

Since, due to (C), every n given by \neg SSGB as well as every multiple nk, $k \in \mathbb{N}$, equals a component of some S_g triple that exists by definition, S_g in the case n exists (\neg SSGB) is equal to S_g in the case n does not exist (SSGB). This leads to a contradiction because in the case SSGB the numbers m defined in S_g take all integer values $x \ge 4$ whereas in the case \neg SSGB they don't.

The above properties (C) and (M) rule out the two possibilities that an n different from all m exists because n is different from all S_g triple components pk, mk, qk or because n is the arithmetic mean of a pair of primes not used in S_g. That is, we have the logical structure $((C) \land (M)) \Rightarrow (F)$, where (F) is the statement FALSE which we will now derive.

We split S_g into two complementary subsets: For any $y \in \mathbb{N}_3$, S_g = S_g+(y) \cup S_g-(y), where

$$S_g+(y) := \{ (pk, mk, qk) \in S_g \mid \exists k' \in \mathbb{N} | pk = yk' \lor mk = yk' \lor qk = yk' \} and$$

 $S_g-(y) := \{ (pk, mk, qk) \in S_g \mid \forall k' \in \mathbb{N} \ pk \neq yk' \land mk \neq yk' \land qk \neq yk' \}.$

Let $n \in \mathbb{N}_4$ be given by \neg SSGB as above. Then, we have

(*) \neg SSGB => S_g = S_g+(n) \cup S_g-(n).

More precisely, under the assumption \neg SSGB with the associated n the set S_g can be written as the disjoint union of the following triples.

(i) S₉ triples of the form (pk = nk', mk, qk) with k = k' in case n is prime, due to (C)

(ii) S_g triples of the form (pk = nk', mk, qk) with $k \neq k'$ in case n is composite and not a power of 2, due to (C)

(iii) S_g triples of the form (3k, 4k = nk', 5k) in case n is a power of 2, due to (C)

(iv) all remaining S_g triples of the form (pk = nk', mk, qk), (pk, mk = nk', qk) or (pk, mk, qk = nk')

and

(v) S_g triples of the form (pk \neq nk', mk \neq nk', qk \neq nk'), i.e. those S_g triples where none of the nk' equals a component.

So, $S_g+(n)$ is the union of the triples of the above types (i) to (iv) and $S_g-(n)$ is the union of the triples of type (v).

Now, we define

 $S_1 := \{ (pk, mk, qk) \in S_g \mid \neg SSGB \text{ holds } \}$

 $S_2 \mathrel{\mathop:}= \{ \ (pk, \, mk, \, qk) \in S_g \, | \quad SSGB \ holds \ \}.$

Since S_g is non-empty, we have

- (1) \neg SSGB <=> Sg = S1
- (2) SSGB $\leq S_g = S_2$.

So, by (*) and (1) we obtain

(3) \neg SSGB => S₁ = S_g = S_g+(n) \cup S_g-(n).

Since $S_g+(n) \cup S_g-(n)$ is independent of n, we can write

(3') $\forall y \in \mathbb{N}_3 \quad \neg SSGB \Rightarrow S_1 = S_g = S_g + (y) \cup S_g - (y).$

Under the assumption SSGB there is no n as above. Therefore, under this assumption, we can choose an arbitrary $y \in \mathbb{N}_3$ such that $S_g = S_g+(y) \cup S_g-(y)$. So, using (2), we obtain

(4)
$$\forall y \in \mathbb{N}_3$$
 SSGB => S₂ = S_g = S_g+(y) \cup S_g-(y).

So, by (3') and (4) we have

(5) $\forall y \in \mathbb{N}_3$

 \wedge

$$((\neg SSGB \implies S_1 = S_g = S_g + (y) \cup S_g - (y))$$

(SSGB => $S_2 = S_g = S_g + (y) \cup S_g - (y)$).

We will make use of the following trivial principle.

If two sets of (possibly infinitely many) x-tuples are equal, then the sets of their corresponding i-th components are equal; $1 \le i \le x$.

To this end, for each $k \ge 1$ we define

$$\begin{split} \mathsf{M}(k) &:= \{ \mbox{ mk } | \mbox{ (pk, mk, qk)} \in \mathsf{S}_9 \ \} \\ \mathsf{M}_1(k) &:= \{ \mbox{ mk } | \mbox{ (pk, mk, qk)} \in \mathsf{S}_1 \ \} \\ \mathsf{M}_2(k) &:= \{ \mbox{ mk } | \mbox{ (pk, mk, qk)} \in \mathsf{S}_2 \ \}. \end{split}$$

Then, applying the principle above to the middle component of the triples (pk, mk, qk), (5) implies

 $\label{eq:second} \begin{array}{l} \forall \ k \in \mathbb{N} \ \ \forall \ y \in \mathbb{N}_3 \\ ((\neg SSGB \implies M_1(k) = M(k) = \{ \ mk \mid (pk, \ mk, \ qk) \in \ S_g + (y) \cup S_g - (y) \}) \\ \land \end{array}$

 $(\quad \ \ SSGB \ \ => \ \ M_2(k) = M(k) = \{ \ mk \mid (pk, \ mk, \ qk) \in \ \ S_g+(y) \cup S_g-(y) \ \}) \).$

Since by definition $S_g+(y) \cup S_g-(y)$ equals S_g for every $y \in \mathbb{N}_3$ regardless of whether or not SSGB holds and since for every $k \in \mathbb{N}$ and every $y \in \mathbb{N}_3$

 $\{ mk \mid (pk, mk, qk) \in S_g+(y) \cup S_g-(y) \} = k\mathbb{N}_4$

V

 $\{ mk \mid (pk, mk, qk) \in S_g+(y) \cup S_g-(y) \} \neq k\mathbb{N}_4,$

we obtain

$$\forall k \in \mathbb{N} (\neg SSGB \implies M_1(k) = M(k) = k\mathbb{N}_4 \land SSGB \implies M_2(k) = M(k) = k\mathbb{N}_4)$$

V

 $\forall \ k \in \mathbb{N} \ (\neg SSGB \implies M_1(k) = M(k) \neq k \mathbb{N}_4 \quad \land \quad SSGB \implies M_2(k) = M(k) \neq k \mathbb{N}_4).$

For k = 1 we set M := M(1), M₁ := M₁(1) and M₂ := M₂(1), and we obtain

 $(\neg SSGB \Rightarrow M_1 = M = N_4 \land SSGB \Rightarrow M_2 = M = N_4)$

V

 $(\neg SSGB \Rightarrow M_1 = M \neq \mathbb{N}_4 \land SSGB \Rightarrow M_2 = M \neq \mathbb{N}_4).$

Since M is non-empty, we have

(1') ¬SSGB <=> M = M₁

(2') SSGB $\leq M = M_2$.

Since under the assumption SSGB the numbers m defined in S_g take all integer values $x \ge 4$ whereas under \neg SSGB they don't, we have

(6) SSGB <=> $M = \mathbb{N}_4$.

Because of SSGB => $M_1 = \{ \}$ and \neg SSGB => $M_2 = \{ \}$ and because M is non-empty in any case, the implications above are in fact equivalences. Then, using (1'), (2') and (6), we obtain

 $(M_1 = M \neq \mathbb{N}_4 \iff M_1 = M = \mathbb{N}_4 \land M_2 = M = \mathbb{N}_4 \iff M_2 = M = \mathbb{N}_4)$

V

 $(\mathsf{M}_1=\mathsf{M}\neq\mathbb{N}_4 \iff \mathsf{M}_1=\mathsf{M}\neq\mathbb{N}_4 \land \mathsf{M}_2=\mathsf{M}=\mathbb{N}_4 \iff \mathsf{M}_2=\mathsf{M}\neq\mathbb{N}_4).$

So, we get

(FALSE \land TRUE)

V

(TRUE \wedge FALSE).

This yields FALSE \underline{v} FALSE, which is equivalent to FALSE.