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Abstract. This paper proves an inconsistency in ZFC. We show that under two
assumptions — a strengthened form of the strong Goldbach conjecture and its negation — a
specific set is equal on the one hand and different on the other.

Notations. Let ! denote the natural numbers starting from 1, let I/n denote the natural
numbers starting from n > 1 and let ’s denote the prime numbers starting from 3.

Furthermore, we denote the exclusive OR by "V”.

Strengthened strong Goldbach conjecture (SSGB): Every even integer greater than 6 can
be expressed as the sum of two different primes.

Theorem. ZFC is contradictory, i.e. the statement FALSE can be derived.
Proof. We define the set Sg := { (pk, mk, gk) |k, me [:p,qe Ps,p<q;m=(p+q)/2}.

SSGB is equivalent to saying that every integer x = 4 is the arithmetic mean of two different
odd primes and so it is equivalent to saying that all integers x = 4 appear as m in a middle
component mk of Sg. So, by the definitions we have

SSGB <=> ¥ xe s 3 (pk,mk,gk)€Sg x=m.
—SSGB <=> Ixe s ¥ (pk, mk,gk)€Sg x#m.

The set Sg has the following two properties.

First, the whole range of {3 can be expressed by the triple components of Sg ("covering”),
because every integer x 2 3 can be written as some pk with k = 1 when x is prime, as some
pk with k # 1 when x is composite and not a power of 2, oras (3 + 5)k /2 when x is a
power of 2; p € Ps, k € I'{. So we have

(C) Vxelds I (pk, mk,gk)€Sg x=pk Vv x=mk=4k

Second, due to the definition of the set Sg, all pairs (p, q) of distinct odd primes are used
(“maximality”). So we have

M) ¥p,gelPs,p<q Ykeld (pk, mk, gk) € Sg, wherem = (p +q)/ 2.
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There are two possibilities for Sg, exactly one of which must occur: Either there is an
n € I4 in addition to all the numbers m defined in Sg or there is not. The latter is equivalent
to SSGB and the former is equivalent to ~SSGB.

The following proof is independent of the choice of n if there is more than one. For example,
the minimal such n works. The basic idea is this:

Since, due to (C), every n given by —-SSGB as well as every multiple nk, k € [{{, equals a
component of some Sg triple that exists by definition, Sg in the case n exists (-SSGB) is
equal to Sg in the case n does not exist (SSGB). This leads to a contradiction because in
the case SSGB the numbers m defined in Sg take all integer values x = 4 whereas in the
case ~SSGB they don't.

The above properties (C) and (M) rule out the two possibilities that an n different from all m
exists because n is different from all Sg triple components pk, mk, gk or because n is the
arithmetic mean of a pair of primes not used in Sg. That is, we have the logical structure
((C) ~ (M) => (F), where (F) is the statement FALSE which we will now derive.

We split Sg into two complementary subsets: For any y € 3, Sq = Sg+(y) U Sg-(y), where
Sat+(y) :={ (pk, mk, gk) € Sg | A k' e [1 pk=yk' v mk=yk' VvV gk=yk'} and
So-(y) :={ (pk, mk, gk) € Sg | V k' € [l pk#yk' A mk#yk' A gk#yk'}.

Let n € Il4 be given by ~SSGB as above. Then, we have

(*) =SSGB => Sg = Sg+(n) U Sg-(n).

More precisely, under the assumption -SSGB with the associated n the set Sg can be
written as the disjoint union of the following triples.

(i) Sg triples of the form (pk = nk', mk, gk) with k = k" in case n is prime, due to (C)

(if) Sg triples of the form (pk = nk', mk, gk) with k # k' in case n is composite and not a
power of 2, due to (C)

(iii) Sq triples of the form (3k, 4k = nk’, 5k) in case n is a power of 2, due to (C)

(iv) all remaining Sg triples of the form (pk = nk', mk, gk), (pk, mk = nk', gk) or
(pk, mk, gk = nk’)

and

(v) Sg triples of the form (pk # nk', mk # nk’, gk # nk'’), i.e. those Sgq triples where none of the
nk' equals a component.



So, Sg+(n) is the union of the triples of the above types (i) to (iv) and Sg-(n) is the union of
the triples of type (v).

Now, we define
S1 :={ (pk, mk, gk) € Sg | ~SSGB holds }
Sz :={ (pk, mk, gk) € Sg| SSGB holds }.

Since Sg is hon-empty, we have
(1) =SSGB <=> Sg=S1

(2) SSGB <=> Sg=Sa.

So, by (*) and (1) we obtain
(3) =SSGB => S1=Sg = Sg+(n) U Sg-(n).

Since Sg+(n) U Sg-(n) is independent of n, we can write

(3) Vyelds —SSGB => S1=Sg=Sg+(y) U Sg-(y).

Under the assumption SSGB there is no n as above. Therefore, under this assumption, we
can choose an arbitrary y € I3 such that Sg = Sg+(y) U Sg-(y). So, using (2), we obtain

(4) Vyelis SSGB => S2=Sg = Sg+(y) U Se-(y).

So, by (3') and (4) we have

(5) Vyelis
((=SSGB => S1 = Sg = Sg+(y) U Sg-(¥))

A
( SSGB => S2=Sg = Sg+(y) U Sg-(¥)) ).



We will make use of the following trivial principle.

If two sets of (possibly infinitely many) x-tuples are equal, then the sets of their
corresponding i-th components are equal; 1 <i < x.

To this end, for each k 2 1 we define
M(k) :={mk| (pk, mk, gk) € Sg }
Ma(k) := { mk | (pk, mk, gk) € S1}
M2(K) := { mk | (pk, mk, gk) € S2 }.

Then, applying the principle above to the middle component of the triples (pk, mk, gk),
(5) implies
Vikel Vye s

((=SSGB => Mi(k) = M(k) = { mk | (pk, mk, gk) € Sg+(y) U Se-(y) })
A
( SSGB => M2(k) = M(k) = {mk | (pk, mk, gk) € Sg+(y) U Sg-(y) }) ).

Since by definition Sg+(y) U Sg-(y) equals Sg for every y € I3 regardless of whether or not
SSGB holds and since for every k € Il and every y € [

{mk | (pk, mk, gk) € Sg+(y) U Se-(y) } = kIt

Vv

{mk | (pk, mk, gk) € Sg+(y) U Se-(y) } # kI,

we obtain

Vkel (-SSGB => Mi(k) =M(k) =kIfa A SSGB => Ma(k) = M(K) = k4
\

Ykeld (-SSGB => Mi(k) =M(k) #k[¥a A SSGB => Mz(k) = M(k) # klta).



Fork =1 we set M := M(1), M1 := M1(1) and Mz := M2(1), and we obtain

(-SSGB => Mi=M =T[4 A SSGB => Mz2=M = ['ly)

\Y

(-SSGB => Mi=M#[ds A SSGB => M2=M # [%4).

Since M is non-empty, we have
(1) =SSGB <=> M =M1

(2) SSGB <=> M= M.

Since under the assumption SSGB the numbers m defined in Sg take all integer values
X =2 4 whereas under -SSGB they don’t, we have

(6) SSGB <=> M = [,

Because of SSGB => M1 ={} and —SSGB => M2 ={} and because M is non-empty in
any case, the implications above are in fact equivalences. Then, using (1), (2') and (6), we
obtain

Mi=M#£T1 <=> Mi=M=Ts A M2=M=[1 <=> M2=M =Ty)

Vv

Mi=M#T1 <=> Mi=M#I1 A M2=M=[4 <=> M2=M # [Hy).

So, we get

(FALSE A TRUE)

Vv

(TRUE A FALSE).



This yields FALSE V FALSE, which is equivalent to FALSE.



