An Inconsistency

Ralf Wüsthofen

Abstract. This paper proves an inconsistency in ZFC. We show that under two assumptions – a strengthened form of the strong Goldbach conjecture and its negation – a specific set is equal on the one hand and different on the other.

Notations. Let $\mathbb N$ denote the natural numbers starting from 1, let $\mathbb N_n$ denote the natural numbers starting from $n > 1$ and let \mathbb{P}_3 denote the prime numbers starting from 3. Furthermore, we denote the exclusive OR by "v".

Strengthened strong Goldbach conjecture (SSGB): *Every [even](http://en.wikipedia.org/wiki/Even_and_odd_numbers) [integer](http://en.wikipedia.org/wiki/Integer) greater than 6 can be expressed as the sum of two different [primes.](http://en.wikipedia.org/wiki/Prime_number)*

Theorem. *ZFC is contradictory, i.e. the statement FALSE can be derived*.

Proof. We define the set $S_q := \{ (pk, mk, qk) | k, m \in \mathbb{N} : p, q \in \mathbb{P}^3, p < q; m = (p + q) / 2 \}$.

SSGB is equivalent to saying that every integer $x \geq 4$ is the arithmetic mean of two different odd primes and so it is equivalent to saying that all integers $x \geq 4$ appear as m in a middle component mk of Sg. So, by the definitions we have

SSGB \leq \forall $x \in \mathbb{N}_4$ \exists (pk, mk, qk) \in S_g $x = m$. $-SSGB \leq z \leq \exists x \in \mathbb{N}_4 \quad \forall$ (pk, mk, qk) $\in S_q$ $x \neq m$.

The set S_g has the following two properties.

First, the whole range of \mathbb{N}_3 can be expressed by the triple components of S_q ("*covering*"), because every integer $x \ge 3$ can be written as some pk with $k = 1$ when x is prime, as some pk with $k \neq 1$ when x is composite and not a power of 2, or as $(3 + 5)k / 2$ when x is a power of 2; $p \in \mathbb{P}_3$, $k \in \mathbb{N}$. So we have

(C) $\forall x \in \mathbb{N}$ \exists (pk, mk, qk) \in S_g $x = pk$ \lor $x = mk = 4k$.

Second, due to the definition of the set S_g , all pairs (p, q) of distinct odd primes are used ("*maximality*"). So we have

(M) \forall p, $q \in \mathbb{P}_3$, $p < q$ \forall $k \in \mathbb{N}$ (pk, mk, qk) \in S_g, where m = (p + q) / 2.

There are two possibilities for S_g , exactly one of which must occur: Either there is an $n \in \mathbb{N}_4$ in addition to all the numbers m defined in S_g or there is not. The latter is equivalent to SSGB and the former is equivalent to \neg SSGB.

The following proof is independent of the choice of n if there is more than one. For example, the minimal such n works. The basic idea is this:

Since, due to (C), every n given by \neg *SSGB as well as every multiple nk, k* \in N, *equals a component of some S^g triple that exists by definition, S^g in the case n exists (SSGB) is equal to S^g in the case n does not exist (SSGB). This leads to a contradiction because in the case SSGB the numbers m defined in* S_g *take all integer values* $x \ge 4$ *whereas in the* case \neg SSGB they don't.

The above properties (C) and (M) rule out the two possibilities that an n different from all m exists because n is different from all S_q triple components pk, mk, qk or because n is the arithmetic mean of a pair of primes not used in S_g . That is, we have the logical structure $((C) \wedge (M))$ => (F), where (F) is the statement FALSE which we will now derive.

We split S_g into two complementary subsets: For any $y \in \mathbb{N}_3$, S_g = S_g+(y) ∪ S_g-(y), where

 $S_g+(y) := \{ (pk, mk, qk) \in S_g \mid \exists k' \in \mathbb{N} \text{ } pk = yk' \lor mk = yk' \lor qk = yk' \}$ and

 $S_g(y) := \{ (pk, mk, qk) \in S_g \mid \forall k' \in \mathbb{N} \text{ } pk \neq yk' \land mk \neq yk' \land qk \neq yk' \}.$

Let $n \in \mathbb{N}_4$ be given by \neg SSGB as above. Then, we have

(*) \neg SSGB => S_g = S_g +(n) ∪ S_g -(n).

More precisely, under the assumption \neg SSGB with the associated n the set S_g can be written as the disjoint union of the following triples.

(i) S_g triples of the form (pk = nk', mk, gk) with $k = k'$ in case n is prime, due to (C)

(ii) S_g triples of the form (pk = nk', mk, qk) with $k \neq k'$ in case n is composite and not a power of 2, due to (C)

(iii) S_g triples of the form (3k, 4k = nk', 5k) in case n is a power of 2, due to (C)

(iv) all remaining S^g triples of the form (pk = nk', mk, qk), (pk, mk = nk', qk) or $(pk, mk, qk = nk')$

and

(v) S_g triples of the form (pk \neq nk', mk \neq nk', qk \neq nk'), i.e. those S_g triples where none of the nk' equals a component.

So, $S_g+(n)$ is the union of the triples of the above types (i) to (iv) and $S_g-(n)$ is the union of the triples of type (v).

Now, we define

 $S_1 := \{ (pk, mk, qk) \in S_g \mid \neg SSGB holds \}$

 $S_2 := \{ (pk, mk, qk) \in S_g \mid SSGB holds \}.$

Since S_g is non-empty, we have

- **(1)** \neg SSGB <=> S_g = S₁
- **(2)** SSGB \leq \geq S_g = S₂.

So, by (*) and (1) we obtain

(3) \neg SSGB => S₁ = S_g = S_g+(n) ∪ S_g-(n).

Since $S_g+(n) \cup S_g-(n)$ is independent of n, we can write

(3') $\forall y \in \mathbb{N}$ ₃ \neg SSGB => S₁ = S_g = S_g+(y) ∪ S_g-(y).

Under the assumption SSGB there is no n as above. Therefore, under this assumption, we can choose an arbitrary $y \in \mathbb{N}_3$ such that $S_g = S_g+(y) \cup S_g-(y)$. So, using (2), we obtain

(4)
$$
\forall y \in \mathbb{N}_3
$$
 SSGB \Rightarrow S₂ = S_g = S_g+(y) \cup S_g-(y).

So, by (3') and (4) we have

(5) $\forall y \in \mathbb{N}_3$

 \wedge

$$
((\neg SSGB \implies S_1 = S_g = S_g + (y) \cup S_g - (y))
$$

($SSGB \Rightarrow S_2 = S_g = S_g+(y) \cup S_g-(y)$).

We will make use of the following trivial principle.

If two sets of (possibly infinitely many) x-tuples are equal, then the sets of their corresponding i-th components are equal; $1 \le i \le x$.

To this end, for each $k \geq 1$ we define

 $M(k) := \{ mk \mid (pk, mk, qk) \in S_g \}$ $M_1(k) := \{ m k | (pk, mk, qk) \in S_1 \}$ $M_2(k) := \{ mk \mid (pk, mk, qk) \in S_2 \}.$

Then, applying the principle above to the middle component of the triples (pk, mk, qk), (5) implies

 $\forall k \in \mathbb{N} \; \forall y \in \mathbb{N}_3$ $((-\text{SSGB} \implies M_1(k) = M(k) = \{ mk \mid (pk, mk, qk) \in S_g+(y) \cup S_g-(y) \})$

 \wedge

(SSGB => M₂(k) = M(k) = { mk | (pk, mk, qk) $\in S_{g+}(y) \cup S_{g-}(y)$ })).

Since by definition S_{g+}(y) ∪ S_{g-}(y) equals S_g for every $y \in \mathbb{N}_3$ regardless of whether or not SSGB holds and since for every $k \in \mathbb{N}$ and every $y \in \mathbb{N}_3$

{ mk | (pk, mk, qk) $\in S_g+(y) \cup S_g-(y)$ } = k \mathbb{N}_4

v

 $\{ m k \mid (pk, mk, qk) \in S_g+(y) \cup S_g-(y) \} \neq k \mathbb{N}_4$

we obtain

$$
\forall k \in \mathbb{N} \quad (\neg SSGB \implies M_1(k) = M(k) = k\mathbb{N}_4 \quad \wedge \quad SSGB \implies M_2(k) = M(k) = k\mathbb{N}_4)
$$

v

 $\forall k \in \mathbb{N}$ (\neg SSGB => M₁(k) = M(k) \neq k \mathbb{N}_4 \land SSGB => M₂(k) = M(k) \neq k \mathbb{N}_4).

For $k = 1$ we set M := M(1), M₁ := M₁(1) and M₂ := M₂(1), and we obtain

 $(-SSGB \Rightarrow M_1 = M = N_4 \land SSGB \Rightarrow M_2 = M = N_4)$

v

 $(\neg SSGB \Rightarrow M_1 = M \neq \mathbb{N}_4 \land SSGB \Rightarrow M_2 = M \neq \mathbb{N}_4).$

Since M is non-empty, we have

(1') \neg SSGB <=> M = M₁

(2') SSGB \leq > M = M₂.

Since under the assumption SSGB the numbers m defined in S_g take all integer values $x \geq 4$ whereas under \neg SSGB they don't, we have

(6) SSGB <=> $M = N_4$.

Because of SSGB => $M_1 = \{\}$ and $\neg SSGB \Rightarrow M_2 = \{\}$ and because M is non-empty in any case, the implications above are in fact equivalences. Then, using (1'), (2') and (6), we obtain

 $(M_1 = M \neq \mathbb{N}_4 \iff M_1 = M = \mathbb{N}_4 \land M_2 = M = \mathbb{N}_4 \iff M_2 = M = M = \mathbb{N}_4$

v

 $(M_1 = M \neq \mathbb{N}_4 \iff M_1 = M \neq \mathbb{N}_4 \land M_2 = M = \mathbb{N}_4 \iff M_2 = M \neq \mathbb{N}_4$.

So, we get

 $(FALSE \wedge TRUE)$

v

 $(TRUE \wedge FALSE).$

This yields FALSE \underline{v} FALSE, which is equivalent to FALSE.

□