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Objectives
• Develop convolutional artificial neural network (ANN) for determination of cloud types from

low-resolution satellite and climate model data.
• Use the global network of ground observations of cloud genera fromWMO stations and satellite

observations of shortwave (SW) and longwave (LW) radiation from CERES a training set.
• Determine global distribution of cloud types.
• Identify climate model biases and trends.
• Link the results to climate model cloud feedback and equilibrium climate sensitivity (ECS).

High (example: cirrus)Middle (example: altostratus)Cumuliform (example: cumulus) Stratiform (example: stratocumulus)

Classical cloud types (reduced to 4 categories) | Source: International Cloud Atlas (WMO)
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Input
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Methods

• Deep convolutional ANN based on the U-Net architecture (Ronneberger et al., 2015).

Training phase
• Input: normalised daily mean SW and LW radiation from CERES as 20 samples per day of

4000×4000 km (48×48 pixels) in local geographical projection centred at random locations.
• Reference output: cloud genera observed at WMO stations (IDD dataset) grouped into 4 cloud

types, available in a subset of pixels of the samples.
• Loss function: negative of log-likelihood of observing the cloud types at ground stations under

per-pixel probability predicted by the ANN.

Application phase
• Input: CERES and equivalent climate model SW and LW radiation data in samples (as above).
• Output: Probability of observing the cloud types for every pixel of the sample.
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Results: geographical distribution of cloud types in observations
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Results: geographical distribution of cloud types in models
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Summary
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Relation between cloud type occurrence bias and climate sensitivity
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