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Abstract—While the application of Artificial Intelligence (AI)
to 5G networks has raised a strong interest, standard solutions
to bring Al into 5G systems are still in their infancy and have a
long way to go before they can be used to build an operational
system. In this paper, we contribute to bridging the gap between
standards and a working solution, by defining a framework
that brings together the relevant standards specifications and
complements them with the required missing building blocks. We
populate this framework with concrete Al-based algorithms that
serve different purposes towards developing a fully operational
system. We evaluate the performance resulting from applying our
framework to control, management and orchestration functions,
showing the benefits that AI can bring to 5G systems.

I. INTRODUCTION

Network control, management, and orchestration entail the
dynamic placement, configuration, and resource provisioning
of Virtual Network Functions (VNFs) within the Network
Function Virtualization (NFV) infrastructure. The complexity
of these operations exceeds substantially that of equivalent
tasks in legacy 4G LTE networks. There, the relatively limited
amount of variables in one-size-fits-all core and radio access
network domains accommodates management models that
mainly rely on expert monitoring and intervention. Instead,
the traditional human-based approach is hardly viable in
virtualized 5G networks: the coexistence of heterogeneous
mobile services, diversified network requirements, and tenant-
defined management policies creates a need for specialized
and time-varying infrastructure deployments, which in turn
call for automated solutions in the control, management, and
orchestration of the network.

Artificial Intelligence (Al) is a natural choice to support the
emerging need in autonomous network operation and man-
agement. 3GPP and other Standard Developing Organizations
(SDOs) have started delineating the road for the integration
of Al into the mobile network architecture. Such a process
starts with an efficient collection of data in the network
infrastructure and knowledge inference from these data, which
are paramount to effective Al-assisted decision-making. In
this sense, SDOs are pushing efforts towards defining Al-
based Data Analytics frameworks that are suitable for au-
tonomous and efficient control, management and orchestration
of mobile networks. For instance, 3GPP has incorporated
into its standardized architecture the modules (¢) Network
Data Analytics Function (NWDAF) [1], and (i7) Management
Data Analytics Function (MDAF) [2]. Other organizations,

such as the O-RAN alliance, envision similar entities in their
architectures [3]. ETSI has also defined comparable assisting
elements within the Industry Specification Groups (ISGs) on
Experiential Networked Intelligence (ENI) and Zero touch
network & Service Management (ZSM) [4]. Furthermore,
open-source initiatives such as ONAP [5] are also including
data analytics into their architecture.

All these ongoing efforts are, however, at an early stage.
The frameworks they propose and the solution designs they
foster are preliminary and mainly aim at introducing several
key building blocks at a very high level of abstraction. They
are still far from detailed, full-blown network data analytics
that are ready for deployment.

In this context, the goal of this paper is to complement and
support ongoing standardization activities by developing and
populating a unified framework that leverages data analytics
and Al for network control, management and orchestration.
More precisely, we set forth the following main contributions:

o We propose a comprehensive framework for the incor-
poration of data analytics and Al in traditional network
architectures, which brings together the corresponding
efforts at relevant standardization bodies like 3GPP and
ETSI and complements them with additional modules that
are needed to provide the desired functionality.

« We populate the proposed framework with practical algo-
rithms that leverage Al and machine learning (ML) solu-
tions to assist different types of control and orchestration
decisions, namely () decisions on the most appropriate
placement for the different VNFs, (i¢) decisions on the
scaling of VNF resources at run-time, and (z¢¢) decisions
on the adjustment of flow-level QoS parameters.

o We evaluate the performance of the proposed algorithms,
providing results on their accuracy and showing their
ability to effectively attain precise control, management
and orchestration decisions at different timescales.

II. AI-DRIVEN DATA ANALYTICS FRAMEWORK

Figure 1 depicts the network data analytics framework we
propose.! The framework design encompasses the Manage-
ment and Orchestration plane as well as the Control plane
functionalities, as Al can indeed improve the performance at

I'While the figure shows functional interactions across modules, the different
functions may actually be connected through message buses, as mandated by
recent versions of the 3GPP standards [6].
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Fig. 1: Proposed framework with standard functions (MDAF,
NFVO, VNFM, NWDAF, PCF) and new modules implement-
ing Al-based algorithms (AI-LTF, AI-MTF, AI-STF).

all levels. Within each plane, we take as reference architecture
the one proposed by 3GPP and integrate it with an ETSI NFV
MANO architecture. The resulting design is also well aligned
with other emerging architectures such as the aforementioned
ETSI ENI and ZSM, and O-RAN. The main novelties of the
proposed framework are as follows: (i) we bring together
modules from 3GPP and ETSI standards, (i) we integrate
them with new modules implementing the AI algorithms, and
(ii7) we apply the framework to different purposes going
beyond the standards.

A. Management and Orchestration plane

In the Management and Orchestration plane, the MDAF
module is responsible for the so-called Management Data
Analytics Service (MDAS) for all network slices instances,
sub-instances and network functions hosted within a network
infrastructure. This includes the centralized collection of net-
work data for subsequent publishing to other network manage-
ment and orchestration modules. In the proposed framework,
we specifically employ the MDAF to collect mobile data
traffic loads generated in the radio access domain by the
individual slices or flows. As a result, the MDAF allows
building historical databases of the network demands for each
base station or sector. These data are then exposed to the
Al-based prediction algorithms for (i) long-term forecasting
(AI-LTF), and (¢) mid-term forecasting (AI-MTF).

The ATI-LTF algorithm aims at assisting the VNF place-
ment decisions taken by the orchestration system. To this
end, AT-LTF leverages the network demand history to predict
the future aggregate load across the different infrastructure
locations. Then, the NFV Orchestrator (NFVO) compares
such a prediction against the current available capacity in
each infrastructure location and anticipates potential overload
conditions. The NFVO can react, e.g., by moving VNFs out of
the congested infrastructure. The AT-LTF algorithm operates
on long timescales, typically in the order of hours: indeed,
VNFs repositioning is quite a drastic action that involves

substantial overhead, and consequently it is only performed
infrequently and as an answer to substantial traffic fluctuations.

The second algorithm, AT-MTF, has a different purpose:
it fuels the resource scaling decisions taken by the VNF
Manager (VNFM). The VNFM has an interface with the Vir-
tual Infrastructure Managers (VIMs) to monitor the resource
usage of the VNFs of each slice, and it also leverages data
collected and published by the MDAF on the level of the
unsatisfied demand and the amount of unused resources. Based
on all this information, the AI-MTF algorithm assists the
orchestration framework on the decision (i) to provide more
resources to the VNFs of a slice when the predicted load
exceeds the current resources, an operation typically referred
to as upscaling, or (it) to downscale resources to save cost
when VNFs are leaving a significant fraction of the resources
unused. Such decisions must be taken over faster timescales
than those affecting the VNF placement, and generally occur
over intervals in the order of tens of minutes, which is the
typical frequency for the execution of new VNF instances
involving upscaling and downscaling.

B. Control plane

On the control plane, the NWDAF module is responsible
for collecting data on the network load, playing a very similar
role to that of the MDAF in the management domain. In our
framework, these data are fed to the Al-based short-term fore-
casting algorithm (AI-STF), which predicts the future traffic
load of flows (or flow aggregates). The forecast is leveraged
by the Policy Control Function (PCF) module, which provides
a unified policy framework to govern the network behavior
(e.g., dealing with radio or transport network resources). In
particular, PCF can adjust the QoS parameters associated to
the different flows in advance, based on predicted demands,
so as to guarantee better QoS support. These operations are
performed at rather fast timescales, in the order of minutes
or less, as QoS parameters can be frequently updated without
incurring substantial overhead.

While the NWDAF modules have been designed for the
network core, a similar approach could be applied to the radio
access network (RAN). Indeed, although 3GPP has not yet
proposed modules equivalent to NWDAF in the RAN, other
initiatives such as the O-RAN alliance have defined elements
such as the RAN Intelligent Controller (RIC), which can
collect and distribute data at the RAN level. Similarly to our
approach above, the RIC can act on QoS parameters at the
base station level. Decisions become then local, and can be
taken much faster, hence tracking rapid traffic dynamics and
increasing the radio access management efficiency.

IITI. AI-BASED ALGORITHMS DESIGN

The above framework introduces three new Al-based al-
gorithmic modules: AT-LTF, AI-MTF and AI-STF. The
three algorithms follow the same design guidelines, as all
of them aim at providing network capacity forecasts. The
main difference between them is that they work at different
granularities in terms of traffic volumes (at global, slice,
or flow levels) and timescales (hours, tens of minutes, or



minutes). In the following, we present the unified design of
these three algorithms.?

A. Capacity forecasting

Given the complexity of predicting network traffic, our algo-
rithm design takes advantage of recent advances in supervised
learning via Deep Neural Network (DNN) architectures, which
are well suited to deal with the high input data complexity
associated with spatiotemporal fluctuations in mobile data
traffic [7]. For this reason, DNN-based solutions have recently
gained momentum in network management research. Yet, in
contrast to the majority of the literature in the field, our DNN
design addresses an original problem of ‘capacity forecasting’.

Capacity forecasting goes beyond the typical estimation of
future demands that is targeted by most traffic predictors.
Indeed, predictors in the literature almost exclusively aim at
minimizing legacy cost functions such as Mean Square Error
(MSE) or Mean Absolute Error (MAE); in other words, they
try to match the temporal behavior of traffic, giving the same
weight to positive and negative errors [8]. While this produces
forecasts that reduce as much as possible the error between the
future and the anticipated demand, this approach is unsafe in a
capacity allocation context where the metric of interest is the
cost incurred by an operator when deploying the resources,
rather than the error between the real and the forecasted
demand. In this case, underestimating future demands causes
SLA violations that have a monetary penalty much higher than
the cost resulting from overdimensioning the resources, as long
as such overdimensioning is not excessive.

In contrast to the above legacy approaches, the aim of
capacity forecasting is to find the level of capacity that suffices
to meet the expected load at (almost) all times, even if this
comes at the price of requiring a certain level of overprovision-
ing. To perform such capacity forecasting, we build on recent
proposals that properly model the monetary costs incurred by
the mobile network operator [9], [10], adjusting their design
to the particular requirements of the proposed framework.

B. Algorithm design overview

The algorithm design is based on the following workflow.
First, current and past mobile traffic information, collected at
the desired level of granularity, is properly formatted into an
input suitable for feeding the prediction algorithm. This input
is fed to a DNN architecture that processes input features
to provide an output value: the capacity forecast. During the
training phase, the output is used to evaluate a loss function
that quantifies the error with respect to the ground truth
accounting for the costs of resource overprovisioning (i.e.,
allocating more capacity than needed) and underprovisioning
(i.e., allotting insufficient capacity to meet the demand).

More precisely, time is divided into slots and data on
the actual traffic load is collected by MDAF and NWDAF
for each slot. Such load refers to the total load (for the
AI-LTF algorithm), the load of individual slices (for the
AI-MTF algorithm) and the load of flows or flow aggregates

2Implementation available at https://github.com/wnluc3m.

(for the AT-STF algorithm). Base stations are associated to
datacenters such that a datacenter serves the aggregated load of
all the associated bases stations. We consider different levels
of datacenters, ranging from the first level, where we have a
different micro-datacenter co-located with each base station,
to the last level, where we have a single large datacenter
serving the entire network. Our framework aims at allocating
the required capacity at all datacenters or associated network
functions. Typically, AT-STF works at levels close to the
edge, while AT-LTF and AI-MTF may operate at all levels.

Our goal is to compute a constant capacity to be allocated in
the network datacenters over a future time horizon 73,, based
on knowledge of the previous T}, traffic snapshots. The time
horizon models typical situations where the resource reconfig-
uration frequency is limited (e.g., by the NFV technology) and
the operator must decide in advance the amount of resources
that will stay assigned to a slice until the next reallocation
takes place. As discussed before, AI-STF, AI-MTF and
AI-LTF target short, intermediate and long time horizons.

To perform capacity forecasting, we leverage a DNN com-
posed of suitably designed encoding and decoding phases,
which operate over an interval 7j. The neural network ar-
chitecture is general enough that it can be trained to solve
the capacity forecast problem for (7) traffic loads with diverse
demand patterns, (¢7) any datacenter level, and (¢i7) any time
horizon T},. This allows to leverage the same DNN design to
implement all three algorithmic modules. The design consists
of the following three components:

o Encoder: the historical mobile data traffic provided as
input is high dimensional, as it comprises a large number
of base stations as well as several network slices. The
encoder projects this complex input space into a latent
low dimensional representation, which is then analyzed
to produce the needed prediction.

o Decoder: the decoder performs the actual forecast. The
decoder structure reflects the kind of output values that
shall be used to assist our framework, including the
traffic granularity (i.e., the datacenter class and the traffic
volume level) and the time horizon.

o Loss function: the supervised learning strategy we adopt
requires that the algorithm can assess the goodness of
the outcome. To this end, we employ a loss function
to measure the quality of the forecasting and steer the
system over the training phase. Our loss function targets
the overall (monetary) metric rather than a generic one,
considering the compound cost of overprovisioning and
underprovisioning network resources when allocating a
constant capacity over the time horizon to serve the actual
time-varying demand.

In the remainder of this section, we detail the implementa-

tion of the above three components.

C. Encoder and decoder structure

The neural network architecture used by the proposed
modules is summarized in Figure 2, and is composed of
an encoder-decoder sequence. While the three algorithms
considered in this paper (AI-LTF, AI-MTF, and AI-STF)
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Fig. 2: Neural network encoder-decoder structure.

share the same encoder structure, they output the forecasts over
different time horizons, which has an impact on the decoder
and the loss function computation.

The internal structures of the encoder and decoder are in-
spired by recent breakthroughs in deep learning for image and
video processing [11]. Their design stems from the intuition
that subsequent snapshots of the spatial distribution of the
network data traffic can be assimilated to frames in a video.

The encoder is composed of a stack of three three-
dimensional Convolutional Neural Network (3D-CNN) lay-
ers [11]. Convolutional Neural Networks (CNNs) are a kind
of deep learning structure specialized to infer local patterns in
the feature space of a matrix input. Two-dimensional CNNs
(2D-CNNis) have been extensively utilized in image processing
to complete complex tasks on pixel matrices such as face
recognition or image quality assessment. 3D-CNNs extend 2D-
CNNs to address the case were the features to be learned are
spatiotemporal in nature, which adds the time dimension to
the problem and transforms the input into a 3D-tensor.

Since mobile network traffic exhibits correlated patterns in
space and time, we design an encoder that employs 3D-CNN
layers. We use a 3x 3 x 3 kernel for the first 3D-CNN layer and
a 6 x6x6 kernel for the second and third layers. This limits the
portion of input analyzed by each neuron to small regions — a
strategy known to perform well when the input has strong local
correlations. We employ ReLU activation functions, which
grant good performance and fast learning [12].

The decoder uses Multi-Layer Perceptrons (MLPs) [13],
a class of fully-connected neural layers where every neuron
of one layer is connected to every neuron of the next layer.
MLPs are able to learn global patterns in the input feature
space, which allows forecasting the target capacity leveraging
the local features extracted by the encoder. For the decoder
activation functions, we employ ReLU in all MLP layers
except for the last one, where a linear activation function
returns real-valued outputs. The last linear layer is capable
of performing multiple capacity forecasts in parallel (e.g., for
different slices or different datacenters).

For the training procedure, we employ the popular Adam
optimizer, which is a Stochastic Gradient Descent (SGD)
method providing fast convergence [14]. This trains the neural
network model by evaluating at each iteration the loss function
resulting from the forecast and the ground truth, and back-
propagating it to tune the model parameters to minimize such
loss.

D. Loss function design

The loss function drives the learning process and is thus
critical to the quality of the forecasting. In mobile network
management, the relevant metric to assess the quality of the
capacity allocation is the Operator Monetary Cost (OMC).
Hence, the loss function has to reflect the difference between
the capacity forecast and the actual demand in terms of OMC.

General-purpose loss functions like MSE or MAE are
clearly inappropriate to this end, and a customized loss
function is required to determine the actual penalty caused
by a prediction error. Such penalty corresponds to the costs
resulting from (¢) forecasting a lower value than the actual
offered load (which leads to the provisioning of insufficient
resources), and (iz) predicting a higher value than the actual
one (which leads to allocating more resources than those
needed to meet the demand). These costs are as follows:

A constant penalty [ is associated to each time slot where
the allocated resources are lower than those needed in
reality, leading to an SLA violation. Such penalty value
can be customized to the desired behavior, e.g., higher
values may be used for cases where reliability is needed,
e.g., in URLLC network slices; instead, lower values can
be applied for slices with more relaxed requirements.

« A monotonically increasing cost is attributed to resource
overprovisioning, with a fixed rate of v per overpro-
visioned byte. The more the resources (unnecessarily)
provisioned, the higher the deployment cost for the oper-
ator. This reflects the deployment expenditure associated
with excess allocated capacity, which we assume that
grows linearly with the amount of unused capacity. The
linear scaling factor ~y is configurable and represents the
monetary cost of the excess resource allocation.

The configuration of the two cost models above can, in
fact, be controlled by a single parameter « defined as the
ratio between 3 and ~. Intuitively, o represents the amount of
overprovisioned capacity that the operator is willing to deploy
before committing an SLA violation. Operators can use « as
a knob to steer the operational point of the system towards
higher expenses in resource deployments but reduced chances
of SLA violations, or vice-versa. We provide examples of «
parametrization in Section IV.

The resulting loss function is flexible enough to accom-
modate different infrastructure deployment locations (e.g.,
deploying resources at the network edge has a higher cost than



at the core), resource types (e.g., radio resources are sensibly
more expensive than CPU resources), and SLA strategies (e.g.,
slices providing critical services may entail higher violation
fees). Furthermore, it can be parameterized to account for the
overall cost over different time intervals as required by the
different algorithms (AI-LTF, AI-MTF, and AI-STF).

IV. PERFORMANCE EVALUATION

We evaluate the proposed framework with real-world data
traffic recorded in the mobile network of a major European
operator, providing coverage to a large metropolitan region.
Our dataset includes information about the exchanged traffic
of seven popular services (including, among others, Youtube,
Facebook, and Whatsapp), with per-service traffic information
provided as an aggregate over 5-minute intervals at 470 4G
base stations. The data spans 11 weeks, where we use 8 weeks
for training, 2 for validation and the remaining one for testing.

We assume that each service is assigned a dedicated slice,
and adopt the methodology proposed in [15] to build a network
topology model that associates base stations to edge and core
network datacenters. Unless otherwise stated, we fix T}, = 6
(which means that the forecasting modules are fed with data
of the previous 30 minutes of traffic), configure @ = 1
(implying that one SLA violation has the same monetary cost
as provisioning an excess capacity sufficient to cover the traffic
peak) and focus on a core network datacenter.

A. AI-LTF: Long-term forecasting for VNF placement

The long-term forecasting capabilities provided by the
AI-LTF module are useful to make decisions about the
suitable placement of the VNFs serving one or more slices.
To evaluate the performance of this module, we consider a
scenario where a datacenter with processing capacity C' must
serve the seven slices and assume that the computational
demand of a given slice is proportional to the amount of bytes
demanded by the corresponding service.

In this case study, we set Tj, = 8 hours to account for the
fact that VNF placement decisions are typically taken with a
coarse time granularity of hours due to the limitation of the
underlying NFV technology. We focus on an edge network
datacenter and employ AI-LTF to support the VNF placement
decisions taken by the NFVO module by anticipating the
overall traffic load at the target datacenter. Then, the NFVO
can decide at every T} how many slices are served by the
datacenter of capacity C, and which slices shall instead be
placed elsewhere.

Figure 3 depicts the result obtained with AT-LTF against
that obtained with an oracle algorithm that assists the NFVO
with the knowledge of the real future demand (even though
such an oracle algorithm is unfeasible in practice, it does pro-
vide an optimal benchmark to assess AI-LTF’s performance).
We observe that AT-LTF follows quite closely the oracle. The
overall usage of the deployed infrastructure remains high at
all times. The algorithm only moves more slices than needed
away from the datacenter in very limited occasions. In rare
cases, it places more slices than it should in the datacenter,
leading to overload situation that results into computational
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Fig. 3: VNF placement of slices at one target datacenter. Oc-
cupation ratio (top) and number of admitted slices (bottom) for
each 8-hour orchestration period. The algorithm implemented
by the AT-LTF module is compared against an optimal but
unfeasible oracle solution with perfect knowledge of the future

traffic load.

outages for the served slices; however, even when this happens,
the actual overload levels are negligible. These results confirm
that AT-LTF is a promising solution to assist effective VNF
placement decisions.

B. AT-MTF: mid-term forecasting for NFVI scaling

Once the VNF serving various slices are placed at a
given datacenter, it is possible to dynamically reallocate the
resources assigned to each slice within the capacity C' of the
datacenter by scaling up or down the resources assigned to
a slice. The time dynamics involved in such up- and down-
scaling are faster than those analyzed in the previous exper-
iment for the VNF placement. Indeed, resource provisioning
within the same datacenter (which involves booting up a VNF
and setting up the data plane) can be performed at timescales
of tens of minutes.

The ATI-MTF module can support such resource up and
down scaling process. We investigate its performance in a case
study where the resources allotted to the slice serving Youtube
traffic at a datacenter are scaled every 30 minutes. Results,
shown in Figure 4, confirm that the proposed algorithm yields
remarkable accuracy. The allocated capacity to the slice is
scaled up and down to match closely the demand generated
by the service. As highlighted in the bottom plot, the capacity
allocated in excess is quite small, which implies that limited
resources are wasted due to overprovisioning. Furthermore,
the algorithm almost never incurs underprovisioning, and thus
it always serves the offered demand and avoids violating the
slice SLA.

C. AI-STF: short term forecasting for QoS enforcement

The allocation of network resources and the setting of QoS
parameters for individual flows or aggregates can be adjusted
at shorter timescales than those considered before. Indeed,
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the enforcement of QoS policies or the configuration of QoS
mechanisms allows adapting the amount of resources assigned
to flows within intervals of a few minutes or less.

The AT-STF module is intended to back up this kind of
high-pace network management tasks. We provide an example
of application in Figure 5 for the case of resource allocation,
analyzing the network resources assigned to Youtube flows in
the network edge based on the prediction returned by AT-STF
over time periods of 7}, = 5 minutes. Specifically, the figure
shows the distribution of the ratio of assigned resources to
the demand, where a value below 1 denotes that the capacity
forecast is not sufficient to satisfy the demand, while values
above 1 mean that we allocated more capacity than needed.

We observe that AT-STF is effective in provisioning suf-
ficient resources to serve the aggregate demand for Youtube
flows while avoiding wasting too many resources in overpro-
visioning. We also observe that the parameter o can be tuned
to choose the desired trade-off between resource overprovi-
sioning and SLA violations. Larger « values, corresponding
to higher penalties for SLA violations, reduce significantly
the probability of underprovisioning, obviously at the cost of
increasing the amount of resources wasted in overprovisioning
(i.e., shifting the distribution to the right).

D. Overall performance

We next evaluate the overall performance of the three
algorithms when jointly running in a complete 5G system.
We consider the total load generated by the seven services
at a cloud network datacenter and compute the percentage of
unserviced demand as given by the amount of traffic exceeding
the capacity forecasted by AT-LTF, AT-MTF, and AI-STF,
respectively. Following the framework in Section II, AT-LTF
targets the aggregate load at the datacenter, while AT-MTF and
AI-STF focus on the individual allocation for each service.

The results, given in Table I for different values of «,
confirm the effectiveness of a in reducing the amount of
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Fig. 5: Distribution of the ratio of the allocated capacity with
AI-STF over the aggregate demand of the Youtube flows at
a target edge network datacenter. Different curves correspond
to diverse « ratios of the monetary penalty of SLA to the cost
of overprovisioning. The integral of the curve for values of
the abscissa below 1 corresponds to the probability of SLA
violation.

TABLE I: Percentage of unserviced demand caused by the
capacity predictions of the AT-LTF, AI-MTF, and AI-STF
modules, and in the overall system combining the three
algorithms, for different o values.

Unserviced demand (%) a=0.5 a=1 a=2
AI-LTF 0.53 % 043 % 0 %
AI-MTF 0.09 % 0.08 % | 2.4e-3 %
AI-STF 85¢-3 % | 4.8¢e-4 % | 3.4e-5%
Overall system 0.63 % 051 % | 2.4e-3 %

unserviced demand at the expense of a larger resource de-
ployment. Indeed, when selecting a sufficiently large «, we
can achieve practically zero outages, which may be suitable
to support, e.g., URLLC services. Even for low values of «,
the overall unserviced traffic remains reasonably low (below
1%). We further observe that, as expected, accuracy increases
when the predicted time horizon is shorter (which explains
why AI-STF outperforms AI-MTF for all o’s and AI-MTF
outperforms AT-LTF for o = 0.5 and o = 1) as well as when
the traffic aggregate is larger (which explains why AI-LTF
outperforms AT-LTF and AI-STF for a = 2).

In summary, these results further corroborate the effective-
ness of an integrated Al framework for control, management,
and orchestration of a 5G sliced network system.

V. CONCLUSIONS

In this paper, we presented some of the challenges and
opportunities that Al offers in the context of 5G networks. By
defining a framework that joins contributions from different
SDOs, populating it with different Al-based algorithms, and
applying it for different purposes, we showed how standards
can be leveraged to deploy Al-based 5G systems. Our per-
formance evaluation results illustrate the benefits of a proper
integration of Al into 5G. Importantly, this work also provides
a basis to apply Al to other functions within the 5G system
beyond the ones addressed in the paper.
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