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ABSTRACT

The intrinsic thermoacoustic (ITA) feedbackloop constitutes a coupling between flow, flame and acoustics

that does not involve the natural acoustic modes of the system. One recent study showed that ITA modes in

annular combustors come in significant number and with the peculiar behavior of clusters, i.e. several modes

with close frequencies. In the present work an analytical model of a typical annular combustor is derived

via Riemann invariants and Bloch theory. The resulting formulation describes the full annular system as a

longitudinal combustor with an outlet reflection coefficient that depends on frequency and the azimuthal mode

order. The model explains the underlying mechanism of the clustering phenomena and the structure of the

clusters associated with ITA modes of different azimuthal orders. In addition, a phasor analysis is proposed,

which enclose the conditions for which the 1D model remains valid when describing the thermoacoustic

behavior of an annular combustor.

NOMENCLATURE

Sb Cross section area of the burner tube

Sc Cross section area of the combustion chamber

α Cross section ratio between burner tube and chamber

m Bloch wave number

N Number of burners

p′ Acoustic pressure

u′ Acoustic velocity

cu Speed of sound upstream the flame

cd Speed of sound downstream the flame

ω Complex frequency

∗Address all correspondence to this author.
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Lb Length of the burner tubes

L Length between two burners

Pc Total length of the combustion chamber

FTF Flame Transfer Function

n Interaction index of the FTF

τ Time delay of the FTF

ξ Ratio of specific impedances

θ Normalized temperature ratio

q̇′ Normalized global heat release fluctuations

f , g Riemann invariants

He Helmholtz number

Rm Equivalent reflection coefficient

Lm Effective length

INTRODUCTION

To tackle environmental issues and reduce emissions, in particular NOx pollutants, lean premixed combustion

systems have been developed. However this combustion technology is more prone to thermoacoustic combustion

instabilities [1, 2]. This type of self-excited instability results from coupling between the unsteady heat release of the

flame and acoustic waves, which may result in a positive feedback loop, thus inducing growing pressure fluctuations.

Repeated exposure to high pressure levels over time will promote mechanical fatigue and may lead to catastrophic

failure of the combustor [3]. From a safety perspective, it is crucial to identify the important flow-flame-acoustic

interaction and feedback mechanisms in order to prevent this type of instability.

Bomberg et al. [4] identified the so-called intrinsic thermoacoustic (ITA) feedback loop, which does not involve

reflection of acoustic waves at the combustor inlet or exit. Instead, the ITA feedback mechanism may be described

as follows: velocity sensitive flames respond to a perturbation of upstream velocity with a change in the heat release

rate, which in turn generates acoustic waves that travel in both up- and downstream directions. The wave traveling in

the upstream direction will directly perturb the acoustic velocity, before even reaching the boundaries of the acoustic

system. This mechanism of flow-flame-acoustic interaction is, in a sense, intrinsic to the flame and its immediate

surrounding, hence its name.

Anomalous peaks in the acoustic flame response, i.e. the magnitude of coefficients of the flame scattering matrix

[5], and in the so-called instability potentiality [6] were explained as resonances of the ITA feedback loop [4, 7].
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Furthermore, ITA feedback provided an explanation [7] of the physical nature of thermoacoustic instabilities of a

flame in an anechoic environment, which were reported and analyzed by Hoeijmakers et al. [8, 9] and subsequently

confirmed by high-fidelity CFD simulations with non-reflecting boundary conditions [10,11]. Emmert et al. [12] then

argued that ITA feedback gives rise to additional thermoacoustic modes that are not related to acoustic eigenmodes of

the combustor, and identified such an “ITA mode” as the dominant unstable eigenmode in a premix swirl combustion

test rig. This constitutes a significant deviation from the established interpretation of thermoacoustic instabilities as

acoustic eigenmodes of the combustor driven by unsteady heat release [13].

The concept of ITA feedback can explain in hindsight a number of hitherto inexplicable phenomena described

in earlier studies. For example, the “new set of modes associated with flame model” described by Dowling and

Stow [14] quite obviously should be considered as “modes of ITA origin” [15]. Similarly, there is strong evidence

that the low frequency “bulk mode” discussed by Eckstein and Sattelmayer [16] results from ITA feedback [17].

Finally, “convective scaling” of thermoacoustic eigenfrequencies – i.e. the dependence of eigenmode frequency on

the bulk flow velocity inside the burner, but not on the speed of sound in plenum or combustor – may be regarded as a

consequence of ITA feedback [18].

Hosseini et al. [19] investigated the interplay between thermoacoustic modes of ITA and acoustic origin and

showed that when the passive acoustic mode is far away from the ITA, the two do not interplay with each other. More

recently, Sogaro et al. [20] investigated a pairwise interplay between acoustic and ITA modes and showed that modal

sensitivities increase as the two modes approach each other. Silva et al. [21] and Orchini et al. [22] further investigated

ITA and acoustic modes and their interplay with exceptional points. They demonstrated that away from the exceptional

point and the acoustic mode, the ITA trajectories when varying the gain and time delay of the flame are straight lines,

i.e. their growth rate changes but the frequency remains approximately constant.

Previous studies [7, 9, 15] showed analytically that eigenfrequencies of ITA modes in a one-dimensional Rijke

tubes with anechoic boundary conditions have solution in the form

ω =
π (2 j+1)

τ
− i

τ
ln
(

nθ

1+ξ

)
, j ∈ N (1)

where ξ = ρucu
ρdcd

is the ratio of specific impedances upstream and downstream the flame, n and τ the gain and time

delay associated to the flame response, respectively and θ = (Td−Tu)/Tu the normalized temperature ratio. In the rest

of the present paper, we will refer to Eqn. (1), the frequency of the ITA mode in an anechoic environment, as the pure

ITA frequency. Mukherjee and Shrira [15] showed that, for a Rijke tube with fully reflecting boundaries, in the limit

4 GTP-20-1530, Fournier



of small n, the ITA mode is highly damped but its frequency remains close to a corresponding “pure ITA frequency”.

Buschmann et al. [23, 24] and Orchini et al. [22] observed the existence of ITA modes in annular combustors.

These modes come in significant number and have the peculiar behavior of appearing in clusters, i.e. several modes

with different growth rate, but very close frequencies. So far, little has been done to explain their origin. Recall at

this point Emmert et al. [12], who demonstrated that in longitudinal combustors with partially reflecting boundaries

ITA modes should not be ignored and indeed can be the most unstable modes. Furthermore, the analysis suggested

that established methods for passive control (dampers, etc.) have little influence on ITA modes, or worse, can lead to

the opposite effect and trigger an instability. Therefore, it is crucial to understand the underlying physics behind ITA

modes. The goal of the present study is to investigate ITA modes in annular chambers.

Various tools are available to study thermoacoustic instabilities: high-fidelity LES simulations [25,26], Linearized

Reactive Flow [27], Linearized Navier-Stokes equations [28, 29] give excellent results, but at considerable computa-

tional cost. Helmholtz solvers [30] are more affordable and able to accurately model complex 3D geometries, but

computational cost remains non negligible. On the other hand, low-order network models [31–35] applied for annular

geometries have proven to give satisfactory agreement at extremely low computational cost. Bloch theory [36], which

exploits the rotational symmetry of a system, has recently been applied in the thermoacoustic community [22,37–39].

This approach reduces a system with rotational symmetries to a single unit cell and facilitates its computation without

loss in accuracy.

In the present study, we propose a low-order network model formulated with Bloch boundary conditions to in-

vestigate ITA modes in an annular combustor. The paper is structured as follows: we first describe the network model

with Bloch boundary conditions that represents the combustor. We then derive an analytical expression of the equiv-

alent reflection coefficient that models the chamber behavior and demonstrate that the system can be reduced to a

simple longitudinal set-up. This reduced model is applied to a typical lab-scale combustor to explain the origin of ITA

clusters. It also enables us to explain the spectrum of the combustor and the damping of modes with higher azimuthal

order. We then give explanations on the shift of certain modes and the offset from their respective clusters.

NETWORK MODEL OF AN ANNULAR GEOMETRY WITH BLOCH BOUNDARY CONDITIONS

Case and Flow Description

The combustor consists of N perfectly premixed burners connected to an annular combustion chamber. For the

sake of simplicity, the plenum is not taken into account, because it can often be decoupled [40, 41]. The area ratio

between plenum and burners is assumed large enough such that the burners can be modeled by ducts terminating in a

large vessel. For low Mach numbers, this leads to a reflection coefficient at the inlet of the burners of Rin =−1. At the
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exit of a gas turbine combustion chamber, a high pressure turbine stage is placed in order to extract energy from the

fluid and transform it into mechanical work. Marble and Candel [42] showed that the acoustic response of the turbine

inlet can be modeled with a fixed gain lower than 1 and a zero phase response. To simplify the study, we choose here

a reflection of Rout = 1 and we expect little quantitative change when accounting for the losses [43]. In this study, we

also neglect entropy waves, assuming they play a negligible role [44].

The model is based on a network approach. The burners and the combustion chamber are modeled by ducts where

only 1D planar acoustic waves propagates. In the chamber, only purely azimuthal modes are considered. The axial

length of the chamber is assumed to be small compared to the azimuthal length Pc; mixed modes will occur at higher

frequencies and are not considered here. Transverse modes are also out of the scope of this study. The chamber is

decomposed into N ducts of length L, where L is the distance between two burners. Similarly to Parmentier et al. [33],

burners and chamber are connected with T-junctions and the flames are placed inside the burners, just before the area

change with the chamber. The flames and the T-junctions are assumed to be acoustically compact.

Flame and Unsteady Heat Release Model

The acoustic flame model is based on linearized Rankine Hugoniot jump equations across a compact heat source

[7, 45] with heat release fluctuations.


p′d

ρ̄dcd
= ξ

p′u
ρ̄ucu

u′d = u′u +θ q̇′
(2)

where ξ = ρ̄ucu/ρ̄dcd is the ratio of specific impedances, θ = (Td−Tu)/Tu the normalized temperature ratio and

q̇′ = Q̇′ūu/
¯̇Q the normalized global heat release fluctuations of the flame.

The model is closed by a Flame Transfer Function (FTF) which relates upstream velocity fluctuations at the

reference position with the normalized global heat release fluctuations of the flame. Crocco [46] introduced a simple

model with only 2 parameters, a gain n and a time delay τ , which represent the delay between the acoustic perturbation

and the actual response of the flame.

q̇′

u′u
= F (ω) = ne−iωτ (3)
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This model is simplistic but captures essential aspects of a generic flame response and is convenient to use in the

context of analytical models. Especially, the pure ITA frequency can be analytically expressed as recalled in Eqn. (1).

Bloch-Wave Theory

Bauerheim et al. [47] showed analytically that azimuthal modes are strongly influenced by symmetry breaking.

Both geometrical or flow symmetry breaking cause the degenerate pairs of azimuthal modes to split into two distinct

modes. In this study, the influence of symmetry breaking is not taken into account: the burners are identical and

the chamber does not exhibit any mean flow in the azimuthal direction. Because of the discrete rotational symmetry,

according to Bloch theory [36, 37], the acoustic pressure in the frequency domain can be written in the form:

p̂(x) = ψ (x)eimθ , m =


−N

2
+1, . . . ,

N
2

N even

−N−1
2

, . . . ,
N−1

2
N odd

(4)

where θ is the azimuthal coordinate around the axis of discrete rotational symmetry, ψ (x) is a function identical in

all unit cell and periodic in θ with a period 2π/N and m is the Bloch wave number. In this application, the absolute

value of the Bloch wave number |m| is identical to the azimuthal mode order because, in time domain, the solution

p(x, t) = p̂(x)eiωt = ψ (x)ei(ωt+mθ) is a traveling wave in the azimuthal coordinate θ [38].

Depending on the values of m, the modes can be classified into 3 categories: axial, spinning and ”push-pull”

modes. For m = 0, Eqn. (4) shows that the pressure is identical in every unit cell with no phase difference in the

azimuthal direction, i.e. an axial mode. Mode order m = N/2 only exists when the number of discrete rotational

symmetry is even. In this case, the acoustic field of one burner is in anti-phase with respect to the acoustic field of its

two neighbors and, for this reason, is called ”push-pull”. Spinning modes in the (anti-)clockwise direction appear for

Bloch wave numbers of m =±1, . . . ,±(N/2−1). Because the system exhibit reflectional symmetry (negligible mean

flow in azimuthal direction), these modes are degenerate pairs that share the same eigenfrequency and differ only by

their spinning direction.

From the study of one unit cell only, and for all possible values of m, one can assess the response of the complete

system accounting for all azimuthal modes [37–39]. The complete system burners-chamber can be reduced to the

study of only one unit cell as depicted in Fig. 1. The model is very similar to the one introduced by Parmentier et

al. [33], but Bloch theory, by introducing a quasi-periodic boundary condition mutually connecting the left and right

boundaries of the unit cell, allows to avoid tedious matrix products to find the dispersion relation.
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Fig. 1: Network model of one unit cell of an annular chamber exhibiting rotational and reflectional symmetry.

EQUIVALENT LONGITUDINAL BURNER

In order to better understand the underlying physics and further simplify the system, we derive a model and the

combustion chamber (red box in Fig. 1) is replaced by its equivalent reflection coefficient. We show that, with Bloch

theory, we can reduce a complex annular geometry to an equivalent longitudinal burner.

Modeling of the T-Junction and the Chamber

The T-junction is considered acoustically compact and its volume is null. The chamber does not exhibit any mean

flow in the azimuthal direction, therefore, the mass conservation equation integrated over the control volume reduces

to conservation of volumetric flow rate:

Scu′C = Scu′B +Sbu′A (5)

8 GTP-20-1530, Fournier



The momentum conservation equation applied to an inviscid 1D flow leads to pressure continuity in the junction:

p′C = p′B = p′A (6)

To investigate ITA modes, it is often more convenient to use Riemann invariants. In this context, we recall the definition

of characteristic waves amplitudes

f ≡ 1
2

(
p′

ρ̄c
+u′

)
, g≡ 1

2

(
p′

ρ̄c
−u′

)
(7)

Using Riemann invariants definition from Eqn. (7), Eqn. (5, 6) become

{ fC +gC = fB +gB = fA +gA (8a)

fC−gC = fB−gB +α( fA−gA) (8b)

where α = Sb/Sc is the area ratio between burner and chamber.

The objective is to replace the system T-junction and chamber by the equivalent reflection coefficient seen by the

burner, i.e. to express gA, the wave coming back from the chamber and traveling in the upstream direction as a function

of the incoming wave fA. We define the reflection coefficient Rm as:

gA = Rm fA (9)

From the T-junction, plane waves propagate in the chamber to the locations L and R (left and right boundaries of the

unit cell respectively, as shown in Fig. 1).

 fR

gR

=

e−ik L
2 0

0 eik L
2


 fC

gC

 ,
 fB

gB

=

e−ik L
2 0

0 eik L
2


 fL

gL

 (10)
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Locations L and R are mutually connected with Bloch boundaries as in Haeringer and Polifke [39].

 fR

gR

=

ei 2πm
N 0

0 ei 2πm
N


 fL

gL

 (11)

Combining Eqn. (9, 10, 11) leads to the homogeneous linear system of equations defined through the matrix

 1− ei( 2πm
N +kL) 1− ei( 2πm

N −kL)

ei( 2πm
N +kL)−α

1−Rm
1+Rm

−1 1− ei( 2πm
N −kL)−α

1−Rm
1+Rm


︸ ︷︷ ︸

M(ω,m)

(12)

The linear system of equations for fB and gB reads

M(ω,m)

 fB

gB

=

0

0

 (13)

The detailed derivation can be found in Appendix A. The system shows non trivial solution if the determinant of

M(ω,m) is null, which gives a condition for the reflection coefficient:

Rm(ω) =

−2cos
(

2πm
N

)
+2cos(He)− iα sin(He)

2cos
(

2πm
N

)
−2cos(He)− iα sin(He)

(14)

with the Helmholtz number being defined as He =
ωL
c

. Note that Rm(ω) depends on the frequency and the mode

order.

Interpretation of the Reflection Coefficient

The equivalent reflection coefficient Rm(ω) depends not only on the frequency ω , as it is often the case for a

boundary conditions, but also on the azimuthal mode order m. Depending on the order of the mode present in the
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Fig. 2: Phase of the equivalent reflection coefficient Rm for an annular combustor with 12 burners for the azimuthal
modes m = 0 , m = 1 , m = 2 , m = 3 , m = 4 , m = 5 , m = 6 . Circles: passive acoustic
modes of the combustion chamber.

Fig. 3: Phase of the equivalent reflection coefficient for an annular combustor with 12 burners with area ratio between
burner and chamber α = Sb/Sc = 1/20 , α = 1/5 , α = 1/2 , α = 1 , α = 2 , α = 5 , α = 20

. Full lines: azimuthal mode m = 1. Dashed lines: azimuthal mode m = 6.

chamber, the burner tube is exposed to a different outlet acoustic boundary condition.

At zero growth rate, Eqn. (14) shows that the gain of the reflection coefficient is trivially unity at all frequencies

and for all mode orders. This result was to be expected because no loss mechanism was taken into account and no

energy is added to the system. On the other hand, the phase is different for all the modes and changes with the

frequency. Figure 2 presents the evolution of the phase as a function of the dimensionless frequency He for an annular
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combustor of 12 burners and with an area ratio of α = 1/15. We observe that, in the zero frequency limit, the chamber

behaves as a hard wall (R0 = 1) for the axial mode whereas it behaves as an open end (Rm = −1) for all other

azimuthal mode orders. Corresponding observations for a can-annular combustor were made by Ghirardo et al. [38]

and were explained mathematically by the fact that the Galerkin series of an axial mode has a Helmholtz mode at

frequency ω = 0. We can also interpret it physically. The mode is of axial type, the acoustic field is uniform in the

azimuthal direction, the T-junction is compact, so the boundary condition seen by the burner is exactly the same as the

one at the inlet of the turbine (Rout = 1 in this case), thus explaining the phase going to 0 in the low frequency limit.

For the other modes, the phase is rather close to either π or −π but changes abruptly from one to the other with

a periodic pattern. Indeed, for each mode, at a given frequency, the reflection coefficient becomes Rm = 1. From

Eqn. (14), we can show analytically that:

Rm(ω) = 1 ⇐⇒ cos(He) = cos
(

2πm
N

)
⇐⇒ He = kL = 2πh± 2πm

N
, h ∈ N

⇐⇒ kPc

2
= (Nh±m)π, h ∈ N (15)

where Pc = NL is the total perimeter of the chamber. Rm = 1 is the special case where the burner tube has a velocity

node at its outlet and therefore the flame is not influencing at all the chamber. In that sense, the burner tube is

decoupled, and the chamber is a simple annular duct whose eigenfrequency (or resonance frequency) is defined by

Eqn. (15). These frequencies correspond to the passive acoustic modes of the chamber. For a pure chamber mode, the

burner outlet is equivalent to a hard wall.

The area jump between burners and chamber will also strongly influence the equivalent reflection coefficient.

Figure 3 show the evolution of the phase for the modes m = 1 and m = N/2 with α varying from 0.05 to 20. When

α is large, the phase tends to be 0 for all frequencies, which means Rm = 1. This is the limit case of a can-annular

configuration: the burner tube is similar to a can exposed to a choked exit. In contrast, when α is small, Rm tends to

be equal to -1, the burner tube ends in a large vessel (combustion chamber), which is a representation of an annular

configuration. Ghirardo et al. [38] introduced the notion of equivalent reflection coefficient for a 2D can-annular

configuration. In the present study, we derived a general 1D expression for the equivalent reflection coefficient seen

by a duct terminating in an annular chamber. Although in this paper an annular combustor is considered, the model

could easily be applied to a can-annular configuration. This 1D model is simple but gives good qualitative agreement
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Fig. 4: Annular geometry reduced to a single longitudinal burner. The outlet reflection coefficient Rm(ω) depends on
frequency and mode order and models the behavior of the combustion chamber.

compared to 2D and 3D computations [38, 48]. Note that the derivation also holds for the plenum side; the impact of

the plenum could be investigated in future work with the same model.

Reduction of the System to a Longitudinal Burner

In the previous section, we showed that the entire chamber can be modeled with an equivalent reflection coefficient

Rm(ω) that depends on frequency ω and azimuthal order m. The unit cell considered in Fig. 1 can therefore be

further reduced into N/2 simpler sub-systems which consists only of longitudinal burners as depicted in Fig. 4. It

is remarkable that a complex annular system can be analytically reduced to such a simple longitudinal configuration.

Such burners have been already studied in the context of ITA modes.

Following the approach proposed by Silva et al. [10], the equations for such a configuration are written as:



−1 Rin 0 0

T11 T12 −1 0

T21 T22 0 −1

0 0 Rm(ω) −1





fin

gin

fd

gd


=



0

0

0

0


(16)

where Ti j are the coefficients of the overall acoustic transfer matrix formed by the propagation of the waves inside the

burners tubes and the flame.

T =
1
2

ξ +1+θF (ω) ξ −1−θF (ω)

ξ −1−θF (ω) ξ +1+θF (ω)


e−iωLb/cc 0

0 eiωLb/cc

 (17)
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Table 1: Numerical parameters of the lab-scale combustor

Geometrical parameters

N [-] 12

α [-] 1/15

Lb [m] 1.5×10−2

L [m] 5×10−2

Thermodynamics parameters

cu [ms−1] 341

Td/Tu [-] 4

n [-] 1

τ [s] 2×10−3

The determinant of the system matrix from Eqn. (16) leads to the corresponding dispersion relation

T22−Rm(ω)T12−T21 +Rm(ω)T11 = 0 (18)

Equation (18) is highly non-linear and can generally not be solved analytically. To overcome the problem, the system

is computed with taX. taX is an open-source Matlab package developed by the TFD group to build and solve low-order

thermoacoustic network models [49, 50]. With the use of finite differences in a state-space framework, taX reduces

Eqn. (18) to a generalized linear eigenvalue problem, which facilitates the use of direct solvers to compute the complete

spectrum of eigenvalues and eigenmodes. This key feature proves to be crucial to find ITA modes in a simple manner.

Mensah [51] and Buschmann et al. [23] have shown that if, instead, the non-linear eigenvalue problem is solved by

iterative methods, finding ITA modes remains difficult as they are associated with small basin of attraction.

ON THE ORIGIN OF ITA CLUSTERS

In this section, we apply our model to a lab-scale combustor, which has chamber cavity modes far away from the

pure ITA fundamental frequency, and explain the origin of ITA clusters. We also explain why the damping of ITA

modes increases with the azimuthal order.

Equivalent Rijke Tube

We apply our model to a realistic lab-scale combustor. Geometrical and thermodynamics parameters are given

in Tab. 1. The time delay of the flame model is τ = 2ms, so the pure ITA fundamental frequency is evaluated at

fITA = 250Hz. The length between 2 burners L is rather small, the total length of the chamber is 0.6 m, which

guarantees chamber cavity modes at much higher frequencies than the pure ITA frequency. Indeed the first azimuthal

passive chamber mode is evaluated at f = cd/Pc = 1090Hz. The combustor has 12 burners therefore ITA modes up to
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Fig. 5: Phase of the equivalent reflection coefficient Rm in the case where the chamber mode is far away from the ITA
mode. Colors indicate the azimuthal order as defined in Fig. 2.

Fig. 6: Equivalent Rijke tube with fully reflecting boundary conditions. The equivalent length Lm varies with the
azimuthal order and models the behavior of the chamber.

order 6 will arise.

Figure 5 presents the equivalent reflection coefficient in the frequency range of interest [0–400 Hz]. In Fig. 2, it

corresponds to a Helmholtz number He between 0 and 0.25. In that frequency range, for mode order m between 1

and N/2, starting from π at zero frequency, the phase of each mode depends linearly on the frequency He. Therefore,

for each m, the phase is modeled by the simple equation ∠Rm = π−amHe, where the slope of the line is the positive

coefficient am. Because the gain of Rm is unity, the equivalent reflection coefficient writes:

Rm(ω) =−e−iamHe =−e−i2kLm , Lm =
amL
2cd

(19)

From Eqn. (19), we can directly see that the reflection coefficient Rm is equivalent to a duct of length Lm terminated

by an open end. Therefore, the longitudinal burner introduced in Fig. 4 can be transformed into the completely
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equivalent, yet simpler, Rijke tube depicted in Fig. 6. The boundary conditions are fully reflecting and are independent

of the frequency. The length of the equivalent duct Lm varies with the mode order m: the lower the azimuthal order, the

longer the equivalent duct (the line is steeper for low azimuthal order in Fig. 5). Following the exact same reasoning

for the axial mode, the system can also be reduced to a Rijke tube but with a closed end as outlet boundary condition.

Indeed, in Fig. 2, we can see that the phase of the axial mode is zero in the low frequency limit.

Thermoacoustic modes of acoustic or ITA origin have already been studied for the Rijke configuration. Hosseini

et al. [19] showed that, for fully reflecting boundary conditions, when the pure ITA mode is far away from the passive

acoustic modes, the two do not interplay and the frequency associated with the thermoacoustic mode of ITA origin

stays close to the pure ITA frequency. The same result can also be observed in the star shape introduced by Silva et

al. [21] or in other recent studies by Orchini et al. [22] and Mukherjee and Shrira [15]. For a pure ITA frequency away

enough from the passive acoustic mode, the trajectory in the complex plane of the thermoacoustic mode of ITA origin

will be a straight line when varying n (Fig.6 from [22]): the growth rate of the mode is changing with the interaction

index but the frequency remains approximately constant.

The annular geometry has been reduced to a simple Rijke tube configuration. For this reduced system, we need

to compare the pure ITA frequency fITA = 1
2τ

to the passive acoustic mode of the Rijke tube of total length Ltot =

Lb +Lm. For lab-scale combustors, the burners are rather short, of the order of magnitude of a centimeter (1.5 cm in

our application case). Following Eqn. (19), because the speed of sound is usually high in the chamber, it is straight

forward to prove analytically that, for all azimuthal order m, Lm is always at least one order of magnitude lower than

L, the distance between two burners. For such combustors, the effective length Lm is small, of the order of magnitude

of a centimeter for low azimuthal mode order, and much smaller for higher mode order. Therefore, the total length

of the equivalent Rijke tube is of the order of magnitude of 1–10 cm, which leads to passive acoustic modes at high

frequencies (above 1000 Hz). On the other hand, because the time delay of the flame response is usually between 1–

2 ms, the pure ITA fundamental frequency fITA = 1
2τ

will be below 500 Hz. The passive acoustic mode is far away from

the pure ITA fundamental frequency. Therefore, for all azimuthal mode order m, thermoacoustic modes of acoustic

and ITA origin do not interplay: ITA modes of various azimuthal order will remain close to the pure ITA frequency,

and thus creating clusters of ITA modes. Note that this result may not directly apply for industrial configurations where

the dimensions are much more significant and could lead to ITA-acoustic interplay. Similarly, this hypothesis is also

not valid for clusters of ITA harmonics which are located at higher frequencies. In both cases, clusters are still present

but may not contain all azimuthal mode order: some modes may shift and be offset from their respective clusters. This

will be develop in a following section.

Figure 7 presents the spectrum of our application case. The equivalent Rijke tube reduced model (squares) shows
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Fig. 7: Thermoacoustic spectrum where ITA modes show various azimuthal order. Crosses: full system. Squares:
equivalent Rijke tube model. Colors indicate the azimuthal order as defined in Fig. 2.

excellent agreement with the full system predictions (crosses) computed by taX. Some discrepancy is observed for the

axial mode, that is explained in a next section. Thermoacoustic modes of acoustic origin are completely out of the

frequency range of interest and do not interplay with thermoacoustic modes of ITA origin. The latter, as expected,

lie around the pure ITA frequency, at 250 Hz. Their growth rate changes with the mode order: modes with higher

azimuthal order are more damped, as it was also observed by Buschmann et al. [23, 24]. We explain this phenomena

in the next section.

On the Damping of ITA Modes

In this section, we want to investigate how the damping of an ITA mode is affected by the azimuthal order. As a

first case, we consider a Rijke tube, as depicted in Fig. 6, where the effective length Lm is about the same length as

the burner Lb. The flame is located approximately in the middle of the Rijke tube, away from the boundaries. This

first case models a low azimuthal order ITA mode. This one dimensional thermoacoustic system is studied here by

means of a phasor analysis. The spatial evolution of Riemann invariants f and g along the system is modeled with

phasors rotating in the complex plane. Such analysis was previously applied in the context of ITA modes [17, 18] and

has proven to be convenient to study linear stability.

For simplicity, we consider a mode at the stability limit (zero growth rate) in order to impose a fixed length to

each phasor. A phasor diagram associated with the acoustic waves f and g is displayed in Fig. 8. For convenience, it

is assumed that the phasor fin is aligned with the real axis of the complex plane. The reflecting condition at the inlet
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implies that gin = − fin. The acoustic wave f will travel from the inlet to the flame along the duct of length Lb. The

wave at the location u, upstream of the flame, is related to the inlet by fu = fine−iωLb/cu . On the phasors plot, this leads

to a rotation of an angle ϕu = ωLb/cu. Conversely, the g phasor will rotate with the same angle ϕu but in the opposite

direction. Sum and subtraction of the phasors yields the acoustic phasors p′ and u′ respectively.

The same analysis is performed from the downstream boundary. The top of Fig. 9 presents the phasors plot

rotating from the outlet to the location just downstream the flame. For the sake of simplicity in the diagrams, we

assume ρ̄ucu = ρ̄dcd = 1. Such a simplification allows to define p′ = f + g and u′ = f − g. Note that taking into

account the temperature jump across the flame would lead to the same conclusion. The direction of fout and gout are

known because the outlet boundary condition needs to be satisfied, but their length is not known a priori. From the

outlet, f and g rotate by an angle ϕd = ωLm/cd . Note that their sense of rotation is opposed with respect to the ones of

fu and gu because waves propagate now from the downstream side. The direction of the phasors fd and gd downstream

the flame is therefore known. Jump conditions across the flame need to be fulfilled. Knowing the direction and the

magnitude of p′u, and knowing the directions of fd and gd , it is possible to geometrically construct the lengths of the

latter. Using Eqn. (7, 2), determining the heat release q̇′ is straight forward.

We now consider a second case where the upstream part of the flame is identical, but the effective length Lm

downstream the flame is shorter, about half of the length of the first case. The flame is now located closer to the outlet

boundary. This second case is representative of a higher azimuthal order ITA mode. Because the upstream part is

unchanged, the upstream phasor plot is identical to Fig. 8. On the other hand, the downstream phasor plot differs.

Because Lm is smaller, the phasors will rotate from the outlet with a smaller angle ϕd , as shown in the bottom of

Fig. 9. Because the pressure continuity at the flame still needs to be fulfilled, the length of fd and gd should be adapted

accordingly. As a result, the phasors fd and gd are longer than in the first case, which leads to a longer phasor of

velocity u′d . The latter implies that Eqn. (2) is satisfied for larger values of q̇′

Summarizing, we have shown that q̇′ for the second case is larger than q̇′ for the first case in the region of marginal

stability. Accordingly, we conclude that the second system requires more energy than the first one to remain neutrally

stable, and, therefore, its critical interaction index nc is higher. Said differently, if we inject the same amount of energy

q̇′ in both systems (i.e. if both systems have the same interaction index n), the second one will exhibit higher damping.

The proposed phasor analysis sheds a light on the spectrum shown in Fig. 7: the effective length Lm decreases with

the mode order m, therefore higher azimuthal order ITA modes are more damped.
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Fig. 8: Phasors diagram of acoustic waves f and g at the inlet and at the location u, just upstream of the flame. Sum
and subtraction of these phasors yields the acoustic phasors p′ and u′.

Fig. 9: Phasors diagram of acoustic waves f and g at the outlet and at the location d, just downstream of the flame.
Top: ITA mode with a low azimuthal order. Bottom: ITA mode with a higher azimuthal order.

ITA MODES DRIFTING AWAY FROM THEIR CLUSTER

In Fig. 7, we observed that the axial mode is slightly offset from the cluster: its frequency is around 222.7 Hz,

compared to the 250 Hz of the pure ITA frequency. The reduced Rijke tube model is not able to capture this drift. In

this section, we investigate the cause of ITA modes shifting away from their cluster. We will demonstrate that this

phenomena takes place when the π-criterion [8] is broken. Two causes are identified.

The first cause is the gain or losses introduced by acoustic boundaries. The gain of the equivalent reflection

coefficient as defined in Eqn. (14) is not always unity for complex-valued frequencies. Figure 10 shows the evolution

of the gain of R0 with respect to frequency and growth rate around the pure ITA frequency. The gain drifts from

unity by up to 20%. Hence, away from zero growth rate, the boundary is not anymore fully reflecting but introduces

some losses/amplification. For azimuthal order, as shown in Fig. 11 for m = 1, the gain of Rm is unity and uniform

away from the passive acoustic chamber mode f = mcd
Pc

. But, in the region close to the passive chamber mode, at non

zero growth rate, the gain of Rm exhibits important variations, also transforming the fully reflecting boundaries into

boundaries with losses/gain.

The second cause is the range of validity of the model where the phase Rm is considered linear with respect to
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Fig. 10: Gain of the equivalent reflection coefficient R0 as a function of frequency and growth rate. Red line: pure
ITA frequency. Black lines: isolines varying from 0.85 to 1.2 with an increment of 0.05. Away from the real axis, the
gain differs from unity; the boundary is not fully reflecting but introduces damping/amplification.

frequency. Indeed, this model is valid for low frequencies and up to a certain extent. For higher frequencies, the

phase of the equivalent reflection coefficient Rm stops evolving linearly with He, and is rather similar to Fig. 2. The

approximation of the system by a Rijke tube is not valid anymore. Nevertheless, the system can still be modeled by a

longitudinal combustor with an outlet boundary that depends on the frequency as in Fig. 4.

The two aforementioned effects lead to ITA modes drifting away from their pure ITA frequency. When the

boundaries are fully reflecting, p′ and u′d are orthogonal, as illustrated on the left side of Figure 12. The velocities u′u

and u′d are aligned with the real axis but have opposite directions. The phase difference between u′u and u′d is ϕ = π .

It is possible to estimate the frequency of the ITA mode f = ϕ

2πτ
= 1

2τ
. We here retrieve the classic π-criterion to

identify ITA modes [8]. However, when the outlet boundary is not fully reflecting, p′ and u′d are not orthogonal. The

phase between the velocities u′u and u′d changes and therefore, the π-criterion is broken, as depicted on the right side

of Fig. 12. The ITA mode has frequency different from the pure ITA frequency, i.e. the mode is offset from its cluster.

It is interesting to notice from Fig. 2 that the phase of Rm is linearly dependent on frequency over a wider

frequency range for modes with a higher azimuthal order. The higher the mode order, the larger the region of validity of

the Rijke tube model with fully reflecting boundaries. This means that, for ITA harmonics, modes with low azimuthal

order are the first to deviate from the cluster. Figure 13 presents the spectrum of an annular chamber with ITA

fundamental modes and first harmonics. Note that, because the full system can be reduced to a longitudinal burner,

the analytical expression of the frequency spacing between ITA modes ∆ f = 1/τ derived by Emmert et al. [7] applies

here. Therefore, this explains the constant frequency spacing between clusters. In the first cluster, all the modes are
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Fig. 11: Gain of the equivalent reflection coefficient R1 as a function of frequency and growth rate. Diamond: passive
acoustic mode of the chamber. Black lines: isolines varying from 0.85 to 1.2 with an increment of 0.05. In the region
of the passive acoustic chamber mode, the gain differs from unity; the boundary is not fully reflecting but introduces
damping/amplification. Results are similar for other mode orders. Note that the frequency range of interest is different
from Fig. 10.

Fig. 12: Phasors diagram in the case of fully reflecting boundary conditions (left) and non fully reflecting boundary
conditions (right). For the second case, the π-criterion for ITA modes is not fulfilled. The mode will shift away from
the pure ITA frequency.

around the pure ITA frequency, besides the axial mode, as explained earlier. In the second cluster, the first azimuthal

mode is also offset from its cluster. Indeed, at such frequency, the Rijke tube approximation is not valid, the outlet

boundary of the equivalent longitudinal burner is not fully reflecting and the π-criterion is not fulfilled: the ITA mode

cannot be around the pure ITA frequency of the first harmonic. The same observations can be made by considering

higher harmonics: the second azimuthal order mode will deviate, then the third and so on.
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Fig. 13: Thermoacoustic spectrum of an annular chamber. In the first cluster, only the axial mode is offset. In the
second one, both axial and first azimuthal order are offset from their cluster. Crosses: first ITA cluster. Diamonds:
second ITA cluster. Colors indicate the azimuthal order as defined in Fig. 2.

CONCLUSION

In this paper we proposed a new approach that combines network models and Bloch theory to describe ITA modes

in an annular chamber. Bloch boundary conditions are convenient to use because they enable us to limit the study to

a single unit cell and reconstruct the results for the full system without loss of accuracy. We analytically derived

a reflection coefficient that models the chamber and how the latter affects the acoustic in the burner. With the use

of Bloch theory and Riemann invariants, an annular configuration, where axial and radial dimensions are negligible

compared to the azimuthal direction, can be reduced to a simple equivalent longitudinal combustor. The equivalent

reflection coefficient depends on the frequency and the azimuthal order of the mode present in the chamber. The

area ratio between burners and chamber also widely influences the coupling between the latter and consequently the

acoustic response of the burners. The model was derived without loss of generality and is suitable to describe various

cases, from annular geometries to can-annular configurations where the burners dimensions are much more significant

and the chamber consists only of a small cross-talk area.

The suggested model was applied to a lab-scale combustor. For such configurations, when the acoustic mode

of the chamber is far away from the pure ITA frequency, we showed that the longitudinal burner can be reduced to

an even simpler model, a Rijke tube with fully reflecting boundaries. The length of the Rijke tube and the flame

position in it depends on the azimuthal mode considered. But, because the acoustic mode of the Rijke tube and the

ITA frequency are away from each other, thermoacoustic modes of acoustic and ITA origin do not interplay with each
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other. Therefore, for every azimuthal order, each ITA mode has a frequency close to the pure ITA frequency: this

explains the origin of ITA clusters.

The reduced Rijke tube model also allowed us to explain the structure of the spectrum. The flame position in the

Rijke tube varies with the azimuthal order, the higher the order, the closer the flame is to the outlet boundary. With

the use of a phasors analysis for ITA modes, we showed that, for a flame close to the outlet, the system requires more

energy to stay at the stability limit than for a case where the flame is far from the outlet. Said differently, for a given

heat release rate, the closer the flame to the outlet, the more damped the mode. This result explains the spectrum

structure where ITA modes of higher order are always more damped.

Finally, we investigated the phenomenon of ITA modes drifting away from their clusters. When the outlet bound-

ary is not fully reflecting, pressure and velocity are not orthogonal and the π-criterion is broken. The frequency of

the ITA mode is different from its pure ITA frequency, i.e. the mode is offset from its cluster. We demonstrated that

low azimuthal order modes deviates first. The impact of the plenum and a possible interplay between thermoacoustic

modes of ITA and acoustic origin can be investigated in future work.
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APPENDIX: DERIVATION OF T-JUNCTION MODEL

The derivation does not show any major difficulties but requires some mathematical precautions. Eqn. (8) has 6

unknowns for only 3 equations. The unknown gA can be easily eliminated by inserting Eqn. (9) in Eqn. (8):

{ fC +gC = fB +gB (20a)

fC−gC = fB−gB +α fA(1−Rm) (20b)

Combining Eqn. (10, 11) allows us to directly connect locations B and C of the T-junction.

 fC

gC

=

ei( 2πm
N +kL) 0

0 ei( 2πm
N −kL)


 fB

gB

 (21)
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With Eqn. (21), Eqn. (20) simply becomes:

 ei( 2πm
N +kL) fB + ei( 2πm

N −kL)gB = fB +gB (22a)

ei( 2πm
N +kL) fB− ei( 2πm

N −kL)gB = fB−gB +α fA(1−Rm) (22b)

which is a system of 2 equations for 3 unknowns. But the unknown fA can be expressed as a function of fB and gB

using Eqn. (8a)

fA =
fB +gB

1+Rm
(23)

This requires the reflection not to be Rm =−1 but this is a meaningful hypothesis for this configuration. Indeed if the

reflection coefficient is Rm =−1, Eqn. (8a) leads to:

{ fB =−gB (24a)

fC =−gC (24b)

Inserting Eqn. (21, 24b) into Eqn. (24a) writes

fCei 2πm
N

(
eikL− e−ikL

)
= 0 (25)

Equation (25) is satisfied for one of the following conditions:

• fC = 0. This implies fA = gA = fB = gB = gC = fC = 0, which is the trivial case where no acoustics is present in

the system.

•
(
eikL− e−ikL

)
= 0. The frequency is then imposed by the condition

kL = He = hπ, h ∈ N (26)
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The equivalent reflection coefficient Rm can be equal to −1 only if Eqn. (26) is satisfied. Because of the periodicity

of the complex exponential, we can limit the study to only 2 cases: He = 0 and He = π .

We consider the first case where He = 0. Equation (22a) simply becomes

(
ei 2πm

N −1
)
( fB +gB) = 0 (27)

Equation (27) is satisfied for the following conditions:

• m = 0. Inserting this condition into Eqn. (22b) leads to the only non trivial solution R0(He = 0) = 1

• if m 6= 0, we have the condition fB +gB = 0 = fA +gA which directly reads to Rm(He = 0) =−1

We now consider the second case where He = π . Equation (22a) becomes

(
ei 2πm

N +1
)
( fB +gB) = 0 (28)

Equation (28) is satisfied for the following conditions:

• m = N/2. Inserting this condition into Eqn. (22b) leads to the only non trivial solution RN/2(He = π) = 1

• if m 6= N/2, we have the condition fB +gB = 0 = fA +gA which directly reads to Rm(He = π) =−1

The equivalent reflection coefficient Rm takes the value −1 only at frequency He = 0 for all azimuthal orders, except

the axial mode, and at frequency He = π for all azimuthal orders, except the push-pull mode. Otherwise, for every

other frequency, Rm 6= −1. Inserting Eqn. (23) in Eqn. (22) allows us to eliminate the unknown fA and have a final

system of 2 equations with 2 unknowns whose final form is Eqn. (13).
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