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1

Executive Summary 
 
This document reports the results of Task 6.4 of Work Package 6 of the PRACE project. The 
overall objectives of WP6 are to identify and understand the software libraries, tools, and 
skills required by developers to ensure that their applications can use a petaflop/s system 
productively and efficiently. Task 6.4 explored and documented promising petascaling 
techniques. Related work has been done in Task 6.5 on serial optimization techniques and 
Task 6.6, which explores software libraries and programming models suitable for petascaling. 

The approach taken to reach the objectives of Task 6.4 was to scale a set of applications to a 
large number of processors as possible on the PRACE prototypes. The scientific areas range 
from chemistry to geophysics codes (see [21]). The applications were chosen in tasks 6.1 and 
6.2 by surveying leading HPC centres in Europe. Based on this survey the following 20 
applications were chosen to be representative of codes used in HPC centers in Europe: 

Alya, AVBP, BSIT, Code_Saturn, CP2K, CPMD, Echam5, EUTERPE, Gadget, GPAW, 
Gromacs, HELIUM, NAMD, NEMO, NS3D, Octopus, PEPC, SIESTA, QCD and 
Quantum_Expresso. 

Each of the above applications was evaluated and scaled by a small team of researches from 
the PRACE partners, headed by a Benchmark Code Owner (BCO). The applications were 
scaled on the PRACE prototypes, which represent the current top of the line supercomputer 
architectures. This work has resulted in twenty application reports written by the BCOs and 
their teams, detailing their findings, while working with the applications. These document 
experiences, parallel optimizations, best practices, encountered bottlenecks, and future scaling 
work. This lays the groundwork for reaching petaflop/s performance on the future PRACE 
Tier-0 petascale machines. Furthermore other people wishing to scale their codes can use 
these reports, the synthesis of techniques given in chapter 2, and the experiences of the BCOs.  

In summary, the petscaling of twenty applications has shown that it is not possible to 
recommend a single set of generic optimizations that is suitable for all codes, there are some 
which show good scalability for many codes or that should be pursued further in the future. 
One example is hybrid parallelization, which demonstrated promising results, although 
surprisingly few of the applications employ this technique fully at the moment. However, 
many are planning to do so in the future. Since each application has been ported to several of 
the prototypes systems, the application evaluation shows the suitability of a given architecture 
for running a particular code.  

The above work was done in close collaboration with the main developers of the applications 
and useful optimizations have been reported back, so they can be merged in the main branch 
of the codes.  
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2

1 Introduction 

 

To achieve petascaling is very hard and relatively few codes have managed to petascale to this 
date. However, as HPC machines are rapidly reaching and even surpassing the one petaflop 
barrier, more and more codes need to petascale to take advantage of such systems. There is 
therefore a need to understand the various approaches which are required to achieve 
applications scaling to petaflop/s performance. To achieve this goal, it is necessary to 
understand the limitations of scaling and to know which strategies are useful to explore to 
reach petascaling.  

The Partnership for Advanced Computing in Europe (PRACE) has the overall objective to 
prepare for the creation of a persistent pan-European HPC service. PRACE is divided into a 
number of inter-linked work packages, and WP6 focuses on `Software Enabling for Petaflop/s 
Systems` and therefore addresses the above. This document is part of WP6 and its objective is 
to investigate the approaches required for applications to petascale and to explore promising 
petascaling techniques. The best way to do this is to take common HPC applications and 
optimize them on petaflop/s systems in order to understand the best practices to petascaling. 
Since PRACE did not have any petaflop/s systems at the beginning of this task, all petascaling 
work had to be done on prototypes. These prototypes represent promising architectures which 
might be expanded to petaflop/s size in the future PRACE project. The following systems are 
the prototypes, which were used: 

• Jugene  (BlueGene/P @ FZJ),  
• Louhi  (Cray XT5 @ CSC),  
• Huygens (IBM p575 P6 @ SARA), 
• Maricel (IBM PowerXCell @ BSC),  
• HLRS-Vector (NEC SX-9 @ HLRS). 

The processor types and site are given in parentheses. 
The above prototypes are covered in detail in deliverable D5.2. It should be noted that this 
report can not be used to compare prototypes. It only addresses how to achieve parallel 
scalability on different platforms. The scaled and ported applications, however, will be used 
as a PRACE benchmarking suite (PABS) to assess prototypes in other WPs. PABS is being 
compiled in Task 6.3. For a comparison of prototypes see deliverable D5.4. 
 

1.1 Structure of the report 

This document has three main sections. In Chapter 2 five petascaling techniques which have 
been used by the Benchmark Code Owners (BCOs) to scale their application are described. 

Chapter 3 contains the individual application scaling reports, written by the BCOs, which 
describe the actual techniques used to scale the applications and the resulting performance 
gains. This includes the effectiveness of each optimization, best practices, bottlenecks, and 
challenges in scaling. These reports are between 5-10 pages each.  

Chapter 4 gives a preliminary conclusion of the work. It must be noted, that the size of the 
prototype systems is not at the petaflop/s level. The results indicate promising trends. The 
actual hard work to scale important application is yet to come. 
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2 Approaches to Petascaling 

A petascale computer has a large number of processors, usually between 104 and 105 
processors. This large number of processors worsens the common scaling problems caused by 
load imbalance, communication overheads, parallel I/O etc. The objective of task 6.4 of the 
PRACE project is to understand and mitigate these kinds of bottlenecks. This chapter distils 
the twenty application scaling reports from the BCOs to cover some important and common 
optimization techniques used to overcome bottlenecks, which typically limit scalability. 
However, before going any further, it is important to specify what is meant by optimization 
techniques. This report only covers optimization techniques which results in out of core 
scalability, such as node to node scalability. On core optimization techniques such as loop 
unrolling, vectorization etc. are equally important in reaching petascaling performance and are 
covered by deliverable 6.5.  

The topics which have been distilled in this chapter are: load balancing, parallel I/O, 
checkpointing, hybrid parallelization and minimization of communication overheads. These 
are some of the most common approaches which have been used in the application reports 
from Chapter 3, to scale applications. It should be noted that these techniques are only 
considered best practice and are not necessarily suitable for all applications. 

 

2.1 Load Balancing 

Load imbalance is the source of performance degradation for a large variety of applications, 
since it leads to underutilised CPU resources. Load balancing in a petascale parallel system is 
an intricate task that needs to consider several factors such as even distribution of 
computation and communication, respect of dependence constraints and dynamic changes in 
the workload of the application. Load balancing in high performance computing has the 
ultimate goal of minimizing the overall parallel completion time of the application by 
efficiently utilising the execution platform’s available resources (CPU, communication links, 
etc.). 

Load balancing schemes used in parallel applications can be broadly classified into two 
categories: static and dynamic. If the workload pattern and the nature of imbalance are known 
or can be accurately predicted before the execution of the application, static balancing 
techniques are more appropriate. On the other hand, if the load variances occur during the 
execution of the application and are heavily dependent on dynamic input and calculations, the 
decisions on load balancing should be taken dynamically. Dynamic load balancing in this case 
is more efficient, but one needs to consider the cost of dynamic task orchestration and 
carefully design the balancing schemes to avoid the creation of hot spots in the execution of 
the parallel algorithm. 

Load imbalance may occur in a variety of parallel applications. Algorithms expressed by 
loops with non-constant bounds lead to varying workloads per loop iteration. Linear algebra 
decompositions (e.g LU) involve a much larger number of computations on the lower-right 
part of the matrix than those that are performed on the upper-left. Naïve data and computation 
distribution in these cases can lead to severe load imbalance. Another classical example for 
the need of load balancing in scientific computing is the iterative solution of large sparse 
systems in parallel computers. Iterative solvers involve the multiplication of a sparse matrix 
with a dense vector. The distribution of the rows of the matrix to the processing nodes of the 
parallel platform needs to ensure both that equal computational load and the same volume of 
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data and number of communication messages are assigned to each node. This is formulated as 
a graph partitioning problem.  

In several applications, as the simulation progresses different parts of the computational mesh 
has to be refined. This means that even if the initial workload distribution is balanced, 
dynamic mesh changes lead to load imbalances during the execution. In general, the 
simulation of dynamic systems (e.g. N-body simulations) very frequently leads to the need for 
dynamic and adaptive load balancing schemes. Finally, algorithms and computations 
performed on irregular data structures (trees, graphs, linked lists, etc) may also lead to load 
imbalance since the initial assignment of work cannot guarantee fair evolution of operations 
in all participating processing elements. 

The following paragraphs describe several load balancing techniques that belong to the two 
aforementioned families of balancing strategies, static and dynamic. Although the general 
philosophy of load balancing remains the same, each application has its own features that 
favour specific approaches to be followed. 

2.1.1 Static 

Static load balancing is implemented with static mapping of tasks and data among processes 
prior to the execution of the algorithm. The choice of a good mapping in this case depends on 
several factors such as prior knowledge of workload and interactions between tasks. Even in 
the simple case that task loads are known, the problem of obtaining the optimal mapping is 
NP-complete for non-uniform tasks. However, for many practical cases heuristics can provide 
fairly acceptable solutions to the load balancing problem. Static mapping and consequently 
load balancing is frequently achieved by schemes distributing loop iterations, data (e.g. 
chunks of an array) or tasks (e.g. nodes of a task-dependency graph) to the available 
processes.  

Loop scheduling requires to solve the problem of assigning proper iterations of parallelizable 
loops among n processors to achieve load balancing and with minimum dispatch overhead. In 
static loop scheduling the loop iteration space is divided into n chunks and each chunk is 
assigned to a processor. The volume of each chunk in static scheduling is based on the 
knowledge of the iteration space before the execution and follows the simple rule that each 
chunk of iterations assigned per process should contain the same volume of computations and 
not necessarily the same number of iterations. If a priori knowledge of the iteration space does 
not exist, then static loop scheduling could result in load imbalance. In this case dynamic 
schemes should be employed to achieve balancing. 

Load balancing schemes that are based on data partitioning are suitable for algebraic 
computations on matrices implemented in a high-level programming language as 2-
dimensional arrays. The data partitioning actually induces task decomposition, since data that 
are assigned to one processing element lead to the assignment of computations (writes) on 
them. This is known as the “owner-computes” rule. The most commonly used approaches for 
data decomposition, which in this case coincides with array distribution, are the following: 

Block distributions are the most straightforward way to scatter array elements among the 
available processing elements. Following this scheme one assigns uniform contiguous 
portions of the array to different processes. Thus, the 2-dimensional array is distributed 
among the processes by chunks of rows, columns or blocks. This scheme achieves load 
balancing when the computations of the algorithm are evenly distributed among the array 
elements as, for example, in the case of matrix multiplication. This distribution scheme can be 
generalized for d-dimensional arrays. The choice between one, two or even higher 
dimensional distributions is not guided by load balancing criteria in this case, but rather by 
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other criteria such as cache utilization, communication pattern and good utilization of the 
available processes. 

Cyclic and Block Cyclic distributions are used when the amount of computation is different 
between the elements of the array. In this case block distribution will lead to load imbalance. 
The classic example in this case is LU factorization of a matrix in which computation 
increases from the top left to the bottom right of the matrix. The central idea behind cyclic 
distributions is to assign chunks of elements cyclically to the available processes, so that each 
process has an almost equal set of elements in each region of the array. Block cyclic 
distributions are quite general, since block and cyclic distributions are special cases of it.  

A large number of partitioning and load balancing schemes have been proposed for 
computations that can be described by task graphs. A task graph is a graph in which each 
node represents a task to be performed, while each edge represents dependences between the 
tasks. Each node has a metric associated with the task execution time, while edge weights can 
be used to express the required communication from one task to another. A large variety of 
applications can be described following the task graph model. The most characteristic 
example in scientific computing is the computation on meshes (e.g. in the Finite Element 
Method), where the computations on the mesh points are the task graph nodes and the 
connection between the elements lead to the task graph edges. In such scientific simulations, 
the structure of the computation evolves from time step to time step. These simulations 
require decompositions of the mesh (task graph) prior to the start of the simulation. The 
decomposition typically needs to fulfill two significant properties: load balance and 
minimization of communication. The distribution of mesh elements (task graph nodes) 
between processing nodes with the goal to keep the computations between the processors as 
even as possible, minimizing simultaneously the number of edges that cross-cut the partition’s 
boundaries (edge-cut) is the well-known graph partitioning  problem. The graph partitioning 
problem is known to be NP-complete. Therefore, in general it is not possible to compute 
optimal partitionings for graphs of interesting size in a practical amount of time. This fact has 
led to the development of numerous heuristic approaches.  

Geometric techniques compute partitionings based on the coordinate information of the initial 
mesh nodes, and ignore the connectivity between the mesh elements. The goal of geometric 
techniques is to form groups of vertices that are spatially close to each other, whether or not 
these vertices are connected. Since the edge-cut metric is irrelevant for this family of 
techniques, interprocessor communication due to parallel processing is minimized by using an 
alternative metric, i.e. the number of mesh elements that are adjacent to nonlocal elements. 
Typically, geometric partitioners are extremely fast. However, they tend to compute 
partitionings of lower quality (in terms of interprocessor communications) than schemes that 
take the connectivity of the mesh elements into account. Coordinate nested dissection (CND), 
Recursive Inertial Bisection (RIB) and Space-Filling Curves schemes fall into the family of 
geometric techniques. 

Combinatorial partitioners use an opposite notion to that of geometric partitioners. They 
attempt to group together highly connected vertices, whether or not these are close to each 
other in space. That is, combinatorial partitioning schemes compute a partitioning based only 
on the adjacency information of the graph and do not consider the coordinates of the vertices. 
For this reason, the partitionings produced typically have lower edge-cuts (interprocessor 
communication). However, combinatorial partitioners are much slower than geometric 
partitioners. The levelized nested dissection (LND) and the Kernighan–Lin/Fiduccia–
Mattheyses Algorithm (KL/FM) are typical combinatorial partitioning techniques. 

Another method of solving the problem is to formulate it as the optimization of a discrete 
quadratic function. However, even with this new formulation, the problem is still too difficult 
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to solve in practical times. To deal with this, a class of graph partitioning methods, called 
spectral methods, relaxes this discrete optimization problem by transforming it into a 
continuous one. The minimization of the relaxed problem is then solved by computing the 
second eigenvector of the discrete Laplacian of the graph. 

A new class of partitioning algorithms is based on the multilevel paradigm. This approach is 
based on three distinct phases: graph coarsening, initial partitioning, and multilevel 
refinement. In the graph-coarsening phase, a series of graphs are constructed by grouping 
together selected vertices of the input graph in order to form a related coarser graph. This 
newly constructed graph then acts as the input graph for another round of graph coarsening, 
and so on, until a sufficiently small graph is finally obtained. Computation of the initial 
bisection is performed on the coarsest of these graphs and is very fast. Finally, partition 
refinement is performed on each level graph, from the coarsest to the finest (i.e., original 
graph) using a KL/FM-type algorithm.  

The various graph partitioning strategies have advantages and disadvantages concerning the 
quality of the final partition, the partitinioning time, the parallelism and the applicability for 
certain families of graphs or meshes. In several cases, hybrid or combined schemes can lead to 
a better result for the input graph under consideration. For example, an initial partitioning can 
be computed by a fast geometric method, and then the relatively low-quality partitioning can 
be refined by a KL/FM algorithm. 

A large variety of software tools are publicly available offering a wide choice of graph 
partitioners. The METIS package uses multilevel algorithms and has a parallel version 
(ParMETIS). The Chaco package offers a variety of algorithms, geometric, combinatorial and 
multilevel. The JOSTLE package also uses multilevel refinement schemes. The PARTY 
software library uses combined approaches and offers a large variety of algorithms, also 
interfacing to the Chaco packages. The SCOTCH library is based on static partitioning 
implemented by the Dual Recursive Bipartitioning (DRP) approach, enhanced with multi-
level schemes as well. The S-HARP package uses spectral methods and provides a mixed-
mode parallel version for fine-grain and coarse-grain parallelism. 

2.1.2 Dynamic 

In several cases during the simulation of a physical process, the computational grid may 
change. These are the cases when some areas of interest within the computational grid need to 
be more fine-grained to capture the process with higher accuracy, or when the computational 
domain changes structurally. In this kind of simulations the initial distribution of 
computations to the processors of a parallel platform may result to be unbalanced and 
redistribution needs to be carried out to accomplish rebalance. This dynamic load balancing 
can be achieved by using a graph partitioning algorithm. This problem is referred to as 
adaptive graph partitioning to differentiate it from the static graph-partitioning problem that 
arises when the computations remain fixed, as explained in the previous paragraph. 

A repartitioning of a graph can be computed by simply partitioning the new graph from 
scratch. Since no consideration is given to the existing partitioning, it is unlikely that vertices 
will be assigned to their original subdomains with this method. Therefore, this approach will 
tend to require much more data redistribution than is necessary in order to balance the load. 
An alternate strategy is to attempt to adjust the input partitioning just enough to balance it. 
This can be achieved using the following simple repartitioning method: subdomains that 
suffer from excess load are relieved from this load, which in turn is assigned to subdomains 
with lower load. Adjacency of interacting domains is not taken into consideration. This 
method will optimally minimize data redistribution, but it can result in significantly higher 
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edge-cuts compared with more sophisticated approaches and will typically result in 
disconnected subdomains. For these reasons, it is usually not considered a viable 
repartitioning scheme for most applications. A better approach is to use a diffusion-based 
repartitioning scheme. These schemes attempt to minimize the data redistribution costs while 
significantly decreasing the possibility that subdomains become disconnected. 

Load imbalance also occurs in parallel tasks with substantially different and difficult to 
predict execution times. This problem can be considered as a fully parallel loop of the form: 

for (i=0; i < N; i++) /* parallel loop */ 

  do_task(i,input_variable_list); 

If function do_task()does not have constant execution time for the values of its input 
parameters, or its execution time cannot be estimated in any way, then the straightforward 
distribution of the above parallel loop in processing elements may lead to severe imbalance. If 
P processing elements are available, the straightforward, static approach would be to assign 
N/P chunks of the above loop to each processor. However, several dynamic scheduling 
approaches have been proposed that lead to a substantially more balanced distribution of the 
workload than the static one.  

Dynamic scheduling schemes are either centralized or distributed. In the centralized case, a 
master processor coordinates the task distribution by communicating with the worker 
processors that execute the tasks and providing chunks of work dynamically. The simplest 
self-scheduling algorithm, called Self-Scheduling (SS) assigns just one task to each worker per 
request. This algorithm achieves almost perfect load balance. All workers are expected to 
finish at nearly the same time, with maximum difference of a task execution time. However, 
SS may suffer from excess scheduling overheads. Chunk Self-Scheduling (CSS) assigns 
constant size chunks to each worker. The chunk size is usually chosen by the user. A large 
chunk size reduces scheduling overhead, but at the same time increases the chance of load 
imbalance. As a compromise between load imbalance and scheduling overhead, other 
schemes start with large chunks to reduce the scheduling overhead, which are gradually 
reduced in size throughout the execution to improve load balancing. These schemes are 
known as reducing chunk size algorithms. 

In Guided Self-Scheduling (GSS), each worker is assigned a chunk given by the number of 
remaining tasks divided by the number of workers. GSS allocates most of the work in the first 
few scheduling steps and the amount of the remaining work is not adequate to balance the 
workload, so that in some cases the load balancing achieved by GSS is poor. The Trapezoid 
Self-Scheduling (TSS) scheme linearly decreases the chunk size. In TSS the first and last 
chunk size pair may be set by the programmer. All the aforementioned dynamic scheduling 
methods provide flexibility concerning the tradeoff between load-balancing and scheduling 
overheads. Depending on the nature of a particular application (i.e. the minimum and 
maximum computation times of chunks, the distribution of loads among chunks, the 
scheduling overhead times, etc.) and the features of the underlying computational platform, a 
particular method may outperform the rest in terms of total parallel execution time. 

Clearly, centralized approaches may face a severe communication bottleneck, since the master 
that orchestrates the scheduling process constitutes a hotspot in the execution of the 
application. In petascale environments where thousands of processing elements need to 
receive scheduling information, centralized dynamic scheduling schemes cannot serve as a 
viable scheduling approach, especially when also one considers fault tolerance. Distributed 
dynamic scheduling algorithms are executed on each worker processor and are based on local 
information. This strategy does not create any hot spots in the parallel execution and is more 
fault tolerant. However, distributed approaches pay the cost of suboptimal load balance. 
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Standard distributed scheduling approaches are based on the concept of work-stealing. All 
processors that participate in the execution maintain a local queue of assigned jobs. If one 
processor becomes idle, i.e. its local queue is empty; it tries to steal work from the queues of 
other processors. The selection approach of the target processor designates to a large extent 
the success of a particular scheduling scheme. Random, round-robin and more sophisticated 
techniques can be applied to select the target processor, according to the application features 
and the ability to keep and possibly exchange scheduling information. Some of the issues that 
need to be taken care of in this kind of schemes are the following: (a) the consistency of the 
local work queues (e.g. how simultaneous requests to a work queue are handled) (b) the 
decision whether it pays off to apply work stealing (e.g. when the computations are rather 
well balanced) given that on one hand work stealing leads to communication needs and on the 
other hand it removes the job from the cache of processor in charge, to allocate it in new data 
structures of the new processor. 

 

2.2 Parallel I/O 

Due to the large size of petascale systems, data can quickly grow to terabytes in a typical run. 
This data often needs to be saved or read periodically and it is therefore mandatory to have 
reasonable I/O performance to obtain good scalability of applications. This section will 
described how this can be done on parallel computers. 

Parallel I/O systems combine many individual components (e.g. disks, servers, network links) 
together into a coherent whole, used to provide high aggregate I/O performance to parallel 
applications. Many improvements have been made in I/O systems, both by the HPC 
community and by outside groups. One key category of improvements has been in the 
organization of I/O software and in defining standard interfaces to various layers, both 
software and hardware. I/O software has moved from monolithic serial I/O libraries to 
software stacks with at least three layers:  parallel filesystem, I/O middleware, and high level 
I/O interface. These three layers are shown in Figure 1.  

  
 
 

 
Figure 1 I/O software stacks provide the connection between applications and I/O hardware 
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Each of these three layers provides a subset of the overall functionality.  

The high-level I/O library is responsible for applying structure to files in order to maintain a 
self-describing, portable data container and present a data abstraction to the application 
programmer that is close to the model used in the application. Examples of such a library are 
Parallel netCDF and HDF5. Parellel netCDF is built on top of the MPI-IO interface, which is 
part of the MPI-2 standard. The HDF5 high-level I/O library also layers on top of MPI-IO. 

The second key component of an I/O stack is I/O middleware. This component is responsible 
for providing the base on which high-level I/O libraries may be built. This layer provides a 
mapping from the relatively simple interfaces of parallel filesystems into an interface that 
introduces concepts from the programming model, such as communicators and datatypes in 
the MPI programming model. The best example of I/O middleware is the MPI-IO interface. 

The parallel file system (PFS) is responsible for managing all the storage hardware 
components. It presents a single logical view of such hardware, which can be used by the 
other software layers. It also enforces a consistency model so that the results of concurrent 
access are well-defined. One example of parallel file systems is the General Parallel File 
System (GPFS) from IBM. 

The next sections in this chapter will cover implementations of each of the above mentioned 
layers. 

2.2.1 Parallel NetCDF 

NetCDF is an abstraction that supports a view of data as a collection of self-describing, 
portable, array-oriented objects that can be accessed through an interface. It stores data in an 
array-oriented dataset, which contains dimensions, variables, and attributes. Physically, the 
dataset file is divided into two parts: file header and array data. The header contains all 
information (or metadata) about dimensions, attributes, and variables except for the variable 
data itself, while the data part contains arrays of variable values. 

 

The header part describes each variable by its name, shape, named attributes, data type, array 
size, and data offset, while the data part stores the array values for one variable after another, 
in their defined order. For fixed-size arrays, each array is stored in a contiguous file space 
starting from a given offset. To support variable-sized arrays netCDF introduces record 
variables. All record variables share the same unlimited dimension as their most significant 
dimension and are expected to grow together along this dimension. The other, less significant 
dimensions all together define one record of the variable. Figure 2 shows the storage layouts 
in a netCDF file. 
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Figure 2 NetCDF File Structure 

The original netCDF API was designed for serial codes to perform netCDF operations 
through a single process. In the serial netCDF library, a typical sequence of operations to 
write a new netCDF dataset is to create the dataset; define the dimensions, variables, and 
attributes; write variable data; and close the dataset. Reading an existing netCDF dataset 
involves first opening the dataset; inquiring about dimensions, variables, and attributes; 
reading variable data; and closing the dataset. 

The original design of the netCDF interface is proving inadequate for parallel applications 
because of its lack of a parallel access mechanism. Because there is no support for 
concurrently writing to a netCDF file, parallel applications writing netCDF files must serialize 
access. This serialization is usually performed by passing all data to a single process that then 
writes all data to netCDF files. However, serial I/O access is both slow and cumbersome to 
the application programmer. To facilitate convenient and high-performance parallel access to 
netCDF files, there has been defined a new parallel interface called Parallel-netCDF 
(PnetCDF). Since a large number of existing users are running their applications over 
netCDF, PnetCDF retains the original netCDF file format (version 3) and introduces minimal 
changes compared to the original interface. The parallel API is distinguished from the original 
serial API by prefixing the C function calls with “ncmpi” and the Fortran function calls with 
“nfmpi”. 

 

In PnetCDF a file is opened, operated, and closed by the participating processes in a 
communication group, an MPI communicator is added in the argument list to define the 
participating I/O processes within the file’s open and close scope. An MPI info object is also 
added to pass user access hints to the implementation for further optimizations. The same 
syntax and semantics is kept for the define mode functions, attribute functions, and inquiry 
functions. PnetCDF has two sets of data access APIs: the high-level API and the flexible API. 
The high-level API closely follows the original netCDF data access functions. These calls 
take a single pointer for a contiguous region in memory, just as the original netCDF calls. The 
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flexible API provides a more MPI-like style of access and relaxes the contiguous memory 
constraint. Specifically, the flexible API provides the user with the ability to describe 
noncontiguous regions in memory, which is missing from the original interface. These regions 
are described using MPI datatypes. The most important change from the original netCDF 
interface with respect to data access functions, is the split of data mode into two distinct 
modes: collective and noncollective data modes. In order to make it obvious that the functions 
involve all processes, collective function names end with “all”. Using collective operations 
provides the underlying PnetCDF implementation an opportunity to further optimize access to 
the netCDF file. 

 

2.2.2 MPI-IO 

Instead of defining I/O access modes to express the common patterns for accessing a shared 
file (broadcast, reduction, scatter, gather), MPI-IO chooses another approach in which data 
partitioning is expressed using derived datatypes. 

To understand how MPI-IO works, first we must define some key concepts: 

• File: An MPI file is an ordered collection of typed data items. MPI supports random or 
sequential access to any integral set of these items. 

• Displacement: A file displacement is an absolute byte position relative to the 
beginning of a file. The displacement defines the location where a view begins. 

• Etype: An etype (elementary datatype) is the unit of data access and positioning. It can 
be any MPI predefined or derived datatype. 

• Filetype: A filetype is the basis for partitioning a file among processes and defines a 
template for accessing the file. A filetype is either a single etype or a derived MPI 
datatype constructed from multiple instances of the same etype. 

• View: A view defines the current set of data visible and accessible from an open file as 
an ordered set of etypes. Each process has its own view of the file, defined by three 
quantities: a displacement, an etype, and a filetype. 

 

Figure 3 shows an example of how all these concepts are used to achieve a global data 
distribution. 

 

 

 
Figure 3 Partitioning a file among parallel processes 
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The MPI-IO API offers routines to open, close, delete and resize a file. Furthermore, it is 
possible to query the system about file parameters and preallocate space for a file. As in high-
level libraries it is allowed to use some potentially useful hints. These hints mainly affect 
access patterns and the layout of data on parallel I/O devices. In addition, some hints are 
context dependent, and are only used by an implementation at specific times. 

Regarding data access operations, there are three orthogonal aspects to data access: 
positioning (explicit offset vs. implicit file pointer), synchronism (blocking vs. nonblocking 
and split collective), and coordination (noncollective vs. collective). Table 1 enumerates all 
combinations of these data access routines, including two types of file pointers (individual 
and shared):  

 
Coordination Positioning Synchronism 

noncollective Collective 
Blocking MPI_FILE_READ_AT 

MPI_FILE_WRITE_AT 
MPI_FILE_READ_AT_ALL 
MPI_FILE_WRITE_AT_ALL 

Explicit offsets 

nonblocking MPI_FILE_IREAD_AT 
MPI_FILE_IWRITE_AT 

MPI_FILE_READ_AT_ALL_BEGIN 
MPI_FILE_READ_AT_ALL_END 

MPI_FILE_WRITE_AT_ALL_BEGIN 
MPI_FILE_WRITE_AT_ALL_END 

Blocking MPI_FILE_READ 
MPI_FILE_WRITE 

MPI_FILE_READ_ALL 
MPI_FILE_WRITE_ALL 

Individual file 
pointers 

nonblocking MPI_FILE_IREAD 
MPI_FILE_IWRITE 

MPI_FILE_READ_ALL_BEGIN 
MPI_FILE_READ_ALL_END 

MPI_FILE_WRITE_ALL_BEGIN 
MPI_FILE_WRITE_ALL_END 

Blocking MPI_FILE_READ_SHARED 
MPI_FILE_WRITE_SHARED 

MPI_FILE_READ_ORDERED 
MPI_FILE_WRITE_ORDERED 

Shared file pointer 

nonblocking MPI_FILE_IREAD_SHARED 
MPI_FILE_IWRITE_SHARED 

MPI_FILE_READ_ORDERED_BEGIN 
MPI_FILE_READ_ORDERED_END 

MPI_FILE_WRITE_ORDERED_BEGIN 
MPI_FILE_WRITE_ORDERED_END 

Table 1: Data Access Routines 

 
MPI-IO guarantees full interoperability, the ability to read, understand and represent correctly 
the information previously written to a file, within a single MPI environment, and supports 
increased interoperability outside that environment through the external data representation as 
well as the data conversion functions. 

 

2.2.3 GPFS 
The General Parallel File System (GPFS) is a high-performance shared-disk clustered file 
system developed by IBM. A clustered file system is a file system which is simultaneously 
mounted on multiple servers. 

GPFS provides concurrent high-speed file access to applications executing on multiple nodes 
of clusters and can be used with AIX, Linux and Microsoft Windows. In addition to providing 
filesystem storage capabilities, GPFS provides tools for management and administration of 
the GPFS cluster and allows for shared access to file systems from remote GPFS clusters. 

GPFS provides high performance by allowing data to be accessed over multiple computers at 
once. Most existing file systems are designed for a single server environment, and adding 
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more file servers does not improve performance. GPFS provides higher input/output 
performance by "striping" blocks of data from individual files over multiple disks, and 
reading and writing these blocks in parallel. 

Other features of the file system are: 

• Distributed metadata, including the directory tree. There is no single directory 
controller or index server in charge of the filesystem. 

• Efficient indexing of directory entries for very large directories. There is no limitation 
on the number of files on a single directory. 

• Distributed locking. This allows for full POSIX file system semantics, including 
locking for exclusive file access. 

• Filesystem maintenance can be performed online. There is no need to unmount the 
filesystem to, for example, add new disks. It can be performed while the filesystem is 
live. 

 

2.3 Checkpointing 

Large petascale computers are expected to have a fairly short mean time between failures due 
to the large amount of components it comprises. For long runs it is therefore important to save 
its state regularly so that in case of a failure one can resume from the most recent state instead 
of restarting completely. This is known as checkpointing and is a technique for adding fault 
tolerance into computing systems. It basically consists of storing a snapshot of the current 
application state, and using it for restarting the execution in case of failure. Checkpointing 
provides the backbone for rollback recovery, playback debugging, process migration and job 
swapping and is often implemented on top of parallel I/O. 

In Distributed Memory Systems there are two main approaches to checkpointing: coordinated 
checkpointing, in which all cooperating processes work together to establish a coherent 
checkpoint, and communication induced independent checkpointing. Coordinated 
checkpointing is not easy to implement due to the difficulty of obtaining a global consistent 
state, or even the existence of a global clock. In communication induced checkpointing, each 
process checkpoints its own state independently, whenever this state is exposed to other 
processes. 

A number of practical checkpointing packages have been developed for the UNIX family of 
operating systems. These checkpointing packages may be divided into two classes, those 
which operate in user space and those which operate in kernel space. Checkpointing package 
used by Condor and the Portable Checkpointing Library developed by The University of 
Tennessee are examples of user space checkpointing packages. Chpox and the checkpointing 
algorithms developed for the MOSIX cluster computing environment are examples of kernel 
based checkpointing packages. 

There are several research lines in the field of application checkpointing. These will be 
covered here briefly. 

 

2.3.1 Diskless Checkpointing 

The major source of overhead in all checkpointing systems is the time it takes to write 
checkpoints to stable storage (i.e. disks). Diskless Checkpointing is a novel technique which 
uses the philosophy of RAID (Reliable Arrays of Inexpensive Disks) by employing extra 
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processors to provide fault-tolerance instead of disks. This eliminates stable storage as the 
bottleneck in checkpointing, and places the burden on the network. In algorithms for diskless 
checkpointing, processors make local checkpoints in memory and an extra m checkpointing 
processors maintain encodings of these checkpoints, so that if up to m processors fail, their 
contents may be restored by the local checkpoints and checkpoint encodings of the surviving 
processors. See [8] 
 

2.3.2 User-Directed Checkpointing 

This is research based on the notion that a few hints by the user can result in drastic 
improvements in the performance of checkpointing. This is due to memory exclusion, 
meaning checkpointing less than the complete memory image of the program, since the 
jettisoned portions are unnecessary for a correct recovery. Memory exclusion has been 
employed effectively in incremental checkpointing, where pages are not checkpointed when 
they are clean. In other words, their values have not been altered since the previous 
checkpoint. However, memory exclusion has not been employed to jettison dead variables, 
variables whose current values will not be used by the program following the checkpoint. 
With user-directed checkpointing, the user may judiciously place checkpoints to maximize 
memory exclusion due to clean and dead variables. See [9]. 
 

2.3.3 Compiler-Assisted Checkpointing 

The obvious “next step” for user-directed checkpointing is to employ the compiler. The 
reasons are clear. The user may miss potential savings due to memory exclusion, or even 
worse, make erroneous memory exclusion calls.  There have been developed data flow 
equations that enable the compiler to generate correct memory exclusion calls for both clean 
and dead variables. See [10]. 
 

2.3.4 Fast Checkpoint Compression 

Standard compression algorithms have proven unsuccessful at improving the overhead of 
checkpointing, because the time it takes to compress the checkpoint is greater than the time it 
takes to write the original checkpoint to disk. There is ongoing research on algorithms for 
performing fast compression on incremental checkpoints. See [11]. 
 
 

2.4 Hybrid Parallelization 

The peak speeds of high-end supercomputers have grown at a rate that exceeded Moore's 
Law, which says processor power doubles roughly every 18 months. Moores law is an 
empirical law: its meaning has changed over time. However, during the last years the law still 
holds, but it has now been realized differently. 

The current steady trend in high performance architectures is to build large clusters of shared 
memory (SMP) nodes. Today cluster manufacturers are replacing single processors in their 
existing systems with powerful and sophisticated multi-core CPUs. Parallel programming on 
these machines ought to combine the distributed memory parallelization between the nodes 
with the shared memory parallelization inside each node. Nowadays, most of the existing 
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codes are developed using only the pure message-passing paradigm. The Hybrid 
Programming paradigm (also Mixed Programming called) however, can potentially exploit 
features of the SMP cluster architecture better, thus resulting in a more efficient 
parallelization strategy and potentially better performance. 

Message passing codes written in MPI are obviously portable and should transfer easily 
between different SMP systems. Intuitively, a parallel paradigm that uses memory access for 
intra-node communication and message-passing for inter-node communication seems to 
match better the characteristics of an SMP cluster. Combining shared-memory and 
distributed-memory programming models, is an old idea [12]. In the wide spectrum of 
possible solutions for hybrid shared/distributed memory code development, the joint use of 
MPI and OpenMP is emerging. Both MPI and OpenMP are two well-established industry 
standards with solid documentation and different tools are available to assist program 
development.  

The majority of hybrid MPI/OpenMP codes are based on a hierarchical model, which makes it 
possible to exploit large- and medium-grain parallelism at MPI level, and fine-grain 
parallelism at OpenMP level. Hence, hierarchical hybrid code is structured in such a way that 
only a single message passing task, communicating using MPI primitives, is allocated to each 
SMP processing element, and the multiple processors with shared memory in a node are 
exploited by parallelizing loops using OpenMP directives and run-time support. The objective 
is to take advantages of the best features of both programming styles. Considerable work has 
gone into studying the hybrid model. Some examples can be found in [13]. 

Recently, the hybrid model has begun to attract more attention, for at least two reasons. The 
first is that OpenMP compilers and MPI libraries are now solid commercial products, with 
implementations from multiple vendors. The second reason is that scalable parallel computers 
now appear to encourage this model. A lot of scientific work enlightens the complexity of the 
many aspects that affect the overall performance of hybrid programs [14]. Also, the need for a 
multi-threading MPI implementation that will efficiently support the hybrid model has been 
spotted by the research community [15]. 

Hybrid programming with two portable and consolidated APIs would be impossible unless 
each made certain commitments to the other on how they would behave together. In the case 
of OpenMP, one important commitment is that if a single thread is blocked by an operating 
system call (such as file or network I/O) then the remaining threads in that process will 
remain runnable. This means that a MPI blocking call, such as MPI_Recv or MPI_Wait, only 
block the calling thread and not the entire process. This is a significant commitment, since it 
involves the thread scheduler in the compilers runtime system and interaction with the 
operating system. 

The MPI-2 standard defines four different levels of thread safety. These are in the form of 
how an MPI implementation can perform communication between processes: 

_ MPI_THREAD_SINGLE: there is only one thread in the application. 

_ MPI_THREAD_FUNNELED: only one thread may make MPI calls. 

_ MPI_THREAD_SERIALIZED: any threads may make MPI calls, but only one at a time. 

_ MPI_THREAD_MULTIPLE: any thread may make MPI calls at any time. 

An application can find out at run time which level is supported by the MPI library using the 
MPI_Init thread routine. The level of multi-threading provided appears to be heavily 
dependent on the hardware and how MPI is implemented. All MPI implementations support 
MPI_THREAD_SINGLE. The nature of typical MPI implementations is such that they 
probably also support MPI THREAD FUNNELED, even if they do not admit it by returning 
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this value from the MPI_Init thread. Usually when people refer to an MPI implementation as 
thread-safe they mean that the implementation supports the maximum level of functionality 
or, to be more precise, MPI_THREAD_MULTIPLE is returned by the MPI_Init thread. 

 

2.4.1 Main Rules for Mixed Programming 

There are many different approaches to mixed parallel programming. Rabenseifner [16] 
distinguishes different models depending on process/thread hierarchy, overlap of 
communication with computation and the number of threads calling communication routines. 
In all the cases MPI is used for coarse-grain parallelism (i.e. principal data decomposition), 
and OpenMP for fine-grain parallelism inside each MPI process. There are three main 
different mixed mode programming models depending on the way the MPI communication is 
being handled: 

• Master-only, where all MPI communication takes place outside of OpenMP parallel 
regions. 

• Funnelled, where communication may occur inside parallel regions, but is restricted to 
a single thread. 

• Multiple, where more than one thread can call MPI communication routines. 

The master-only approach defines the simplest hybrid programming model with MPI and 
OpenMP, because no particular features are needed. The Funnelled mixed model can be 
achieved by surrounding MPI routines with OMP_CRITICAL, OMP_MASTER or 
OMP_SINGLE directives, inside of a parallel region. One must be very careful, however, 
since the OMP_MASTER directive does not imply an automatic barrier synchronization or an 
automatic flush operation, neither at the entry to nor at the exit from the master section. If the 
application wants to send data computed in the previous section or wants to receive data into a 
buffer that was also used in the previous parallel region, then a barrier (which implies a flush 
operation) is necessary prior to calling the MPI routine. If the data is also used in the section 
after the exit of the MPI routine, then also a barrier is necessary after the exit of the 
OMP_MASTER section. In this way, while the master thread is executing the MPI routine, all 
other threads are sleeping. 

Only the multiple mixed model allows a direct message passing from each thread in one node 
to each thread in another node. However, it requires more complicated communication 
handling which may result in additional overhead. 

Based on these descriptions and because a large number of MPI implementations cannot be 
guaranteed to be thread-safe, to ensure that the code is really portable and runnable over a 
high number of different architectures, all MPI calls should be made to follow a Master-only 
parallelization scheme. 

 

2.4.2 Analysis of Hybrid Parallelization in QuantumEspresso 

The next subsections will cover approaches in hybrid parallelization by analyzing the 
application characteristics and the parallel performance achieved by using the hybrid 
programming model for a real scientific application, Quantum ESPRESSO (QE). QE has been 
chosen for this purpose since it employs hybrid parallelization extensively. QE is an 
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integrated suite of high performance computing codes for electronic structure calculations and 
materials modelling at the nanoscale. See also [17] and references therein. 

The name “ESPRESSO” stands for “opEn Source Package for Research in Electronic 
Structure, Simulation, and Optimization”, while “Quantum” stresses about its scope: first-
principle (i.e. based on the electronic structure) calculations within Density-Functional 
Theory [25] (DFT) in a Plane-Wave (PW) Pseudo-Potential [27] (PP) approach. 

The QE distribution is built around a number of core components, PWscf (Plane Wave self 
consistent field) and CP (Car Parrinello), designed and maintained by a small group of core 
developers. Interoperability of different components is granted by the use of common formats 
for the input, output, and custom work files. Parallelization is achieved using the Message 
Passing paradigm by calling standard MPI libraries.  

High performance on massively parallel architectures is achieved by distributing both data 
and computations in a hierarchical way across available processors, ending up with multiple 
parallelization levels that can be tuned to the specific application and to the specific 
architecture. In more detail, the various parallelization levels are geared into a hierarchy of 
processor groups, identified by different MPI communicators. In this hierarchy, groups 
implementing coarser-grained parallel tasks are split into groups implementing finer-grained 
parallel tasks. The first level is image parallelization, implemented by dividing processors into 
n image groups, each taking care of one or more images (i.e. a point in the configuration 
space, used by the NEB method). The second level is pool parallelization, implemented by 
further dividing each group of processors into npool pools of processors, each taking care of 
one or more k-points. The third level is plane-wave parallelization, implemented by 
distributing real- and reciprocal-space grids across the nPW processors of each pool. The final 
level is task group parallelization [79], in which processors are divided into ntask task groups 
of nFFT = nPW/ntask processors, each one taking care of different groups of electron states to 
be Fourier-transformed, while each FFT is parallelized inside a task group. A further 
paralellization level, linear-algebra, coexists side-to-side with plane-wave parallelization, i.e. 
they take care of different sets of operations, with different data distribution. Linear-algebra 
parallelization is implemented both with custom algorithms and using ScaLAPACK [80], 
which on massively parallel machines yield much superior performances. The table below 
contains a summary of the five levels currently implemented:  
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From an algorithmic point of view QE relies on the following basic kernels: 3D FFT, Linear 
Algebra (Matrix multiplications and Eigenproblem solution), space integrals and point 
function evaluation, where most of the execution time is spent. 
 

2.4.3 Limits of MPI 

QE like many other HPC applications is parallelized only using MPI, meaning that, in order to 
use the whole power of a given machine, one MPI task has to be scheduled on each available 
core. As pointed out in the introduction of this chapter, the number of cores per node is 
rapidly increasing, so that, maintaining the 1 MPI task / 1 core  ratio could easily end up 
stressing the network and the OS, due to the high number of messages delivered inside each 
node. Moreover, many MPI applications like QE make use of global communications like 
MPI_ALLTOALL where the number of messages exchanged grows with the square of the 
number of MPI tasks, making this problem even worse. To make things more difficult for 
pure MPI applications, there is clear tendency in architecture design to reduce the memory / 
core ratio. In fact every MPI task of QE, like many other MPI codes, needs some auxiliary 
data structures to coordinate the activities among tasks. The size of this data structure does not 
decrease with the number of MPI tasks. It rather slightly increases, leaving less space for the 
other data structures. 

On the other hands the number of nodes in a HPC system does not seem to grow as fast as the 
number of cores, making hybrid parallelization attractive for most MPI applications. It is 
important to underline that this does not solve the scalability problem of MPI applications on 
large HPC systems completely, but at least can increase the scalability by a factor that is 
comparable with the number of cores inside each node. In fact MPI application like QE, for a 
given dataset, usually scale almost linearly with the number of processors up to a given 
processor count, above which the speed-up saturates, most often because the data distribution 
becomes too fine grain. The hybrid parallelization can help by differentiating between fine 
grain parallelism (inside the node) and coarse grain parallelism (outside the node), so that 
MPI tasks can scale with the number of nodes and not with the number of cores. In this 
respect the scalability of a hybrid application can gain up to a factor of ten, or even more. 
Therefore, using the hybrid programming model can be a good way to make an application 
that scales up to say 100TFlops, reach 1PFlops.  
 

2.4.4 Hybridization strategy 

After having analyzed the scalability of an MPI code and found that hybridization will be a 
good opportunity to make the code scale to sustained petaflop performance the programmer is 
faced with the problem of how to start hybridizing the MPI code with OpenMP. There are two 
main possible approaches that present somehow different problems, namely the “implicit” 
approach and the “explicit” approach, and there is obviously the combination of the two.  

 
Implicit approach 
 
Because most vendors provide their own libraries in both single- and multi-threaded versions, 
the simplest approach to mixed parallel programming is linking with the multi-threaded 
libraries. Using a multi-threaded library is quite simple but not always immediate. It requires 
recompiling most of the auxiliary libraries to be compatible with the multi-threaded version, 
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to adapt the various makefiles needed to compile the source code and probably rewriting 
pieces of code to conform to new routine prototypes inside the library. It is important to note 
that every time a multi-threaded routine is called, an additional overhead required to spawn 
threads and distribute the work is incurred. This short overhead, multiplied thousands and 
thousands of times, impacts the global performance. Regarding our test case (the QE code) an 
implicit approach has been used for the linear algebra subtask. 
 
Explicit approach 
 
The second approach consists of explicitly instructing the code on using multi-thread 
parallelism. Unlike the previous approach, deeper knowledge of the OpenMP standard is 
required. Starting from an existing code, there are two types of errors that can arise during the 
programming practice. These are correctness mistakes (errors impacting the correctness of the 
program) and performance mistakes (errors impacting the speed of the program). Concerning 
QE, the explicit approach has been used for the ad-hoc 3D FFT implemented in QE. 

 

Implicit and Explicit approach 
 
Regardless of an application spending most of its time inside library subroutines, or an 
application not calling any external libraries, in general one has to use both the implicit and 
the explicit approaches to get the best OpenMP scalability. In this case one has to pay 
attention to OpenMP regions which contain calls to external libraries. If a library is 
multithreaded it may happen that it is incompatible with OpenMP and thus one has to 
substitute the library with a thread safe version. This is not always easy since in general 
multithreaded and single threaded libraries contain the same symbolic names. So the linking 
should be selective.  

In what follow we present two typical examples of the implicit and explicit approaches that 
can be found in real world applications. In particular it is explained how Linear Algebra (LA) 
and FFT have been parallelized using the implicit and explicit approaches in QE, however, 
the approach is absolutely general and can be applied to any other application. 
 
Linear Algebra (implicit approach) 
 
In QE, like in many other applications, parallelization of the linear algebra subtask is 
performed using the ScalaPACK library. ScalaPACK guarantees an almost linear scalability if 
the size of the problem is increased with the number of processors. On the other hand, linear 
algebra inside an application is often used to solve only a subtask of the whole solution, and 
the dimension of this task is constant for a given problem. Therefore, increasing the number 
of MPI tasks reduces the size of the local blocks of the matrix equations solved with 
ScaLAPACK and at a certain point, depending on the architecture; the solution does not scale 
any further. The hybrid approach offers an optimal solution to this problem; one can combine 
the efficiency of the ScaLAPACK to communicate between nodes and the efficiency of the 
SMP LAPACK and BLAS library to scale inside the node, extending the scalability of the 
application to a factor proportional to the number of cores per node.  
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Figure 4 Speed-up of the Linear Algebra( subtask of a Car-Parrinello simulation of 256 water molecules 
 
Figure 4 shows the scalability of the LA subtask on two different architectures performed 
with QE on BCX(CINECA linux cluster with 4 Opteron cores/node,left) and on HPCx (EPCC 
p575 P5 cluster with 16 cores/node, right. Matrix size is 1024x1024. On BCX the pure MPI 
version saturates at 128 cores, while the hybrid version saturates at 512 cores. On HPCx the 
LA subtask saturates at 256 cores, while the hybrid code, combining MPI tasks and OpenMP 
threads (256 tasks and 4 threads) scales up to 1024 cores. 

Note that different combinations of tasks/threads can lead to different scalability behaviour. 
This behaviour can be related to the particular data distribution of ScaLAPACK, where a 
change in one of the parameters (processor grid, block size, ext.) has a great impact on 
performance and therefore parameters need to be changed when changing the number of 
cores. A common experience with hybrid codes is that for a given dataset and a given 
architecture one has to try different combinations of tasks/threads to get the best performance. 
 
FFT (explicit approach) 
 
The FFT implementation in QE is done around the idea of being as modular as possible, 
following the general guidelines of the distribution. There are three main modules that interact 
with each other: fft_parallel.f90 containing one routine, called tg_cft3s, that contains the 
whole main logic behind the ad-hoc FFT algorithm (with and without task groups); 
fft_scalar.f90 containing the “scalar” routines for 1D FFTs along z (cft_1z) and 2D FFTs 
along x and y (cft_2xy); fft_base.f90 containing the routines that handle the communication 
among the MPI tasks. 

During a typical execution, there are two different grids involved in the FFT calculation: one 
for the charge density and for potentials, and another one for the wave-functions. The 
information about the grids is stored in a data structure, called fft_descriptor, replicated on all 
the processes involved in the computation. This descriptor contains: the dimensions of the 
grid, the number of planes, the number of sticks (columns of values in the z direction) for 
each processor, the task group subdivision and also all the information required to perform the 
packing and unpacking of the data before and after the redistribution among the processors. 
The definition of the fft descriptor is placed in types.f90 together with the routines to initialize 
it correctly. 

Both CP and PWscf QE kernels call one unique routine, tg_cft3s, in order to invoke the FFT 
calculation on a specified grid. Using different parameters we can choose to enable (or 
disable) the task group strategy and to perform a forward (from G- to r-space) or backward 
(from r- to G-space) transformation. The grid descriptor is explicitly passed to the routine as 
an argument because QE is designed to operate on different grids together. The routine 
algorithm for FFT on charge density and for potentials grid is summarized below: 
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The above is a pseudo code version of the main 3D FFT driver of QE. Here: cft1z performs fft 
along the z direction being the z columns of values distributed among MPI tasks, fw_scatter 
& bw_scatter perform forward and backward data redistribution among MPI tasks, cft2xy 
performs fft along the x and y directions being the xy planes of values distributed among MPI 
tasks. 
 

2.4.5 Implementation design 

When implementing explicit hybrid codes one also has to decide how to make MPI functions 
cope with threads. For QE the master-only scheme was chosen, where the calls to the MPI 
library are all done outside OpenMP regions. This strategy was chosen because it is 
considered the best suited for portability, in fact not all MPI versions support all the possible 
schema of mixing MPI and OpenMP, and also due to the fact that it is well suited for well 
structured and modular applications like QE, where the bulk of communications is performed 
in well defined points in the code. 

As an example of the explicit master-only approach we consider the OpenMP parallelization 
of the forward 3D FFT (the backward is analogous). Below the MPI version and its hybrid 
equivalent are shown. 

 
Pseudo code relative to the MPI forward 3D FFT. During the FFT along z, x and y are 
distributed, while during the FFT along x and y, z is distributed. fw_scatter performs the data 
redistribution. 

 

  call cft1z ( . . . )      ! FFT along z 
  call fw_scatter ( . . . ) ! data exchange 
  call cft2xy ( . . . )     ! FFT along x and y 

subroutine tg_cft3s ( isgn , fftdescriptor ) 
allocate auxiliary space 
if ( isgn > 0 ) then 
  call cft1z ( . . . ) 
  call fw_scatter ( . . . ) 
  call cft2xy ( . . . ) 
else 
  call cft2xy ( . . . ) 
  call bw_scatter ( . . . ) 
  call cft1z ( . . . ) 
end if 
deallocate auxiliary space 
end subroutine 
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The above is pseudo code relative to the master-only hybrid implementation of the forward 
parallel 3D FFT (the backward is analogous). Here: nsl is the number of z columns assigned 
to each MPI task, nzl is the number of xy planes assigned to each MPI task, Nx and Ny are 
the global dimensions of the 3D FFT in the x and y directions. Along each direction (z, x and 
y) the series of 1D FFT are performed distributing the computation among OpenMP threads, 
the array to be transformed (f in the pseudo code above) is shared among threads, so that each 
thread works on a different portion of the array using a private offset depending on thread ID. 
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Figure 5 Speed-up of the ad-hoc 3D FFT subtask of a Car-Parrinello simulation of 256 water molecules. 

Grid size is 200x200x200. See text for comment. 
  
Figure 5 shows the speed-up results of the hybrid FFT subtask performed with QE on 
BCX(CINECA linux cluster with 4 Opteron cores/node,left) and on  HPCx (EPCC p575 P5 
cluster with 16 cores/node, right).. The behaviour is quite similar on BCX and HPCx. Pure 
MPI code scales between 64 and 128 cores, then there is a negative scalability between 128 
and 256 cores, before starting to scale again between 256 an 1024 cores. The negative 
scalability between 128 and 256 cores depends on the grid size and data distribution. 

Regarding the curve obtained with the hybrid run, it is possible to see that they replicates the 
behaviour of the pure MPI curves but at higher number of cores and with a speed-up 
proportional to the number of threads.  
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!$omp parallel do 
do i = 1 , nsl 
   call 1DFFT along z ( f [ offset( threadid ) ] ) 
end do 
!$omp end parallel do 
call fw_scatter ( . . . )  ! Only the master performs data exchange 
!$omp parallel 
do i = 1 , nzl  
!$omp parallel do 
  do j = 1 , Nx 
    call 1DFFT along y ( f [ offset( threadid ) ] ) 
  end do 
!$omp parallel do 
  do j = 1, Ny 
    call 1DFFT along x ( f [ offset( threadid ) ] ) 
  end do 
end do 
!$omp end parallel 
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2.4.6 Other explicit OpenMP parallelization. 

The FFT and Linear Algebra subtasks are the heaviest computations in QE, but there are also 
many other algorithms that start to be significant, when the number of OpenMP threads is 
increased. These other parts of the code are mainly explicit loops over the real and reciprocal 
grids, or over the number of atoms. The loops over the real and reciprocal space is performed 
to compute space integrals or to evaluate point functions. Both can be easily parallelized with 
OpenMP, with a parallel do plus reduction for space integral, and with a simple parallel do for 
the point functions. Loops over the atoms are a little bit trickier because many times a given 
quantity is computed only for a subset of the atoms. In practice this means that inside the loop 
there is an ‘if statement’ to select whether or not an atom have to be processed. From the point 
of view of OpenMP this means that one has to manage the parallelization explicitly using 
thread IDs to balance the load among threads. 

Just to give an idea of the OpenMP parallelization statements used in QE, here we present 
how we have parallelized the loop to compute the exchange and correlation energy (XC). The 
subroutine computing this quantity (xc) is a function to be evaluated for each point in the grid, 
so that with OpenMP this can be parallelized with a “parallel do” directive. 
 

 
  
Point Function and Space Integrals evaluate Exchange and Correlation (XC) potential and 
energy. Where: rhor is the electron density, xc is the XC function, v is the XC potential, etxc 
is the XC energy and nnr is the number of grid points for each MPI task.  

As stated above there are loops with a more complex structure that are more difficult to 
parallelize. Below there is an example of a loop over the atoms to compute a component of 
the atomic pseudopotential (deeq), where the number of threads and the thread index are used 
explicitly. 
 

 

!$omp parallel do private( rhox, arhox, ex, ec, vx, vc ), reduction(+:etxc) 
     do ir = 1, nnr 
        rhox = rhor (ir, nspin) 
        arhox = abs (rhox) 
        if (arhox.gt.1.d-30) then 
           CALL xc( arhox, ex, ec, vx(1), vc(1) ) 
           v(ir,nspin) = e2 * (vx(1) + vc(1) ) 
           etxc = etxc + e2 * (ex + ec) * rhox 
        endif 
     enddo 
!$omp end parallel do 

!$omp parallel default(shared), private(na,qgm_na,is,dtmp,ig,mytid,ntids) 
              mytid = omp_get_thread_num() 
              ntids = omp_get_num_threads()  
              ALLOCATE(  qgm_na( ngm ) )              ! 
              DO na = 1, nat                 ! 
                IF( MOD( na, ntids ) /= mytid ) CYCLE   
                IF ( ityp(na) == nt ) THEN 
                   qgm_na(1:ngm) = qgm(1:ngm)*  & 

eigts1(ig1(1:ngm),na)*eigts2(ig2(1:ngm),na)*eigts3(ig3(1:ngm),na) 
                   DO is = 1, nspin_mag 
                       dtmp = 0.0d0 
                       DO ig = 1, ngm 
                          dtmp = dtmp + aux( ig, is ) * CONJG( qgm_na( ig ) ) 
                       END DO 
                       deeq(ih,jh,na,is) = fact * omega * DBLE( dtmp ) 
                       deeq(jh,ih,na,is) = deeq(ih,jh,na,is) 
                    END DO 
                 END IF 
              END DO 
              DEALLOCATE( qgm_na ) 
!$omp end parallel 



D6.4  Report on Approaches to Petascaling 
 

PRACE - RI-211528  26.10.2009 
   

24

 
Explicit loop parallelization, loop over the atoms. Where: nat is the number of atoms, ityp is 
the atom type and nt is a parameter to select a given atom type. Other parameter are not 
relevant for our purpose. 
 

2.4.7 Performance of the hybrid code 

 

  
Figure 6 Speed-up relative to 64 cores of a Car-Parrinello simulation of 256 water molecules 

 
 
Figure 6 shows the speed-up results of a Car-Parrinello simulation using QE with Hybrid 
parallelization, performed with QE on BCX(CINECA linux cluster with 4 Opteron 
cores/node,left) and on  HPCx (EPCC p575 P5 cluster with 16 cores/node, right). The two 
graphs are more or less a combination of the linear algebra and FFT subtasks of Fig. 1 and 2. 
This is quite obvious since LA and FFT are the heaviest kernels in the code. Analyzing the 
speed-up curves while on BCX, the pure MPI curve above 128 MPI tasks oscillates between 1 
and 2, on HPCx the curve oscillate up to 512 tasks and between 512 and 1024 tasks, there is a 
speed-up of almost a factor of 2. This behaviour is due to the fact that the LA subtask on 
HPCx does not show a negative speed-up (see Figure 4). Regarding the curve obtained with 
the hybrid run, it is possible to see that it replicates the behaviour of the pure MPI curve, but 
at a higher number of cores and with a speed-up with respect to the pure MPI curve that is 
proportional to the number of threads.  
 

2.4.8 Conclusion 

For tightly coupled applications implemented using MPI, the number of MPI tasks is a critical 
factor for scalability. This is especially true if they rely on global communication. In the past 
these applications could run with one MPI task per core to exploit the power of parallel 
architectures. However, this ratio is not sustainable any longer, since on present and future 
architectures the number of cores per node is increasing and the ratio of memory per core and 
bandwidth per core are decreasing. OpenMP in combination with MPI allows a way to 
distinguish between intra and extra node parallelism and can thus diminish the above 
bottleneck. This technique is called hybrid parallelization and applications can take advantage 
of it by rewriting the parallelization of key algorithms and their data structures to cope with 
this hierarchy. Such a hierarchy can be achieved by following an implicit or an explicit 
approach, or a combination of the two, to combine the efficiency of multithreaded libraries, 
available on most architectures, with explicit OpenMP parallelization of the most compute 
intensive loops. 
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It is important to underline that a hybrid application is also more complex in terms of data 
distribution and therefore the relation between performance and the number of cores is less 
obvious. Different combinations of tasks/threads may show quite different behaviour, 
depending on the dataset. With respect to pure MPI applications more performance tests have 
to be done to get the best performance for a given dataset. As a general rule, if hybrid 
parallelization has been employed, one can expect to gain roughly a scalability increase of a 
factor proportional to the number of cores per node, compared to the pure MPI version.  

 

2.5 Minimizing of Communication Overheads 

Nowadays, message passing is one of the most popular parallel computation models. For 
MPP and clustered SMP architectures, message passing is the only way to communicate 
between different nodes.  MPI parallelization, which is portable and efficient, has been widely 
used on variety of architectures to achieve high applications performance. However, its 
communication overheads can not be fully avoided. The overheads will affect the parallel 
performance more and more with increasing processors/cores used. Petascaling using standard 
processors will involve a large number of processors/cores. It is therefore very important and 
necessary to minimize the MPI communication overheads for a better parallel performance at 
the peta scale. 

The factors which can affect the MPI communication performance are numerous and 
complex, so it is difficult to generalize the MPI code optimizations. Tuning the performance 
of a MPI application depends on the code features, the MPI implementations, the usage of 
MPI in the application and the given platform.  

Lack of sufficient parallelism could be a bottleneck for the application parallel performance. 
In such cases, further parallelization should be applied based on the code investigation and 
analysis where possible. On the other hand, targeting the additional parallelization will 
typically lead to more MPI communications. A larger number of MPI communications will 
reduce the application performance because of the extra overheads. Therefore a balanced ratio 
between the communications and the computations in code is very important.  

The MPI communication functions can be divided into two major types: the point-to-point 
functions and the collective functions. A point-to-point communication involves exactly two 
processes, i.e. the message will be passed from one process to another. A collective 
communication will involve all processes in a specific group at one time. For example, the 
collective functions include barrier, broadcast and global reduction operations, etc. 

For the two communication types, the main reasons for high overheads are different and thus 
varying techniques should be applied to reduce the overheads. For instance, when using the 
point-to-point functions, the communication performance will be more affected by the 
message passing modes (blocking/non-blocking, synchronous/asynchronous), message 
buffering, message passing protocols, message size and number, etc. The optimization 
techniques for point-to-point communications will be discussed in more detail in section 
2.5.1. 

The collective communications could be costly as they may enforce global synchronizations, 
i.e. all processes have to wait for the slowest process. This means the collective functions 
should be used only when it is absolutely necessary. For collective communications, the load 
balance and synchronization are usually the key factors for the communication overheads. 
This will be discussed in the section 2.5.2. 
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From the hardware aspect, there are also many factors for the MPI performance, such as the 
memory subsystem, the network, etc. MPI parallelization should try to adjust the application 
codes to the given platforms.  For example, a good mapping of the virtual processes onto 
physical processors will be quite helpful to improve the communications between nodes. This 
will be discussed in section 2.5.3. Also, on some platforms, e.g. MPP-BG/P, different 
networks will be provided separately for the point-to-point and collective communications. 
Using proper networks will improve the communication performance effectively.  

To optimize MPI applications and minimize the communication overheads, it is important to 
first identify the key bottlenecks. Different HPC tools are provided to help identify and 
analyze the MPI communication behaviors. Commonly used MPI tools include the Craypat 
tool, the IBM MPI Trace tools, Scalasca, Paraver, Vampir, etc. In the PRACE WP6, many 
application optimizations were implemented based on the HPC toolkit profiling results. 

 

2.5.1 Point-to-Point Communications 
The point-to-point communication is the communication pattern only between two processes. 
There are different point-to-point functions which implement the sending and receiving of 
messages between processes in many ways. The communication performance can vary 
considerably depending on the implementations. 

• Blocking / Non-blocking communications 
The blocking communication functions only return once the communication has 
completed, i.e. the message must be successfully sent or received safely and the buffers 
should be available for reuse. This communication mode is obviously quite costly with 
respect to time. 

The non-blocking communication functions will return without waiting for completion of 
the communication. Therefore, the communication can continue in the background and the 
process may carry on with other work, returning at a later point to check that the 
communication has completed successfully. This kind of communication will reduce the 
overheads significantly, especially for the regular communication patterns, e.g. when 
many processes perform halo swapping.  

For a better parallel performance, the non-blocking communication functions should be 
used primarily and the blocking ones should be replaced by the non-blocking 
implementations where possible. An MPI_Wait has to be used in this case to guarantee 
that the buffers are safe to use or modify. Not using MPI_Wait will also lead to memory 
leaks. 

• Message buffering 
In the point-to-point MPI functions, the synchronous send operations will complete only 
after knowing that the message has been received by the receiving process, while the 
asynchronous send operations will not wait for an acknowledgement of a message being 
received but will complete even though the receiving process has not actually received the 
message. Therefore, synchronous operations have a higher latency as they need to wait for 
the acknowledgement from the receiving process. For large messages this is typically 
insignificant, but it is important for smaller messages. 

Message buffering offers the possibility of asynchronous message passing to implement 
more effective communications and reduce the waiting overheads. It solves the issue that 
a message is sent without a receiving a matching acknowledgment. Using the buffered 
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sending function, the message data will be stored in the system buffer until the receiving 
occurs. This allows the sending process to continue with other work rather than waiting. 

However, the message buffering has some disadvantages. The programmer will have to 
ensure the buffer space is sufficient and usually needs to explicitly attach enough buffer 
space. Otherwise it will cause program failures and/or errors. Also, a working buffering 
implementation under one set of conditions may fail under another set. 

Many MPI implementations provide environment variables to control the buffering size 
used by the communication subsystem to buffer early arrivals. For example, the MPI 
environment variable MP_BUFFER_MEM is provided by the IBM MPI implementation on 
the MPP-Power6 platform, which allows the buffer size to be increased within the 
maximum limit, when running out of buffer space during an application execution.  

• Message passing protocols 
The method of sending message data immediately after sending the message envelope is 
called the eager protocol. The eager protocol is an asynchronous protocol which assumes 
the receiving process can handle the sending message data and allow the send operation to 
complete without receiving an acknowledgement. The eager protocol is good for reducing 
the message latency, but can only be used for small messages due to limits on buffer 
space. Also, large messages may be costly for the receiving process to get from the 
network or copy into the buffer space. 

A “handshaking”-like protocol, rendezvous protocol, is usually used for large message 
communications. Under this protocol, the sending process will only send the message 
envelop first to the destination process. When the buffering space is available, the 
destination process will reply with a data requirement to the sending process. The real 
message data will then be sent from the sending process to the receiving process. The 
rendezvous protocol is more scalable compared to the eager protocol and can prevent the 
buffering exhaustion that may cause program failure. The rendezvous protocol is best used 
for the large message size communications, when the performance penalty due to the 
initial negotiation phase is negligible. 

Based on the discussions above, the eager protocol is usually used for the small message 
size communications and the rendezvous protocol is used for the large message size 
communications. Tuning the eager limit properly, above which the rendezvous protocol is 
used, can help to get a better application performance.  For applications with intensive 
small message passing, setting a higher eager limit so as to use the eager protocol instead 
of the rendezvous protocol may reduce the “handshaking” overheads. On the other hand, 
setting a smaller eager limit could be helpful to reduce network congestion by cutting 
down on the number of messages in flight. Many MPI implementations allow users to 
control the eager limit. For example, the MPI environment variable MP_EAGER_LIMIT is 
provided on the IBM MPP-Power6 platform to change the threshold value for message 
sizes. The maximum value is 64K.  

Other protocols could be provided on specific platforms. Using the most suitable protocols 
will benefit the MPI application performance and reduce the communication overheads 
effectively. 

• Message size and number 
Message sizes have a significant influence on the MPI application performance, especially 
within the small to mid-size message range. For applications with intensive 
communications, reducing the message sizes may help to take advantage of using different 
communication protocols and thus improving the performance. For some other 
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applications, increasing the message sizes will lead to a fewer total number of messages 
and it can improve the parallel performance by reducing many overheads caused by 
frequent communications. Derived datatypes can be helpful when combining several small 
messages into a single larger message. 

2.5.2 Collective Communications  

The collective communications involve all the processes within the specific communicator. 
The collective MPI functions perform distributing data, gathering data, global reduction 
operations as well as barrier synchronizations, etc, for a group of processes. The collective 
functions provide a convenience for the parallel programming but do not guarantee a faster 
performance. The same global operations can usually be implemented by using point-to-point 
functions. In the case where collective MPI functions are optimized to match the platform 
hardware, using the collective communications may help to improve performance. However, 
if this is not the case, the performance may be even slower by using collective 
communications. Therefore, when trying to reduce the communications overheads, it can be 
worth considering replacing the ordinary point-to-point functions with the collective MPI 
functions, and vice versa.  

For the collective communications, synchronization and load balance are the two key factors 
for the collective communications performance. Global barrier synchronizations are usually 
quite expensive as all processes will have to wait for the slowest process, before being able to 
continue. Therefore global barrier synchronizations should be avoided if possible, but in some 
cases it is necessary to ensure the operation’s correctness. Some collective functions may 
enforce a global synchronization. Reducing the unnecessary global barrier synchronizations 
will improve application performance. 

The global reduction values (e.g. the global sum) should be calculated only when the data will 
be used. An unnecessary global results transfer will also cause high overheads. For example, 
consider the case where a global sum is required to be calculated and which is only needed by 
one process. Although using MPI_Reduce and MPI_Allreduce can both achieve the correct 
result, broadcasting the global sum to every process involved rather than only to the root 
process will be a waste of time and bandwidth. It is therefore important to select the most 
proper collective functions for the parallelism implementation. A user defined complex 
operator could be helpful to reduce the frequency of collective operations.  

As every process in the same specified communicator will do the same communication or 
operations in the collective functions, a good load balance is therefore particular important to 
reduce the global synchronization overheads. A serious load imbalance will cause significant 
waiting overheads, especially for executions with large numbers of processors/cores. 

Some platforms provide specific optimizations for the collective communications. For 
example, the MPP-BG/P system provides a separate network for the collective 
communications/operations and a separate network for the global barrier. Selecting the proper 
network to implement the MPI collective communications will highly improve application 
performance and reduce its overheads. 

2.5.3 Logical Communication Mapping in the Physical Communication Layer 

Mapping the logical communications onto the real physical communication layer is very 
important as it can influence the application performance significantly. Ideally, the processes 
domain could be mapped to a similar shape physical processors domain with a proper rank 
ordering. However, the default/random mapping may not always be the most suitable one for 
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the given MPI applications and can cause high overheads. A new manual mapping strategy or 
a new process topology may be required in order to achieve a performance improvement. 

Both the processes mapping shape and the rank order can affect the communication 
performance. E.g. for a MPI application having many halo swappings between neighbouring 
processes, it will be more reasonable to map the processes onto the processors within a square 
shape subnetwork, compared with a diagonal mapping shape. Also, in this case, it will be 
ideal to allocate the neighbouring processes physically next to each other when setting the 
processes rank order. 

The effect of process mapping depends a lot on the platform architectures. The 
communication efficiency will be affected by the distance between processes and their 
position in the network as a whole. On the clustered SMP or multi-core MPP systems, 
communications between the processes on the same node could be much faster than between 
processes on different nodes. Therefore processes with frequent communications should 
ideally be mapped on the same node or nodes near each other. For an application which 
requires large memory, placing less MPI tasks on each node could be a useful strategy to 
solve the memory limit issue.  

Many systems provide specific environment variables and options for the job launcher, e.g. 
mpirun, to control the processes mapping. On some platforms, such as the MPP-BG/P, 
programmers can even manually remap the MPI tasks onto the physical hardware by using a 
mapping file. 

Also, a virtual topology may be created to help improve the communication convenience and 
efficiency. The MPI topology can provide a convenient naming mechanism for the group 
processes within a communicator. Although it is not the same as changing the mapping onto 
the physical structures directly, some heuristic virtual topologies may assist running systems 
to optimize the process mappings based on the architecture features. 
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3 Applications 

This section includes the application scaling reports, which the Benchmark Code Owners 
(BCO) have written to document their work. The BCOs have been responsible for heading a 
wider team, originating from more than one PRACE partner, in order to scale their 
applications as much as possible. This work was done in collaboration with the original 
developers of the applications. The reports are thus about the approaches the BCOs have 
taken to scale the application they have been responsible for and their experiences, best 
practices, and bottlenecks they have encountered during this work. Each report contains an 
application description section, a petascaling section about what has been done to scale the 
application, a result section and finally a conclusion section. There are a total of twenty 
application reports. 

For this work all PRACE HPC member centers have been involved, which includes many 
people spread across multiple countries. To coordinate this work, bi weekly telcons were 
arranged by the task leaders of tasks 6.4 and 6.5, where BCOs reported their progress and 
scalability problems, to the task leaders and other BCOs. In this way best practices could be 
propagated faster and in case of problems other BCOs could suggest possible solutions. 
Furthermore the work of each BCO was documented on a dedicated WP6 website before each 
telcon and used later when writing the application reports. 

It should be noted that some optimization information is not available in the below application 
scaling reports, due to restrictions on licensing regarding what can be disseminated. Instead 
such information appears anonymously in the previous distilled sections. 

The codes are listed in alpabetical order. 

 

3.1 Alya 

Written by: Guillaume Houzeaux  (BSC) 
Collaborator:  Raul de la Cruz  (BSC) 
 
 
The Alya System is a Computational Mechanics (CM) code with two main features. First, it is 
specifically designed for running with the highest efficiency in large scale supercomputing 
facilities. By specifically designed its meant that Alya has been designed as a parallel code 
from the beginning and to solve in a flexible yet clear way every kind of CM model. 

Second, it is capable of solving different physics, each one with its own model characteristics, 
in a coupled way. Both main features are intimately related, meaning that all complex coupled 
problems solved by Alya must retain the efficiency. Among the problems Alya solves are: 
convection-diffusion-reaction, incompressible flows, compressible flows, turbulence, bi-phase 
flows and free surface, excitable media, acoustics, thermal flow, quantum mechanics (TDFT) 
and solid mechanics (large strain).  

3.1.1 Application description 

Alya is based on Finite Element Methods. These types of applications can be divided into two 
main computational tasks executed inside a time-step loop: the element loop and the solver. 
These two tasks are executed as many times as the number of time-steps we want to run in the 
simulation.  
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In the first task (sparse matrix and RHS assembly), the element loop, the element matrices and 
the RHS vectors are computed for each element of the domain. All the terms in the set of 
PDEs describing the physical problem are computed at the gauss points and added into the 
matrices. At the same time the boundary conditions are applied to them. Finally, all the 
matrices and vectors are assembled into the global system depending on the element 
connectivity.  

The second task is the solver (algebraic solver for symmetric and unsymmetric sparse 
systems), which takes the A matrix and the RHS vector assembled in the element loop and it 
solves the system for the current time-step. The solver can be iterative (GMRES, CG) or 
direct (LU/Gauss-Seidel). 

The relative weight of the two previous tasks depends on the problem and type of elements 
used. It can be 10%-90% or 60%-40%. The speedup up depends on this relative weight. The 
assembly depends only on the load balance as almost no communcation is needed: only some 
global communcaiton to compute convergence critaria or some point-to-point communcaitons 
if gradients are needed. The solver is definitely the bottleneck for petascaling and almost all 
the effort has been concentrated on this part. 

Looking at the code, Alya consists of 3 different entities: kernel, services and modules. The 
kernel is involved in mesh generation, coupling physical models and I/O. Services perform 
tasks like parallelization, domain decomposition or optimization support. Finally, the modules 
solve different sets of PDE's describing a physical problem. 

The code is modular in the sense that different physics (modules) can be pluged in and out at 
compilation or runtime. The solvers are shared by all the physical modules, so any  
petascaling effort is automatically repercuted to all modules. In principle, the petascaling of 
the module only depends on the load balance supplied by the mesh partitioner. This is not 
necessarily the case for optimization which can also be applied at the module level. 

Depending on the problem to solve, sometimes pre/post-processing steps are be required. 
Their descriptions and the computational loads compared to the main algorithms are as 
follows: 

1. Pre-process: the mesh generation is excluded from the preprocessing. It thus includes 
the mesh partitioning, the organization of the data for the slaves, the communication 
scheduling, the computation of some permutations arrays, and the writing of all this 
information in restart files, one for each slave. To give an example, for the 27M mesh 
of the cavity benchmark used in PRACE, the pre-process is 25 minutes on SARA 
power6, while each iteration is around 12 seconds on 1024 CPU's.  

2. Postprocess loads depend on the problem. If a stationary solution is sought, 
postprocess is only needed at the end of the run. For transient simulations (for example 
using LES turbulence modeling), it could become important. 

To enable parallelization and to achieve petascaling in Alya, two external libraries are used in 
the code: 

• LibMPI, as a message passing library, and 

• LibMetis, a mesh partitioner for domain decomposition among the MPI tasks. 

The parallelization strategy is based on MPI and OpenMP hybrid programming models. The 
parallelization is achieved through a mesh partitioning technique implemented inside the 
algebraic solvers. This implies that at each solver iteration the same results are obtained as the 
sequential counterpart. 
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At this time I/O is serialized and executed only over the master task. Parallel I/O using HDF5 
is under implementation. No special strategy was originally used. 

Three datasets which are available for Alya testing and benchmarking: 

1. A simple 3D cavity flow which enables the use of a simple mesh (generated inside the 
code). For this dataset, the element assembly dominates and speedup is almost perfect. 

2. Airflow in a nose. This data set consists of a real biomechanics problem. It uses a 
hybrid mesh so the load balance is now an issue: the scalability of the element 
assembly depends on the relative weight of the elements while the solver scalability 
depends on the number of degrees of freedom. These two criteria are incompatible. 

3. Hemodynamics in brain. This is a also a real biomechanics case. It consists of 140 
arteries, basically split by METIS in two parts, and a confluence region where METIS 
gives subdomains with up to 9 neighbors (depending on the total number of 
subdomains). This case is interesting for testing the communication as neither the 
work nor the communcations are well balanced by METIS. 

All these datasets are big enough to be used for petascaling tests. At the same time, the two 
last presented datasets are based on real world problems, which can be run in a suitable 
amount of time. 

 

3.1.2 Petascaling Techniques 

Petascaling techniques have been implemented and tested on MareNostrum and the SARA 
Power6 machines, as the Maricel prototype is a bit limited for such tests. The techniques 
implemented for Alya to enable petascaling are the following: 

Hybrid parallelization: 

1. OpenMP has been implemented in the solvers. The symmetric graph used originally in 
the symmetric solvers was replaced to have better CACHE access and to enable it to 
use OpenMP directives for the Matrix-vector products (they were not productive when 
using the symmetric graph).  

Load balancing: 

2. Nothing has been done. However, other mesh partitioners are going to be tested to 
solve the hemodynamics in the brain benchmark, which exhibits pathological load 
balancing using METIS. 

Minimization of the communication overheads: 

3. Some global communications were put together in the algebraic solvers. 

4. One AllReduce have been substituted by an AllGather in the DCG solver. 

Parallel I/O: 

5. HDF5 has been implemented. 

Checkpointing: 

6. Solution is dumped into files at each n time steps to be prescribed by the user. 

Algorithms: 

7. Most of the work was dedicated to this aspect. A new solver (DCG) has been 
implemented to solve the continuity equation. Details are given in the following point. 
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Three main parts of the Alya code should be considered during the petascaling effort: the 
preprocess, algebraic solvers and postprocess. The details of such applied techniques for each 
part are as follows: 

1. Preprocess: Generally the preprocess is not included in the petascaling strategy. 
However, in some cases it could be a large part of the complete simulation cycle. 
Three approaches are being followed: 

• We parallelized some of the loops using OpenMP during this phase. 

• A non-negligible CPU time was spent in writing the restart files for the slaves. 
Virtual buffers have been created to accelerate this step.  

• In addition, a parallel automatic element splitting is under implementation. This 
will enable Alya to obtain huge meshes starting from a coarse mesh in parallel. 
Parallel efficiency is expected to be good for this phase and will only involve 
point-to-point communication. 

2. Algebraic solvers: One possibility to increase the speedup is to decrease the relative 
weight of the solver during the computation. This was achieved by an algorithmic 
modification in order to converge the solver in less iterations: 

• We implemented a Deflated Conjugate Gradient solver to solve the pressure 
equation. In addition, we have implemented two parallelization strategies and 
reordered some operation to decrease the number of global communications. One 
is based on a global communication to exchange the coarse space vector and the 
other is based on an all-gather communication. Some more testing is needed on 
Power6 and on a more favourable example than that chosen to test the two 
algorithmics. See next figures. 

More details about the parallelization of the algebraic solvers can be found in the 
following references [18, 19]. 

 

We also worked on a linelet preconditioner to accelerate the solver convergence in boundary 
layers and treated its implementation in Parallel. 

• GMRES speed-up has been treated by considering classical orthogonolization 
instead of modified Gram-Schmidt, which can be beneficent in some cases. 

The figures below compare the classical CG, the DCG and the DCG with linelet 
preconditioning for a 2D turbulent and thermal cavity flow: 
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+ 
 

Figure 7 Comparisons of classical CG with Deflated CG. (Left): 2D thermal and turbulent tall cavity.  
(Right) Hemodynamics in brain, PRACE benchmark. 

 

 
 

Figure 8 Comparisons of AllReduce and AllGather for the coarse space vector in the deflated CG. 
 Hemodynamics in brain PRACE benchmark. 

 
1. Postprocess: Parallel I/O is under implementation using netCFD and preliminary 

results are still not available. 

 

Understanding the results of the two MPI implementations tested for the DCG are the main 
challenges for the previous petascaling techniques. Some traces have been obtained on 
MareNostrum. They show that the AllGather does not perform as expected. More traces are 
needed on other platforms to understand why. On Exascale machines, a drastic algorithmic 
change will be needed as the basis of the Deflated solver is a direct solver. 
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An estimated effort involved in employing the different petascaling techniques are: 

• Preprocess. 5 PM. 

• Algebraic solvers. 5 PM. 

• Postprocess. 1 PM. 

In the Deflated Conjugate gradient, huge point-to-point or all-gather communication patterns 
are required, which consume most of the solver time with respect to the very few 
computations involved. 

Preprocess (apart from mesh generation) has some serial parts which can be parallelized using 
OpenMP directives for shared memory treatment. As the preprocess requires lots of memory, 
it is usually carried out on a large shared memory computer (e.g. ALTIX). 

3.1.3 Results 

Very good improvements have been achieved for the pressure Algebraic solver. Orders of 
magnitude can be achieved in the number of iterations. Further work is needed to treat 
pathological cases. 

METIS can fail in some cases, like the benchmark hemodynamics in the brain. Other mesh 
partitioning libraries will be tested in the future for pathological problems. 

The implementation of the DCG has permitted not only to go much faster but also in some 
cases to obtain convergence that could not be achieved with classical solvers. 

One order of magnitude has been achieved by changing the pressure solver from the CG to 
the linelet preconditioned Conjugate gradient. This was achieved by an algorithmic approach.  

Although the number of iterations have been reduced, the solver requires large all-reduce or 
all-gather operations. Therefore, the speedup of the particular algorithm will be lower than 
that of the original CG, even if the sequential counter part can be orders of magnitude lower. 

The expected speedup has not been reached for the AllGather DCG implementation. More 
tests must be carried out to complement the traces obtained on MareNostrum. For now, no 
definitive conclusion can be drawn. 

On the other hand, definitely, pre-processing is a bottleneck for the petascaling task of the 
Alya code. 

3.1.4 Conclusions 

Some lessons learned are that the all-gather implementation for the Deflated Conjugate 
Gradient was expected to perform better. Thus, some traces are being analyzed to understand 
the reason. 

Never the less, some of the employed petascaling techniques have been efficient. For instance 
some iterative solvers have been treated for petascaling, resulting in quite good results. On the 
other hand, parallel I/O is under implementation and it remains unsolved, thus requiring some 
effort to improve the petascaling version. 
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3.2 AVBP 

Written by: Bertrand Cirou, CINES/GENCI 

 

3.2.1 Application description  

AVBP is one of the very few codes that can simulate turbulent combustion taking place in 
turbulent flows within complex geometries. It has been jointly developed in France by 
CERFACS and IFP to perform Large Eddy Simulation (LES) of reacting flows, in gas 
turbines, piston engines or industrial furnaces. This compressible LES solver on unstructured 
and hybrid grids is employed in multiple configurations for industrial gas turbines (Alstom, 
Siemens, Turbomeca), aero gas turbines (SNECMA, Turbomeca), rocket engines (SNECMA 
DMF Vernon), laboratory burners used to study unsteady combustion (Cambridge, École 
Centrale Paris, Coria Rouen, DLR, Karlsruhe University, Munich University). 

AVBP is written in Fortran90. It uses Metis which is a partitioner used for the domain 
decomposition among the MPI tasks and HDF5 which is a portable library used for parallel 
file I/O. The Fortran90 code is commented, and well organized. 

AVBP is based on Finite Element Methods, and is divided in two main computational tasks 
executed inside a time-step loop: the element loop and the solver. In the element loop, the 
element matrices and the RHS vectors are computed for each element of the domain. All the 
terms in the set of PDEs describing the physical problem are computed at the gauss points and 
added into the matrices. At the same time the boundary conditions are applied to them. Finally 
all the matrices and vectors are assembled into the global system depending on the element 
connectivity. 

The second task is the solver, which takes the A matrix and the RHS vector assembled in the 
element loop and it solves the system for the current time-step. The solver can be iterative 
(GMRES, CG) or direct (LU/Gauss-siedel). These two tasks are executed as many times as 
time-steps we want to run in the simulation. 

AVBP was already ported on IBM BG/L, IBM power5, XT4 and Itanium, therefore the 
porting task was easy. 

3.2.2 Petascaling techniques 

MPI collective call usage 
 
We noticed that multiple point to point communications did not scale. We have re-ordered the 
arrays data in order to be able to issue collective communications on these arrays. This is not 
a platform specific optimization. The first difficulty is to identify in the code a set of point to 
point calls that could be a good candidate for being replaced by a collective call. Then the 
data arrays used in these point to point calls must be reordered. Before this optimization the 
code did not scale beyond 4096 cores. After this optimization the code can scale beyond 
12288 cores. 
 
BLAS library usage 
 
We noticed that about 15 % of the time was spent in some self written computation loops. It is 
well known that hardware vendors provide optimized computation libraries that perform 
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better than self written code. We have replaced the computation loops by equivalent calls to 
the BLAS library. This is an agnostic optimization as BLAS is available on any parallel 
machine. However, due to indirect access in arrays, the self written code did not match to 
exactly one BLAS call. We had to copy the data and use two BLAS calls. Before the 
optimization the speedup was good but after the optimization the speedup was worst. 
 

3.2.3 Results 

SGI Altix ICE 8200EX (CINES) 
 

Figure 9 Performance of AVBP 
 

# cores total time (seconds)
128 1540 
256 815.53 
512 384.42 
1024 181 
2048 89 
4096 46.24 
6144 33.29 
7168 29.78 
8192 27.27 

Table 2 Total computation duration in seconds for helicopter turbine benchmark 
on the SGI ICE 8200EX 
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BlueGene P (Argonne) 
 
Low memory version of the benchmark with 1 master node: 
 

# cores total time (seconds) 
511  1590  
1023  810  
2047  420  
3071  290  
4095  230  

Table 3 Total computation duration in seconds for the helicopter turbine benchmark (low mem)  
on the BG/P 

 
In this benchmark test case, AVBP is used without chemistry (which lead to a maximum of 
15% of time added). The Navier – Stokes model uses two stencils (which is more stable). 
With these parameters, we obtain two kinds of information: 

First, execution time is essentially spent in the slave routines. More precisely, the subroutine 
slave_temporal, which made the computation use more than 90% of the execution time. In 
fact, one particular subroutine is more interesting: compute. On average it uses 88% of the 
execution time. It is called by slave_temporal once and afterwards it is used as many times as 
the number of iterations. It is hard to improve this routine directly, but it appears to depend on 
another one, which can probably be threaded to reduce 5% to 8% of the execution time, on 
average. Second, long time is spent on some communications. During the computation, a lot 
of MPI calls are made. 

3.2.4 Conclusions 

We managed to improve the scalability of AVBP. Now, thanks to the insertion of collective 
calls the code scales beyond 12288 cores. The use of BLAS seemed to be a good idea but as 
the matching of the existing code with a single routine was not perfect we had to restructure 
and copy the data, which lead to performance degradation. So we do not use BLAS. 

The code execution is well balanced due to the use of Metis. We could improve this static 
load balancing by distributing dynamically the workload inside an MPI process onto two or 
more threads (OpenMP). These threads could migrate on other cores of the node where some 
MPI processes are waiting for communication. 
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3.3 BSIT 

Written by: Mauricio Araya, BSC 
 

Reverse Time Migration (RTM) is a technique used in geophysics to deliniate sub-surface 
structures. This technique is based on a two-way wave propagation equation (PDE). In order 
to solve this PDE we need to deal with a laplacian calculation in a time loop, which is the 
most compute demanding segment of the RTM 

3.3.1 Application description 

From a high level point of view BSIT follows a master-worker scheme as shown in Figure 10. 
The master performs the following tasks: distributes the work, coordinates the workers and 
assembles the final result. The master source code has 15.800 lines of code (LOC). BSIT was 
developed mainly for the Cell processor which is a heterogeneous processor with two 
different types of processor cores. These are the PowerPC Processor Element (PPE), which is 
a conventional processor, and the Synergistic Processor Element (SPE), which is a vector 
processor. Every worker executes the RTM kernel, where some subtasks are executed in the 
PPE and others in the SPE. The kernel PPE code has 3007 LOC and the kernel SPE code has 
3388 LOC and the master code has 15500 C LOC and bash scripts. Also, the application 
includes some 400 LOC of bash scripts and some LOC of Makefiles.  

 

 

 

 

 

 

 

 

 

 

 
Figure 10 Master-Worker Scheme 

 

The application uses the following libraries: librt for asynchronous IO, libnuma to enable the 
NUMA capabilities, libspe2 for SPE intrinsics, libpthread for the pthread management 
intrinsics, and libm for the mathematics function intrinsics.  

The readability of the code is quite good for the master and the PPE code and is also well 
commented although not so well documented. The readability of the SPE code, however, is 
lower than the former. The SPE code, where the most optimization efforts were deployed, is 
almost completely written with assembler-like intrinsics, thus exposing the classical trade-off 
between readability and full optimization. It is clear that the only way to keep an acceptable 
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level of readability of the code is through well placed comments, in particular if other layers 
of optimization will be added later. 

The algorithms are naturally separated based on their purpose: the master pre-processes and 
coordinates the work and the slaves only focus on crunching numbers. The master pre-
processes the “raw” data which consists of a gigantic velocity model and seismic traces. The 
model is divided in pieces (“submodels”) that fit the resources of the computational nodes 
available. Every one of these sub models and corresponding seismic traces are the input for 
the wave propagation simulation (RTM). The preprocessed data is organized in a DB and 
distributed among the workers. 

RTM is based on a two-way wave PDE, this implies solving two times the acoustic wave 
equation, called forward and backward propagations (see Figure 11). The Finite Difference 
solver kernel computes the stencil and the time integration for every iteration of the time 
dependent loop. This kernel is the most computationally demanding code of the RTM.  

 

 

 

 

 

 

 

 
Figure 11 RTM two-way wave propagation 

 

Furthermore, RTM includes the following tasks: the source wave introduction (shot), the 
receivers trace introductions and the absorbing boundary conditions (ABC) computation (see 
Figure 12 for the relative execution times). Finally, in every step of the backward propagation 
the correlation of the forward and backward wave fields are carried out. 

 

 
Figure 12 RTM time breakdown 
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At the same time that the workers (RTM kernel) are sending back their results to the master, 
where the data is post-processed in order to generate the final image result. In total and for a 
regular run, the master elapsed time accounts for 10%, and the worker elapsed time for 90%.   

The master performs both pre and post processing, which is mainly an I/O intensive set of 
tasks. The runtime cost of the master is a function of the size of the problems, the number of 
shots to be executed and some architectural parameters (net topology, filesystem and I/O), but 
generally speaking accounts for 10% of the whole execution. 

The Pre-processesing tasks are: Organization of the data for the workers (DB), the 
communication scheduling, the computation of some global parameters, and information files 
setup, one for each worker.   

The Post-processesing task is basically summation of the workers output to generate the final 
resulting image. Furthermore, filters and imaging conditions are applied to the composed 
image. 

Parallelization is based on MPI and OpenMP. The original code uses a hybrid parallelism 
approach, where the Domain Decomposition (DD), done by MPI, is used to distribute work 
off-node. DD looks for well balanced communications and workload, and due to the fact that 
the computational domain is structured, the resulting domains resemble the shape of the initial 
domain. OpenMP is used to take advantage of the node's cores. Our experience shows that for 
this kind of problem (PDE-FD-structured grid) the pthreads approach is not efficient enough. 

The application is highly intensive in terms of I/O. On the worker side, we overlap I/O with 
computations, thus asynchronous I/O (librt in linux) is used. On the master side, the 
application takes advantage of distributed filesystem to reduce to some extend the I/O 
pressure and the communication among master and workers. 

Many synthetic and academic datasets are available, in particular the SEG data sets, which are 
a sort of benchmark/acid test for geophysics codes at 
http://research.seg.org/3dmodel/salthome/intro.html.  

Due to IPR restrictions we can not provide commercial real-life data sets. Unfortunately, the 
SEG data sets are not designed for petascaling and are only designed to test algorithms. For 
instance the SEG data set size is 210x676x210 (120 MB) single precision. In order to have 
access to big enough data sets, an extra effort is required to generate synthetic examples. The 
generation of such data sets is as complex as the model intended, and the size is not a limiting 
factor. 

3.3.2 Petascaling techniques 

The following petascaling techniques have been implemented and tested on MareNostrum and 
Maricel: 
 

1. Hybrid parallelization 
� OpenMP has been deployed in the kernels. MPI is used for the master and workers 

in case of DD. 
2. Load balancing 
3. Double-buffering 
4. Minimization of the communication overheads 

� Optimizing communication patterns so as to reduce communication as much as 
possible and using sendrecv functions. 

5. Parallel I/O 
� Asynchronous I/O 
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� Efficient use of GPFS 
6. Checkpointing 

� Implemented, but not used in the production code version. 
7. Algorithms Optimizations 

� Most of the work was dedicated to this aspect. In particular, to optimize the 
mathematical kernels, and the distribution of data among workers. 
 

Two main parts of the code have been reviewed: 
 
Worker: 

• We parallelized all task within the main loop of the worker using OpenMP. In the 
Cell/B.E. case pthreads were used and double-buffering technique employed (see 
Figure 13). 

• Domain decomposition well balanced with minimal communication overhead. 
• Parallel I/O is implemented. 

 
Master: 

• Parallel I/O is implemented. 
• Master to workers communications is partially replaced for file distribution 

through GPFS. 
 
 

 
Figure 13 Double-buffering technique 

 

During the petascaling optimizations we have faced many challenges in, particular with 
regard to I/O, since the computations have been well optimized and contain very few 
communication overheads. Therefore on the I/O front, the distributed files system still lacks 
good performance and reliability, and requires many tweaks to keep pace with the 
computation. 
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To get a balanced work distribution, every node should have the optimal amount of data 
which means that the initial raw data is divided in such a way that every computational node 
fully utilizes their resources in terms of memory.  

The main communication in BSIT is between the master and the workers which takes place 
two times. One at the beginning and one at the end of the worker execution. This 
communication is always point to point. Another type of communication which may take 
place if the model is big enough to force DD, in that case the nodes that are processing an 
overlap domain exchange information at every time step. This communication is also point to 
point and works as a synchronization point among nodes.  

Both pre and postprocessing tasks (master) are performed in parallel. The workers return their 
results in an embarrassing parallel way, where the master is constantly receiving data and 
combining them. 

3.3.3 Results 

We have achieved full and efficient utilization of the Cell platform. BSIT is in fact of 
industrial production calibre at the moment. Our first implementation of the system reduced 
the elapsed time of a regular run of an order of magnitude, at worker level, from hours to 
minutes. Then our Cell/B.E. implementation went even further, reducing the kernel elapsed 
time by one order of magnitude. The RTM kernel implementation is close to optimal 
according to performance indicators (e.g., 93% of the peak bandwidth throughput). 

Also, the application shows at least 13.0x speedup when compared against a reference 
traditional multi-core platform based on a PowerPC 970MP processor:   

 

 

 

 

 

 

The only possible dark cloud remaining is the filesystem, which depending on the size of the 
dataset and the number of nodes available might be a problem. 

3.3.4 Conclusions 

The main issues solved are: speeding up the computation and reducing the impact of I/O in 
the global performance of the application. Also, the application was ported to a novel 
platform, which required an important effort in algorithm mapping. 

We do not foresee any additional major optimization to this application. Eventually minor 
optimizations will be deployed. This is because the performance achieved indicates that we 
reach various limits, in particular bandwidth. Thus, the main algorithm becomes memory 
bounded. 

The above exposes the main architectural shortcoming, the bandwidth. Increasing the 
bandwidth of the HPC architecture could improve the performance of BSIT further. This is 
particular true for the Cell/B.E. platform. Also, it would be useful to have larger local store 
(QS22) and L1/L2 cache (JS21).  Finally, the I/O performance will improve if faster storage 
systems are available. 
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3.4 Code_Saturne 

Written by: Andrew Sunderland, STFC 

 
Code_Saturne® is a multipurpose Computational Fluid Dynamics (CFD) software, which has 
been developed by EDF-R&D (France) since 1997. The code was originally designed for 
industrial applications and research activities in several fields related to energy production; 
typical examples include nuclear power thermal-hydraulics, gas and coal combustion, turbo-
machinery, heating, ventilation, and air conditioning. The code is based upon a co-located 
finite volume approach that can handle three-dimensional meshes built with any type of cell 
(tetrahedral, hexahedral, prismatic, pyramidal, polyhedral) and with any type of grid structure 
(unstructured, block structured, hybrid). The code is able to simulate either incompressible or 
compressible flows, with or without heat transfer, and has a variety of models to account for 
turbulence. The starting version of Code_Saturne in PRACE was v.1.3. Recently v2.0 beta 
has been released which includes the optimizations described here (apart from the 
improvements to partitioning which is an external feature).  

3.4.1 Application description 

Source Code and Languages Used 
 
The initial version of Code_Saturne for the PRACE project is v1.3.2. For ease of porting, the 
GUI has been excluded from the benchmarked versions (no-view versions). The code base is 
very large, consisting of 500000 lines written in Fortran77, C and Python. The breakdown of 
programming languages in v1.3.2 is as follows: 

• 49% Fortran77 

• 41% C 

• 10% Python 
Install scripts for a range of architectures are provided with the code. In version 2.0 of the 
code, to be released later this year, the Fortran77 will be replaced by Fortran95 structures. 

 

Libraries Used 
 
No external libraries are required for compilation of the code. Routines undertaking 
equivalent operations to Basic Linear Algebra Routines (BLAS) operations are provided 
within the code suite. There are directives that can be set to specify use of vendor BLAS 
libraries. As these should be highly tuned to the underlying architecture therefore using these 
may improve performance. 

Users have the option to use the following libraries (these options are not invoked for the 
purposes of the PRACE benchmarking exercise): 

• CGNS (CFD General Notation System) 

• HDF5 (Hierarchical Data Format)  

• MED (Model for Exchange of Data) 
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• METIS (Serial Graph/Mesh Partitioner) 

• SCOTCH (Serial Graph/Mesh Partitioner) 
 

Readability of the code 
 
The code is well structured, written in a clear style and is commented throughout in French 
and English. Installation is somewhat involved, but installation scripts for the PRACE 
prototypes have reduced porting times. 

 

Main algorithms in the original code and their relative computational load. 
 

• Finite Volume 

• Turbulence Models 
o RANS (Reynolds Averaged Navier-Stokes Simulations) 
o LES (Large Eddy Simulations) 

• Sparse Iterative Linear Solver for both Pressure and Velocity 
o CG (Conjugate Gradient (v1.3.2) 
o MG (Multigrid) (v2.0) 

 
Full simulations generally involve many hundreds or even thousands of timesteps. Overall 
compute time is usually dominated by time spent in the Sparse Iterative Linear Solver, solving 
the Poisson equation for the pressure (if incompressible). 

Pre/post-processing steps 
• Grid Partitioning via METIS, SCOTCH (not included in PRACE benchmark) 

• Post processing via ENSIGHT, PARAVIEW (not included in PRACE benchmark) 
 
Parallelization Strategy  
Code_Saturne uses a distributed memory parallelism using domain decomposition. The MPI 
API is used for both point-to-point and global communications between processes. The 
characteristics of the domain decomposition are determined in the mesh partitioning stage of 
the calculation. Modern partitioning software is very adept at load-balancing the domains 
across processes, which is crucial to good parallel performance.  

The code uses a classical ghost cell method for both parallelism and periodicity 

• Most operations require only ghost cells sharing faces 

• Extended neighbourhoods for gradients also require ghost cells sharing vertices 
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Figure 14 Ghost Cell Method 
 

 
I/O strategy 
 
Reading Data 
 
The grid partitioning software produces a separate file for each process. These files are then 
read-in in simultaneously by the complete set of processes from one directory. Although in 
theory this is parallelised IO, in practice system limitations usually prevent this approach 
scaling on even relatively modest core counts. 

Writing Data  
 
Blocks of data are assembled in succession on processor rank 0 for writing to disk. The 
outputs in the original codes are therefore serial in nature. Improving the I/O has been a major 
focus of the petascaling approach. 

Latest Release 
 

EDF recently released Version 2.0 Beta of Code_Saturne, which includes the parallel 
optimizations summarized below: 

Pre/Post Processing 

• Partitioning for parallel computing is done separately; hence, when changing the 
number of processors from one calculation to another, it is no more necessary to redo 
the full preprocessing (mesh pasting especially) 

• Optional parallel algorithm for mesh pasting (not yet compatible with periodicity) 

Parallel Solver 

• New algebraic multigrid algorithm for solving purely diffusive linear systems 
(pressure equation, vector potential for electric arcs, radiative transfer equations, 
velocity correction for Lagrangian tracking and ALE mesh velocity equation). This 
algorithm decreases the time for solving the pressure equation. 

Parallel IO 

• Restart files are now read and written using MPI-IO optimised libraries, when 
available 
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Description of available datasets for the application: 
 

 
10 Million Cell Dataset 
 
 
 

 
Figure 15 T-junction Dataset 

 
This case deals with an isothermal Large Eddy Simulation in a T-junction. Only the dynamics 
of the flow is investigated. The runs are carried out for 100 time steps, starting from an 
already developed flow. 

 

100 Million Cell Dataset 
 
 

 
               Figure 16 Mixing Grid Dataset 

 
This dataset involves an unstructured grid and 100 million cells. The simulation represents the 
flow around a bundle of tubes in a nuclear reactor, where the geometry is too complex to be 
represented by structured gridding. The problem represents a very large-scale computational 
challenge (requiring high-end systems) as the flow is strongly three dimensional, with 
secondary vortices existing between pipes. The simulation uses a k-epsilon model and starts 
from an already developed flow. 

Both the 10M and 100M are computational challenges suited to petascale architectures. Work 
is currently underway to produce a 500M cell dataset, based on the existing 100M cell dataset. 
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3.4.2 Petascaling techniques 

Summary of Petascaling techniques undertaken 
 
• Replacing the  Conjugate Gradient method in the linear solver with a Multigrid solver 
• Replacing Serial I/O with Parallel I/O 
• Parallel Grid Partitioning 

 
Main algorithm parallelization & challenges 
 
Linear Solvers 
 
In general, upwards of 80% of run time is spent undertaking the solution of sparse linear 
equations. Most algorithms for such solvers are built upon vector-vector and matrix-vector 
operations.  

 
Conjugate Gradient Solver 
 
The Conjugate Gradient Method is an iterative algorithm for the solution of large, sparse, 
positive-definite systems of equations. As described in netlib.org, it is the oldest and best 
known non-stationary iterative method. An initial guess is made for the solution, usually 
based upon a result from a previous iteration. The method proceeds by generating vector 
sequences of iterates (i.e., successive approximations to the solution), residuals corresponding 
to the iterates, and search directions used in updating the iterates and residuals. Although the 
length of these sequences can become large, only a small number of vectors need to be kept in 
memory. In each iteration of the method, two inner products are performed in order to 
compute update scalars that are defined to make the sequences satisfy certain orthogonality 
conditions. For a symmetric positive definite linear system these conditions imply that the 
distance to the true solution is minimized in some norm. 

In a distributed-memory parallel scheme this results in distributed matrix-vector and 
distributed vector-vector operations, where all operations are of fixed dimension through out 
(i.e. the dimension of the system). The initial version of the code is optimised to take 
advantage of IBM ESSL libraries if available for these operations. 

 
Multigrid Solver 
 
The strategy of multigrid methods is to define a hierarchy of grids, ranging from a fine grid 
(the dimension of the complete system) to a coarse grid with a much reduced set of grid 
points. The main idea of multigrid is to accelerate the convergence of a base iterative method 
by correcting, from time to time, the solution globally by solving a coarse problem. Points on 
the coarser grids are a subset of points on the finer grids. The grid hierarchy can be traversed 
in V or W-cycles. On each level of the hierarchy an iterative solver (here the Conjugate 
Gradient solver) is called. Transformations of the grid between fine and coarse structures 
usually take place via a Restriction process or matrix and a Prelongation process or matrix. 
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I/O 
 
The development of efficient methods for reading data from and writing data to disk has 
become hugely important for codes that use high-end computing resources. This issue is 
particularly relevant for Code_Saturne, as the large-scale simulations that the code undertakes 
often require the input of huge datasets from disk and the output of large amounts of results 
files. The outputs are usually required at frequent intervals in order to model a system that 
changes with time. Visualizing the results is generally undertaken in a separate post-
processing stage. 

 
Serial I/O 
 
In serial IO mode, data for each block is written or read successively by rank 0. A similar 
mapping of partitions to blocks is used for both serial and parallel I/O. However for serial I/O, 
blocks are assembled in succession on rank 0. Each block is written before assembling the 
next in order to avoid very large buffer requirements. A minimum buffer size limit is enforced 
in order to enforce the number of blocks in small cases. This avoids potentially expensive 
latency overheads. Figure 17 demonstrates the cost of serial IO overheads for a typical 
parallel simulation on the Cray XT4 system. The two lines represent the parallel performance 
of the overall code (Total Time) and the time spent in the parallel solver (Iteration Time). The 
difference between the two, which increases markedly as the processor count increases, 
mainly represents the cost of IO in the code. 

 

Parallel I/O 
 
As with serial I/O, the parallel I/O implementation uses an ‘fvm_file’ intermediary layer. This 
includes a subset of MPI I/O routines, with collectives prioritised. The fvm_file layer handles 
offsets and other metadata and provides functions such as ‘fvm_file_write_global’, 
‘fvm_file_write_block’ with corresponding read functions. The implementation uses a global 
numbering scheme for redistributing partitions to blocks in preparation for parallel IO as 
shown in the example in Figure 18. Minimum block sizes may be set to avoid the generation 
of many small blocks. A block to partition redistribution is used when reading, a partition to 
block partition is used when writing. The parallel I/O is fully implemented for reading of 
preprocessor and partitioner output and restart files. The implementation allows for using 
(synchronous) explicit offsets and individual file pointer implementations. Experiments have 
taken place on shared pointers, but have been removed due to issues on some filesystems, and 
limited interest. 

 
 
 
 



D6.4  Report on Approaches to Petascaling 
 

PRACE - RI-211528  26.10.2009 
   

50

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 17 I/O Overheads of Serial I/O on the Cray XT4 

 
 

 

 
Figure 18 Parallel MPI/IO implementation in Code_Saturne v.2.0 

 

 

All communications are undertaken using MPI. Collective and point-to-point MPI 
communications are used throughout the program. The program takes advantage of 
asynchronous communication modes for point-to-point messages between processes. On Cray 
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architectures, mechanisms in the hardware allow communications to occur concurrently with 
computation when the message passing mode is asynchronous. 

Version 2.0 of the code is already prepared for parallel mesh partitioning. The mesh is read by 
blocks via a canonical / global numbering and is redistributed using cell domain number 
mapping. It is therefore straightforward to apply a new mesh partitioning algorithm in order to 
obtain an alternative cell → domain mapping. The redistribution infrastructure implemented 
in v2.0 of Code_Saturne and a separate project is investigating the use of third-party parallel 
partitioning software such as PARMETIS and PT-SCOTCH.  

3.4.3 Results 

Cray Pat Analysis on XT platform: 
 
Profiles of v1.3 suggested that the collective communication MPI_Allreduce is prevalent. 
Otherwise most communications consist of asynchronous point-to-point message passing.  

 
    | 100.0%  | 37132 |      -- |     -- | Total 
    |----------------------------------------------- 
    |  35.7%  | 13272 |      -- |     -- | MPI 
    ||---------------------------------------------- 
    ||  10.7% |  3987 |  437.43 |   9.9% | MPI_Allreduce 
    ||   9.3% |  3471 | 2243.79 |  39.3% | MPI_Waitall 
    ||   4.7% |  1750 |  282.24 |  13.9% | MPI_Barrier 
    ||   4.6% |  1714 |   12.16 |   0.7% | MPI_Recv 
    ||   3.8% |  1418 | 1124.28 |  44.3% | MPI_Isend 
    ||   1.0% |   356 |  215.20 |  37.8% | MPI_Irecv 

 
Removing calls to MPI_Barrier may increase parallel performance, though it is often the case 
that removing such synchronizations merely transfers synchronization overheads into other 
MPI routines. 

The predominant message exchanging routine in Code_Saturne is cs_halo_sync_var. This 
routine involves halo data exchange. Where the structure is implemented with isend & irecv, 
with a global barrier between isends and irecvs to ensure irecv is posted before the send. 
Better performance may be obtained by reordering the isends and it would also be desirable to 
not issue isends & irecvs if the message length is zero. Additional performance improvements 
may be observed if there is some work to do between irecvs and isends as this will allow the 
communication to happen asynchronously. It has also been observed that in some cases the 
calls to cs_halo_sync_var could be combined to send one message rather than four. 

 
Multigrid performance 

 
Figure 19 shows the relative parallel performance of the new multigrid/conjugate gradient 
(MG) solver against the original conjugate gradient only (CG) solver for the 10M dataset. The 
performance improvement shown is highly significant as this stage of the calculation usually 
dominates execution time. On lower processor counts MG-based solves are around three 
times faster than CG-based solves. However on higher processor count the performance 
difference narrows to a ratio of around two-fold. Moreover MG solves on 2048 cores are 
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slower than those on 1024 cores. The parallel scaling limitations of MG are discussed in the 
section on ‘Key Bottlenecks’.  

 

 
Figure 19 Relative Performance of Conjugate Gradient and Multigrid on the Cray XT4 

 
 
Parallel I/O 

 
Testing and analysis of MPI Parallel I/O in the newly-released version 2.0 of Code_Saturne is 
ongoing at the time of writing.  Measuring accurately the impact of parallel I/O can be 
difficult on machines with large numbers of users, where data loads on I/O servers can vary 
dramatically. Future work will complete this analysis.  

 
Parallel Partititoning 
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Figure 20 Parallel Performance of Mesh Partitioning software on the IBM BG/P 

 
A performance analysis of two freely-available parallel mesh partitioners is shown in Figure 
20. The case contains around 10 Million cells (though it is not the PRACE benchmark case). 
The parallel performance of neither package is good when using above around 100 cores. 
However it can be observed that PARMETIS runs several times faster than PT-SCOTCH. The 
quality of the partitioned meshes may have a far greater impact on overall performance than 
their associated cost. For further explanations see the discussion in the ‘Key Bottlenecks’ 
section below.  

 

Parallel Performance of Code_Saturne on the Prototype Systems 
 

 
 
Figure 21 demonstrates the parallel scaling of the Code_Saturne, based on timings from the 
parallel solver, for both the starting and final versions of the code (v1.3 and v2.0). The 
performances generally scale very well up to at least 512 cores for the 10M cell dataset case. 
Version 2.0 includes all the new petascaling techniques described in this section. On Huygens 
(IBM PWR6) performance results are shown up to the point that performance does not 
increase any further with extra core counts. Beyond this point (512 cores for v2.0, 1024 cores 
for v1.3) performance degrades quite markedly. It is believed that firmware problems on the 
current Huygens switch are responsible for this deterioration in performance, which it not 
observed on other prototype platforms. The parallel performance of v2.0 on Louhi (Cray 
XT5) has improved markedly compared to v1.3, both in overall speed and parallel scalability. 
Parallel scaling on the Jugene IBM BG/P remains excellent for both versions up many 
thousands of cores, though we generally observe faster performance with v2.0. 

 
 



D6.4  Report on Approaches to Petascaling 
 

PRACE - RI-211528  26.10.2009 
   

54

 
 

Figure 21 Parallel Scaling of  Code_Saturn on the PRACE Prototype Systems for the 10M cell T-Junction 
dataset 

 
 
Key bottlenecks for scaling: 

 
Multigrid – Key Bottleneck to Scaling: Each task has a minimum of one grid point in the 
coarsest mesh allowable.  

 
Although the introduction of multigrid methods can produce much more effective solvers the 
transitions through the hierarchy to the coarsest of the grids can cause scaling problems on 
large processor counts. In the current implementation the number of grid points on the 
coarsest grid cannot reduce to less than the number of processes in the parallel run. With a 
high processor count, fewer grid levels will be used, and solving for the coarsest matrix may 
be significantly more expensive than with a low processor count. This effect reduces the 
overall scalability of the code. This restriction may be resolved in future optimizations to the 
parallel code – see the Future Work section below. 

 

Parallel Partitioning - Key Bottleneck to Scaling: Load Imbalance 
 
In common with other unstructured mesh codes, the decomposition of the problem into equal 
parts for parallel processing is imperative for good scaling. Small imbalances may be 
inconsequential in the relatively long compute times associated with smaller processor counts. 
However compute jobs on petaflop architectures may contain hundred of thousands of tasks, 
where the granularity of the decomposition means relatively small imbalances can severely 
impact upon scalable performance. Moreover, partitioning the problem for such huge 
processor counts presents an extreme challenge for mesh partitioning software, which itself 
does not scale past a few hundred processors.  
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For example, a RANS simulation with 100 M tetrahedra + polyhedra (most I/O factored out)  
partitioned using METIS, has the following mesh decompositions: 

96286/102242 min/max cells at 1024 cores = 5.8% imbalance 

11344/12781 min/max cells at 8192 cores = 8.9% imbalance 

As load imbalance increases with processor count, scalability decreases. Alternatively, if load 
imbalance reaches a high value (say 30% to 50%) but does not increase, scalability is 
maintained, but processor power is wasted. Future developments may attempt to reduce load 
imbalance by introducing weighting for domain partitioning, with Cell Weight = 1 + 
f(n_faces). 

 
Load Imbalance and cache miss rates 
 
Another possible source of load imbalance is imbalance in the speed of operations with 
different cache miss rates on different ranks. This is common with unstructured meshes and is 
very difficult to predict in advance. For example, with otherwise balanced loops, if a 
processor has a cache miss every 300 instructions, and another a cache miss every 400 
instructions, considering that the cost of a cache miss is at least 100 instructions, the 
corresponding imbalance reaches 20%. 

3.4.4 Conclusions 

The parallel scaling of the original version of the code used in PRACE (v1.3)  was very good 
on all the targetted prototype platforms, and our analysis shows that this excellent parallel 
performance has been maintained with the introduction of the faster multigrid solver in 
version 2.0. MPI-IO has also been introduced in order to remove bottlenecks when reading 
and writing intermediate and restart files on parallel platforms. The code has also been 
adapted to facilitate the use of 3rd party parallel mesh partitioning software during the pre-
processing stage of the calculations.  

 

Imrovements to the Parallel Implementation of the Multigrid Solver 
 
In order to address the limitations of multigrid with the coarsest grids discussed above (i.e. a 
minimum of one grid point per core), the planned solution involves  moving grids to nearest 
rank multiple of 4 or 8 when mean local grid size is too small. Most ranks will then have 
empty grids, but this will not incur any inefficiencies as latency usually dominates during this 
stage. The communication pattern is not expected to change radically, as partitioning is of a 
recursive nature (whether using recursive graph partitioning or space filling curves), and 
should already exhibit some sort of “multigrid” nature. This may be less optimal than some 
methods using a different partitioning for each rank, but setup time should also remain much 
cheaper. 

 

Planned Future Improvements to the Parallel I/O 
 

• fvm_file_read/write_list in the future using indexed datatypes to have all data shuffling 
inside MPI IO instead of outside. 

• Infrastructure is being developed for parallel postprocessor output 
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• Indexed output data will be distributed to blocks - preferably by data blocks rather 
than index blocks for good balancing  

•  “fvm_gather_...” type functions are to be replaced by “fvm_part_to_block_...” type 
functions in file output and output helper code 

• Multiple layers will be introduced due to handling of several file formats 
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3.5 CP2K 

Written by: Pekka Manninen, CSC 
 
 
CP2K is a freely available (GPL) program to perform atomistic and molecular simulations of 
solid state, liquid, molecular and biological systems. It provides a general framework for 
different methods such as e.g. density functional theory (DFT) using a mixed Gaussian and 
plane waves approach (GPW), and classical pair and many-body potentials. 

3.5.1 Application description 

CP2K is written completely in Fortran 95. The code is well-structured, polished and easy to 
maintain. Code is easy to read, and its clarity poses no problems to petascaling efforts. There 
are also some post-processing utilities, but they are not computationally demanding and thus 
not considered further in this deliverable. 

CP2K needs fast Fourier transform and linear algebra (Lapack) libraries. Many commercial 
and non-commercial libraries are supported, such as FFTW, ACML and ESSL. The relative 
computational load depends very much on the problem (system studied, level of theory etc.). 
In a quite representative (in the context of the general use of the code in the computational 
chemistry community) test case the DGEMM routine of Lapack was the most intense. Tuned 
libraries are used by the code whenever possible. 

CP2K is parallelized with MPI. Details of the parallelization strategy can be adjusted in the 
user input, but in general it is done by affiliating atoms, or more precisely, their basis set 
functions, into MPI tasks. In an experimental part under development a hybrid OpenMP/MPI 
approach is used, but mostly to overcome a memory bottleneck. CP2K does not use MPI-I/O. 
Most of the I/O is carried out with the „spokesman strategy“, i.e. the root task handles I/O. In 
rare cases all the tasks write scratch files. 

For PRACE purposes we had two ab initio molecular dynamics simulations of water (one 
with 512 and other with 1024 molecules). They are actual research cases, in fact published 
some years ago. The simulation time was reduced to a couple of femtoseconds. The datasets 
were not sufficiently large to reach petaflop/s performance, as it seems that CP2K requires 
some tens of basis set functions per PE to scale sufficiently. However, ab initio simulations of 
systems featuring hundreds of thousands of basis set functions (corresponding to a petaflop/s 
machine assuming 10 TF PE's) are hitherto unseen, and real-world calculations are 2-3 orders 
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of magnitude smaller. The quadratically scaling memory requirement also blocks the use of 
datasets much larger than the present ones. In that respect the current one is at the limit of 
being feasible. 

3.5.2 Petascaling techniques 

It was decided with the developers that it is not worth rewriting the parallelization strategy 
itself, as they have plans for a major rewrite of the code in the future. The petascaling efforts 
within the PRACE project were the following, all of them done in close collaboration with the 
code developers: 

• Load balance improvements of the collocation/integration of the Gaussians on the 
grids by fine tuning the code. 

• An implementation of the routine that assigns atoms/basis set functions into PE's that 
scales linearly in memory requirement and would thus enable a calculation of larger 
datasets. The outcome is, however, much slower than the default one and therefore 
more or less useless in practice. 

• New strategies for how to optimize the assignment were implemented: optimization 
target being the variance in the load, instead of the maximum effort. 

• Preposting receiving routines in non-blocking communication featured in the intense 
routines for a better scalability in mind. This had no effect in practice. 

• In a development version of the code, replacing 4 or 8 MPI tasks with OpenMP 
threads overcame a major memory bottleneck as it avoids replicated data needed in 
each process. The role of the BCO in this was very minor, mostly in discussions and in 
providing a development platform. 

The main challenge is that there were no "low hanging fruits" to be picked - the code was 
very well written and parallelized. The throughout analyses and aforementioned minor efforts 
are approximated to have taken 1.5-2 pm. 

As regards to parallelization practises; point-to-point (mostly non-blocking) and collective 
communication are both employed in the code. No exotic MPI features are involved. Most of 
the communication is done with non-blocking point-to-point communication overlapped with 
computation. The parallelization is "isotropic" meaning that the MPI tasks are equal 
regardless of their placing in the hardware. In MPP-Cray prototype different rank placements 
were tried. They did not show much difference between them. 

Pre- or postprocessing is not necessary in all uses of the code and always computationally 
cheap, therefore no optimization or petascaling effort was put in considering them. 

3.5.3 Results 

There was not much to be done for the “conventional” part of the code (quick-step DFT): it is 
a well-written and tuned software very suitable for production runs in existing 
supercomputers, with not much potential for employing tens or hundreds of thousands of CPU 
cores. 

The only major improvement with PRACE involvment was the OpenMP/MPI hybridization 
of the Hartree-Fock exchange part of the code, which enabled calculations not feasible 
otherwise. This part of the code is however very difficult to install at the moment and requires 
a large set of hacks and outside code (e.g. the LibInt library), glue and duct tape. This part of 
the code is shown to scale to over 10,000 processors in a Cray XT5 and would be of potential 
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petascaling code. It also compiles at the moment only with one compiler and in one platform, 
therefore these calculations are not listed in other PRACE deliverables. 

The impact of the other performed improvements by the BCO may be described as minor. 
However, the long and throughout discussions with the developers on the performance of the 
code in different platforms as well as quantitative performance analysis data have most likely 
(read: hopefully) been useful for the development of the code, even though the improvements 
were not done by the PRACE BCO. 

The mostly considered QS-DFT seems to scale up to 5 TF partition in the MPP-Cray and FN-
Power6 prototypes. The available memory in MPP-BG/P is not sufficient for the larger 
dataset. Other prototypes were not considered. The test dataset does not enable scaling any 
further. It is also expected that the amount of communication would block the scaling also 
with larger datasets, even if the memory shortages would be somehow overcome. It should be 
noted that these statements apply only to one application area of the code (ab-initio molecular 
dynamics), the other ones featuring perhaps better scaling prospects, with the novel Hartree-
Fock code, could prove to do so. The QS-DFT is however clearly the main application area of 
the code - to BCO's best knowledge - and therefore a rather fair restriction. 

3.5.4 Conclusions 

Lessons learned: 

• Replacing MPI tasks with OpenMP threads (in some nomenclature "coarse-grained" 
hybrid programming) is a very good way to reduce communication and memory 
requirements if replicated data (in this case the sc. Fock matrix) is unavoidable. 

• Otherwise, the current parallelization strategy of assigning variable-size blocks of 
basis set functions into MPI tasks have likely reached its limits in scaling: there are no 
tuning tricks left to try. 

In general, faster CPUs (higher frequency, larger caches) and wider interconnect for non-
blocking point-to-point communication will always accelerate CP2K. Possible improvements 
in different prototypes that would enhance the performance of the application: 

• MPP-BG/P: memory increase to 1 GB/core (allows for calculation of larger systems), 
larger interconnect bandwidth, increased processor frequency 

• MPP-Cray: larger caches and/or frequencies in CPUs to allow for faster linear algebra 
(DGEMM), more interconnect bandwidth/core (the effect is visible between the XT4 
and XT5 parts of CSC's Louhi machine; the scalability is indeed better in the XT4 due 
to almost double bandwidth/core) 

FN-Power6: better inter-node bandwidth. 
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3.6 CPMD 

Written by: Albert Farres, BSC 

 

3.6.1 Application description 

The CPMD code is a parallelized plane wave/pseudopotential implementation of Density 
Functional Theory, particularly designed for ab-initio molecular dynamics. It was originally 
developed by R. Car from the International School for Advanced Studies, Trieste, Italy and 
M. Parrinello from Dipartimento di Fisica Teorica, Università di Trieste, Trieste, Italy. 
Nowadays it is maintained by the CPMD consortium, coordinated by Prof. Michele Parrinello 
(Chair of Computational Science, ETH Zurich) and Dr. Wanda Andreoni (Program Manager 
of Deep Computing Applications at IBM Zurich Research Laboratory). 

The code is completely written in FORTRAN 77 except some architectural dependent parts 
written in C. Currently, there are about 20 000 lines of code. External libraries used by the 
program are BLAS, LAPACK and optionally FFTW. It also uses hybrid parallelization 
(MPI/OpenMP).  

Two datasets have been used for PRACE. The first one is a dataset with 32 water molecules 
in the liquid phase at 100 Ry and MT pseudopotentials, and the second one contains 64 Ionic 
Liquids. The 64 Ionic Liquids dataset is big enough for petascaling. 

 

3.6.2 Petascaling techniques 

The original code from developers scales well on all the platforms and is actively maintained 
by the developers, therefore no special techniques were considered for the PRACE project.  
 

3.6.3 Results 

Below are the execution times on several platforms for 64 ionic Liquids dataset: 
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Figure 22 Scalability of CPMD 

Unfortunately it has not been possible to run CPMD on the BlueGene/P. The reason for this is 
that the dataset with 32 water molecules is too small and the 64 Ionic Liquids dataset, suitable 
for petascaling, requires more memory than available per node. 

3.6.4 Conclusions 

The code was already very well optimized and so it was difficult to improve it further. 
Original code scales correctly, so it's not necessary to apply any modification.  To get the 
optimum performance one needs to tune the input parameters correctly. In order to be able to 
run on BlueGene/P, more memory per node needs to be available. 
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3.7 ECHAM5 

Written by: Sami Saarinen, CSC 
 
 
ECHAM5 is an atmospheric circulation model developed at the Max Planck Institute for 
Meteorology in Hamburg.  Depending on the configuration the model resolves the atmosphere 
up to 10 hPa for tropospheric studies, or up to 0.01 hPa for middle atmosphere studies (often 
referred to as MAECHAM5). 

3.7.1 Application description 

The program has been written in Fortran95 with only few utility routines coded in C. The 
NetCDF 3.6.2 library, AMD Core Math Library (ACML) and MPI-library were linked to the 
program. The program has been parallelized against the MPI-library, but also contained some 
OpenMP directives. However, in this exercise OpenMP has been ignored. Runs were 
performed on CSC’s Cray XT5 equipment in Finland with 2.3GHz AMD Barcelona 
quadcores, 8 cores per node. 

The program was written in a modular fashion with simplified interface to the MPI. However, 
quite a lot of replication to handle different data types and multidimensional arrays is present. 
These make changes to the MPI-wrapper quite a delicate task. 

3.7.2 Petascaling techniques 

Petascaling efforts of this code have essentially been destroyed because of the use of NetCDF 
I/O and piping the output to a single processing element (PE) in order to keep postprocessing 
(outside ECHAM) unmodified. Also, since the program is meant mainly for climatological 
runs, its typical usage usually comes with relatively low resolution and thus preventing good 
scalabilities (even if the impact of I/O-degradation is ignored). 

The algorithms of the original code have not been changed. Instead computational processes 
were let to do computational work only and the separate I/O processes (one or more) were 
assigned to perform output I/O. The first PE still did reading and distribution of input data 
during the initialization phase. 

The principal task to speedup the program was to reorganize its single PE I/O. In the original 
code data was collected from other PEs to the master PE. Since all the PEs were also 
computational ones, this arrangement introduced an inevitable bottleneck, while the first PE 
performed field gather and their output. Delays of several seconds per I/O-timestep were 
experienced compared to non-I/O-steps being often a fraction of seconds. 

In the optimized version additional PEs were allocated to handle the data gather from 
computational PEs and to perform I/O (still through NetCDF, though) independently of 
computational tasks. This arrangement let I/O to progress in the background whilst 
computation could progress often several timesteps ahead of I/O. 

The available parallelism (in theory) in the I/O is comparable to the available NetCDF files 
written. Output is organized in terms of streams, which could be 2D or 3D grid fields or 
spectral components. However, due to limitations imposed by postprocessing needs, many of 
these streams were in fact written to the same physical file. We measured that there was only 
up to 10 separate files in our runs, with one file taking majority of the streams. Before these 
kind of inherent limitations are removed, there is very little one can do to improve the 
performance. And all this on top of built-in bottlenecks found in the NetCDF-file I/O itself. 
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Despite having computational and I/O tasks separated, the program was run using the SPMD 
paradigm. But in an interesting manner, described below.  

The first NPES-tasks were assigned to do the computation only and additional NUM_IOPES 
tasks on top of the computational ones tackled the I/O only. Whilst the computational PEs 
served the regular computational loop, the I/O tasks were left in an event-loop by the main-
program. That is to say, the I/O tasks waited for doing I/O-work. 

Events were triggered by computational tasks, usually by the master (first) computational PE. 
In practice this arrangement meant that the dedicated I/O-tasks executed only selected subset 
of ECHAM-code, and that the computational tasks did not call NetCDF I/O at all. The event 
delivery was accomplished through prearranged messages using separately allocated 
communicators across computational and I/O PE boundaries. 

As mentioned earlier, the resolution and thus datasets were not big enough to achieve good 
scaling. Model size T106 (ca. 120km grid spacing) was used which was already considered 
big for climatological runs. Another test with T42 (ca. 300km) was also tried, but did not lead 
to any gains in performance. 

 

3.7.3 Results 

A powerpoint presentation about results is found under: 
 http://www.esnips.com/web/echam5/ECHAM.ppt 
 
The source code has been shipped back to MPI/Hamburg in June 2009. Source code is also 
found under SVN: https://trac.csc.fi/pracewp6-echam/browser 
 

3.7.4 Conclusions 

Whilst ECHAM was not a very successful example for petascaling, its I/O optimization 
demonstrated an important design pattern that could be employed elsewhere: a separation of 
computational and I/O tasks from each other whilst still running the same program. This 
approach also shows perhaps the minimum effort that eventually needs to be put in order to 
reap the benefits of I/O performance. 

In ECHAM’s case in order to achieve petascaling, much more effort than available within 
PRACE-project must be put in place. Potentially nearly a complete re-design is maybe 
necessary plus introducing sufficiently large datasets (grid spacing of approximately 10km). 
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3.8 EUTERPE 

Written by: Xavier Saez, BSC 
 
 
EUTERPE is a gyro kinetic particle-in-cell (PIC) code in a three dimensional domain in 
coordinates and two in velocities plus time. Its main target is to simulate the micro-
turbulences in the Plasma core. The code uses the Vlasov approximation over an electrostatic 
fixed equilibrium, so the collision term of the Boltzmann equation is negligible. 

3.8.1 Application description 

EUTERPE is written in Fortran90 (about 47 files) and C (2 files). The application includes a 
tool to generate the electrostatic fixed equilibrium. The code is well documented, which 
makes the code easy to read and follow. The current release is 2.54. 

EUTERPE requires the following libraries in order to compile: a library with MPI 
implementation (MPICH), a FFT library (ESSL, FFTW ...) and a library for solving sparse 
linear systems of equation (PETSC or WSMP). 

EUTERPE can be divided in two computational parts, executed inside a time-step loop. In 
one part, particles interact with the electrostatic field, this interaction is described by the 
equation of motions. The corresponding set of coupled differential equations is integrated in 
time using and explicit fourth-order Runge-Kutta method.  

In the other part of the code, the fields created by the particles must be computed. This is done 
by solving the quasi-neutrality equation. Its source term is the gyro-averaged ion density 
which is calculated from the particle positions in a process called charge-assignment. Finite 
elements are used to represent both the electrostatic potential and the particle shape function 
in the charge-assignment. The finite elements used are a tensor product of cubic B-splines. 

Most of the computational load falls on the routines that compute the motion of the particles 
(push), the solution of the linear solver (poisson_solver) and the noise reduction with fast 
fourier transformation (ppcfft2). 

EUTERPE has two pre-processing steps. Their computational loads are insignificant 
compared to the main part because they are only executed once. 

The first step is to generate the electrostatic fixed equilibrium (for example, a cylindrical 
equilibrium) as initial condition. This step is done by an external application that maps 
coordinates generated by the equilibrium into the toroidal system required from EUTERPE, 
while the quantities generated by the application (temperature, pressure and fluid parameters 
of the fusion reactor) are calculated and stored in a rectangular grid.  

The other step is related with the solving of the quasi-neutrality equation. The finite element 
matrix contained in the equation is time-independent, so it has to be calculated only once at 
the beginning.  

EUTERPE is parallelized using MPI. The domain is decomposed in one-dimension and the 
resulting subdomains and electrostatic field grids are assigned to different processes together 
with the Monte Carlo particles that reside on them.  

As particles move from one region to another, the particles that move out of region are 
transferred to the process that is associated with the new region. Thus, the number of particles 
resident on each process is not a constant of time and it could cause load imbalance. During 
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the calculation of the gyro-averaged electric field at the particle position, field information of 
neighboring regions of space must be accessed, so that extra guard cells are kept in each 
process. Special routines take care that the particles are passed to the correct process when 
leaving a domain and that the guard cells are updated after a calculation of the electrostatic 
potential. 

Moreover, EUTERPE adds another feature to parallelize the code: the clones. The clones are 
copies of the same domain to distribute the particles between them. So each clone is assigned 
to a group of processors with its own set of particles. The processors of each group are on the 
same node, so that the data intensive particle communication is restricted to the shared 
memory into nodes, and between the nodes only the moderate field communication takes 
place via the network. The one-dimensional decomposition is performed in such a way that 
each process has a corresponding subdomain clone. 

EUTERPE mixes serial and parallel access to data files. The initial electrostatic equilibrium is 
divided in files which are read by the corresponding processes. The finite element matrix 
contained in the equation to solve is also divided in a file per process. Finally, the files with 
the results are sequential and the master process is the one that writes into them.  

Regarding datasets, there is one available for the application. It uses a cylindrical equilibrium 
(meaning that the geometrical domain is a cylinder) where the electromagnetic field is 
parameterized and fixed. The domain is divided in a grid of 32x512x512 pieces, so the 
problem can be distributed into 512 processes at the most. The plasma simulation consists of 
1000 million of particles into the cylinder. 

This dataset is not big enough for petascaling, but it is easy to prepare one. One only has to 
increase the number of grid subdivisions and particles to simulate. The final objective is to 
simulate a real fusion reactor, and this problem can only be done on a petascale machine. 

3.8.2 Petascaling techniques 

The main strategy to face the petascaling challenge has been to introduce OpenMP into the 
EUTERPE code. OpenMP has allowed us to assign all the memory of a node to a single MPI 
process, so we will be able to execute big real datasets in the future. Additionally, as the 
communication between threads is via shared memory, there is a reduction of the 
communication costs between processes.  

After analyzing the distribution of the time between routines, three routines were identified, 
which consumed more than 50% of the main execution time. These are: push (moves the 
particles in the domain), grid (determines the charge density) and petsc_solve (solves the field 
equation). 

These routines were candidates for introducing OpenMP. In the "push" and "grid" routines, 
the particle loops were parallelized. In the "grid" routine, as different particles could write in 
the same position of the "rho" array, it was necessary to allocate private rho arrays (one per 
thread) and to make a reduction at the end. 

Regarding the petsc_solve routine, there was a problem with the PETSc library. This library is 
a well known package for solving Partial differential equations on parallel machines, but it is 
not thread-safe. So, we had to develop a hybrid version of the solver. This new solver is a 
preconditioned conjugate gradient with Jacobi, and we parallelized all the loops. The only 
dependences between iterations came from the dot products and they were solved with 
reductions. 
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The chosen schedule was static, because there is the same workload per iteration. In the case 
of the multiplication subroutine, we know that the distribution of the sparse matrix in 
EUTERPE is like a kind of band matrix, where each row has identical number of non nulls, 
and as a result, the same workload.  

The matrix contained in the field equation is distributed in a rectangular grid between the 
processes. If the size of the global field matrix is (Nx * Ny), each process holds a local matrix 
of size (Nx/nx * Ny), where nx is the number of processes. Each process is assigned to a 
node. 

Regarding the communication patterns, for each iteration of the solver, borders are exchanged 
with 2 neighboring processes (the previous and next process by id) with point-to-point 
communications. Furthermore, there are broadcast communications, for example, into dot 
products of the solver. 

The two pre-processing tasks have not been parallelized with OpenMP, because they are only 
executed once. And because of this, their computational loads are insignificant compared to 
the load of the main part that it is placed inside a steps loop. 

Finally, the effort involved in this task was about 4 person month. 

3.8.3 Results 

The performance achieved is more or less the same as the original code with MPI. The reason 
is that the scalability of the MPI version was already excellent, and there are parts of the code 
that are not parallelized with OpenMP, so only one thread per process is working. Also, there 
is a small overhead related to spawning, synchronization and destruction of threads.  

The reason for developing a hybrid version is to allow us to run the code in a petascale 
machine. Before EUTERPE could only use processes and as result, each process could only 
use a part of the memory of the node. Now, with the hybrid version, the application can create 
threads and a process can use all the memory of a node. 

The key bottleneck for improving the scalability of the hybrid version is to introduce threads 
into the parts of the code that have not been parallelized yet. But perhaps there are no more 
suitable loops to parallelize with OpenMP, so further work is needed to investigate this. 

3.8.4 Conclusions 

EUTERPE was parallelized using OpenMP and MPI. MPI is used globally to exchange 
border-values and particles, while OpenMP is used to parallelize the computation loops. 

Although, OpenMP is the easiest way to parallelize since we simply add "#pragma" directives 
to the for-loops, in reality it is difficult to parallelize all the code because there are zones 
without such loops. Furthermore, it is difficult to reorganize the communication between the 
processors since the communication is implicit, not like MPI where the communication is 
explicit. 

The techniques used for petascaling have produced the expected result: to create a 
functionally equivalent hybrid version of EUTERPE. 

In the future, an optimization technique which may be helpful, could be the implementation of 
Deflated Conjugate Gradient. We think this new solver will allow EUTERPE to run much 
faster because the number of iterations required to find the solution will be less. 

Regarding architecture improvements, we are dealing with a code that is memory bound, 
since the cost of the memory operations is linear with respect to the cost of the computation. 
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For example, the equation of the movement of particles has the same order of floating point 
operations as memory accesses. Likewise, in the multiplication of a sparse matrix by a vector, 
the data is not reused and there are not enough floating point operations to take advantage of 
the hardware. Therefore, increasing the memory bandwidth would improve the performance 
of the application. 

 

3.9 GADGET 

Written by: Orlando Rivera  (LRZ) 
Collaborator: Jose Gracia    (HLRS) 
 
 
GADGET computes gravitational forces with a hierarchical tree algorithm (optionally in 
combination with a particle-mesh scheme for long-range gravitational forces) and represents 
fluids by means of smoothed particle hydrodynamics (SPH). The code can be used for studies 
of isolated systems, or for simulations that include the cosmological expansion of space, both 
with or without periodic boundary conditions. In all these types of simulations, GADGET 
follows the evolution of a self-gravitating collisionless N-body system. 

3.9.1 Application description 

In the benchmarking set a non-open version (3.0) of GADGET was used. This new version 
includes mainly improvements in the memory management and better statistics about load 
balancing. 

The source is written in Ansi C (C99) and contains more than 92000 lines of code. GADGET 
is an MPP-based program. The parallelization is achieved by means of the MPI interface and 
any MPI implementation which follows the 1.1 standard should compile successfully. Apart 
from the MPI library, it is necessary to link the application against the GNU Scientific Library 
(GSL), for these tests GSL version 1.09 until 1.12 have been used, but newer future versions 
should also work. Another library necessary for compilation is the Fast Fourier Transform in 
the West (FFTW). The only version compatible is version 2.1.5, which at the moment of 
writing this report is fully MPI implemented. Newer versions, although offer better 
performance, have a different interface and the MPI-supported implementation is still at the 
beta stage. 

The code is fragmented into 144 source files inside of a single directory. The code is highly 
procedural and one can find up to 5 levels in the function call hierarchy. The names used in 
the source files are descriptive and correspond to the function names or sections that form the 
code. In general, the code is well commented and documented.   

Several options are available at compile time through pre-processor flags. This strategy 
reduces significantly the number of branches and improves performance. Thus, for different 
calculation types different binaries have been generated. For this benchmark a cosmological, 
commoving box with periodic boundary conditions was used. 

The code uses only MPI for its parallelization. The domain is particle-based and the domain 
decomposition is done using Hilbert-Peano Space Filling Curves, for load efficiency. The 
initial conditions are stored in binary format and can be split into several files. These files are 
distributed for input and output in an evenly way and each MPI-Task is responsible for 
reading/writing a file. In case there are more MPI-Tasks than files, some MPI-Tasks will not 
perform any I/O operations.  
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The input used in this benchmark consists of a set of 4096 particles. This set is tiled according 
to a given factor (GlassTileFac), in each direction, forming a cube-like structure. The size of 
the input and the number of particles follow a power-of-3 law: 

 
Number of Particles=4096*TileFac3 

 
The size of the input is platform dependent but using double precision can be calculated as:  
 

Data Size(MB)=0.236 *TileFac3  
 
This is roughly 57 Bytes of information for each particle. For this benchmark, GlassTileFacs 
of 25 to 50 were used. Larger values are possible for petascaling, but care in memory usage, 
storage space and wall time need to be taken. 
 

3.9.2 Petascaling techniques 

Load balancing has to be addressed properly with larger data sets and increasing number of 
cores/cpus. Since particles are moving, the domain decomposition is calculated at every time 
step with an efficient Hilbert-Peano space filling curve algorithm that splits the data among 
MPI-Tasks and uses less than 1% of the wall time. 

An imbalance in the number of particles for each processor (sub-domain) is required to 
achieve an optimal load balancing. However, this can also lead to an uneven memory usage. 
The user can control this memory imbalance with a parameter (PartAllocFactor) and can also 
specify the maximum memory required for a MPI-Task. Shared memory or fat node 
architectures are best suited for this kind of data input. 

A previous version of GADGET had a memory bottleneck, which prevented using more than 
8000 MPI-Tasks. This problem has been partially solved with the new version of GADGET 
(GADGET version 3) which gives better information about memory requirements, allowing a 
proper tuning. 

3.9.3 Results 

Since one important bottleneck in scalability is the memory required, we have some 
estimations about the memory pressure. We can calculate the memory required using the 
following expressions: 

 
mem(MB) ~ PartAllocFactor x ( N x (68 + 0.65 x 64) + 

 Nsph x 84) + 12 x PMGRID^3/MPITasks 
 

Where: 
N=(Number Total of particles)/(Average Number of Particles/MPI Task)  

 
Nsph is the Number of NSPH particles and PMGRID is a factor for long forces calculations 
and it was set to 128 so far. We are investigating the impact of the PMGRID factor on the 
memory pressure and how this factor influences it, but obtaining physically correct results at 
the same time. 
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The communication buffer has to be also added to these numbers. For example a system using 
64 millions of particles and 256 MPI-Tasks requires up to 1.6 GB of memory. A petascale-
range problem will possibly contain at least 8 times more particles (512 millions) or more. 
Using more cores imposes more memory pressure, since every MPI-Task needs concurrent 
information from other MPI-Tasks. This extra pressure also follows a power-of-2 law. The 
memory usage can be segmented into 3 groups: calculation of algorithms, neighbours 
information and communication buffer. 

The practical limit for GADGET, either version 2 or 3, is not given by the information about 
the domain (sub-domain) that need to be computed, but by the information about other sub-
domains, which needs to be stored for each MPI-Task. This information is the number of 
particles that need to be sent/received to/from other sub-domains; this is translating into the 
allocation of several matrices and vectors, in particular one 2D matrix (Sendcount_matrix), 
which has the MPI-Tasks on each axis. Therefore the size of this matrix is MPI-Tasks x MPI-
Tasks, O(MPI-Tasks2), and is filled with integer values. In systems with 4-bytes integers and 
8192 MPI-Tasks the amount of memory required only for this matrix is 256MB. After that, 
you have to add the memory required for the algorithm. For 16384 and 32768 MPI-Tasks it is 
1GB and 4GB respectively. As we can see with 32768 MPI-Task we approach the limit in 
terms of memory of current systems. By doubling the number of MPI-Tasks we require 4 
times more memory. 

Fortunately, it is possible to eliminate this 2D matrix from the code in a relatively simple way. 
This is because a given MPI-Task does not really need the full MPI-Tasks x MPI-Tasks 
matrix. It only needs the row and the column that corresponds to its task number (rank). 

Instead of filling this matrix with a call to MPI_Allgather, like this: 

MPI_Allgather(Send_count, MPI-Tasks, …,Sendcount_matrix, MPI-Tasks,…) 

And then extracting "Recv_count" from it with: 
for(j = 0; j < MPI-Tasks; j++) 
Recv_count[j] = Sendcount_matrix[j * MPI-Tasks + rank] 

One can simply get "Recv_count" (which has length MPI-Tasks) directly, with: 

MPI_Alltoall(Send_count, 1, …, Recv_count, 1,…) 

Once this is done the Sendcount_matrix can be eliminated from the code.  

Power6 (SARA) 
GADGET3's scalability is almost linear as long as enough memory is available. As shown in 
the table, the speed-up reached on the Power6 Huygens system at SARA using 2048 MPI-
Tasks has an efficiency of 83%. Lower counts of cores give better efficiency rates (95-90 %). 

In the Power6 system we used SMT in which each node was set up to deploy 64 MPI-Tasks. 
The data set contains 512 millions of particles. The code was compiled with IBM's C/C++ 
compiler version 10.1 and the following options: 

 
 -q64 -O5 -qipa=exits=endrun,MPI_Finalize -qipa=inline=auto 

 



D6.4  Report on Approaches to Petascaling 
 

PRACE - RI-211528  26.10.2009 
   

69

Figure 23 Gadget Scaling Behaviour on Huygens 

BG/P (Jugene) 
In the BlueGene/P platform, by using a smaller data set as the one used on Power6 for 
memory considerations (266 millions of particles) it is possible to scale GADGET up to 8192 
MPI-Tasks. It is interesting to note that if a run with 2048 MPI-Task is taken as a basis super 
linear scalability has been achieved. The reason could be a better memory usage. 

Using the run with 4096 cores as base line we have an 87% speed-up efficiency compared to 
8192 MPI-Tasks. This result is in accordance with the results obtained on other platforms. 

It is important to mention that jobs running on this BG/P system were running with SMP 
mode on. Each MPI-Task was running on a compute card. The data set as well as the Number 
of cores made it impossible to launch 4 MPI-Tasks per compute card (1 MPI-Task per core).  

On Jugene the IBM's C/C++ compiler version 9.0 with the following optimization options has 
been used: -qtune=450 -qarch=450 -O5 was used  

 

Measured Speed-up 

Optimal Speed-up 

Scaling Behaviour 
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Figure 24 Gadget Scaling Behaviour on Jugene 
 

Nehalem Cluster (HLRS-Baku) 
The cluster consist of 700 nodes, each with two quad-core Intel Xeon (X5560) Nehalem at 2.8 
GHz, with 8MB Cache and the memory per node is 12GB. The peak performance per node is 
11.2 GFlops. The system has a total of 62TFlops. The nodes are interconnected via 
InfiniBand. I/O is preferably (as for this benchmark) done on a lustre file system connected 
via InfiniBand. 

Intel compiler V11.0 and OpenMPI V1.3 installed by HLRS were used. FFTW and GSL have 
to be build by the user. FFTW 2.1.5 with double precision and the GSL library as provided in 
the JuBE framework. GADGET and GSL where compiled with CFLAGS=-O3 

Two sets were use on Nehalem. One with 512 x106 particles (GlassTileFac=50). In this case 
some problems were also encountered regarding memory usage for this data set because 
1.5GB per MPI-Tasks was available. 

Scaling Behaviour 

Measured Speed-up
Optimal Speed-up 
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Table 4 Experimental Speed on BAKU(HLRS) 512 x106 particles  
(Calculated with respect to the wall time of  half the core count) 

 
The other data set contains 64 x106 particles (GlassTileFac=25). The speed up and wall times 
are presented here: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5 Experimental Speed on BAKU(HLRS) 64 x106 particles 
(Calculated with respect to the wall time of half the core count) 

 

It is easy to see that using cores counts of power of two is more efficient than arbitrary core 
counts. This is because the internal algorithm of GADGET uses Fast Fourier Transformations. 
 

3.9.4 Conclusions 

We can not expect an optimal petascaling out of the box. There are many factors to be taken 
into account. A mid range generic problem should be used as an initial point. The user should 
choose, depending on the system, either a better scalability at the expense of load balancing or 
better performance using more memory and smaller numbers of MPI-Tasks. 

As the problem gets bigger the memory will be a limiting factor. An MPI-Task will require as 
much memory as possible. In terms of a single die, that means one core making all 
calculations while the others simply stall. In that sense the multi/many core technology can be 
advantageous by using OpenMP or threads. The same is applicable to accelerators specially 
working on shared memory. 

MPI-Tasks Speed up *

64 87.34 1
128 43.94 1.99

MPI-Tasks Speed up *

56 100.36 1
112 56.11 1.79

Timing  
(sec.)

Timing  
(sec.)

MPI-Tasks Timing  
(sec.) Speed up *

8 75,044 1,00
16 39,41 1,90
32 21,4 1,84
64 13,738 1,56

128 9,006 1,53

MPI-Tasks Timing  
(sec.) Speed up *

27 25,508 1,00
28 25,552 1,00
55 16,072 1,59
56 16,048 1,59

111 13,926 1,83
112 14,08 1,81
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Another improvement could be the use of MPI topologies to adapt the domain decomposition 
to the physical interconnect. 

The memory problem is endemic in many implementations. Petascaling programs, for SIMD 
problems require at MPI level, that each task can perform calculations with minimal 
information about other tasks. In GADGET’s case we have seen that this information scales 
with the square of number of MPI-Tasks. This bottleneck is being addressed with a 
sophisticated algorithm, as described. Without this modification GADGET3's limit, in best 
case, is close to the range of 32000 MPI-Tasks. Future hybrid extension of GADGET, 
OpenMP or pthreads, will increase this limit by a factor which is equal to number of threads 
that each MPI-Task can hold. 

 

3.10 GPAW 

Written by: Jussi Enkovaara, CSC 
 
 
GPAW is a software package for electronic structure calculations of nanostructures. The 
software can work within density-functional theory for ground state calculations as well as 
within time-dependent density-functional theory for excited state calculations.  The program 
uses the projector-augmented wave (PAW) method for presenting the wave functions in terms 
of smooth pseudo wave functions. GPAW is GPL-licensed open-source software and it is 
developed in several universities and research institutes. 

3.10.1 Application description 

GPAW is written with a combination of Python and C programming languages. Currently, 
there are ~50 000 lines of Python and ~13 000 lines of C. External libraries used by the 
program are Numpy (fast array interface to Python), BLAS, LAPACK, SCALAPACK, and 
MPI. Most of the Python-code is well documented and readable, parts of the C-code are on 
the other hand harder to read. 

The program contains extensive test suites which help in confirming the correct behavior of 
the program during software development. 

The main high level parts of the ground state calculation within density-functional theory 
(DFT) together with their scaling with system size (N) are: 

Construct Hamiltonian O(N) 

1. Solve Poisson equation 
• Subspace diagonalization O(N3) 

1. Calculate Hamiltonian matrix from wave functions 
2. Diagonalize Hamiltonian matrix 
3. Rotate wave functions 

• Iterative refinement of wave functions O(N2) 
• Orthonormalization O(N3) 

1. Calculate overlap matrix 
2. Cholesky decomposition 
3. Rotate wave functions 
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In the above parts of the algorithm, constructing the Hamiltonian and iterative refinement of 
wave functions, involve user functions, while subspace diagonalization and 
orthonormalization utilize mostly library functions.  

In the real-time time-dependent density-functional theory (TDDFT) calculation the high level 
algorithms are: 

• Construct Hamiltonian O(N) 

• Time-propagate wave functions O(N2) 

Time-dependent calculation relies more on user functions than the standard DFT calculation. 

The physical quantities (wave functions, densities, potentials) are represented on uniform real-
space grids. The most important user functions in both calculation modes are the finite-
difference derivatives on the real-space grid. 

The parallelization is done using MPI. There are MPI-calls in the low level routines 
implemented in C, and there are also Python interfaces to certain MPI-functions which are 
needed in the higher level algorithms implemented in Python. 

The basic parallelization strategy is domain decomposition. The real-space grid is divided to 
processors so that the size of the domain is the same across the processors. This puts some 
limitations on the number of cores that can be used with the program, as the real-space grid 
has to be divisible by the number of cores.  

The number of computations for finite-difference operations using domain decomposition    
with P processors is O(N/P), while the communication cost is O( (N/P)2/3 ). Even though the 
computation to communication ratio is rather good, it appears that for efficient parallel scaling 
the minimum grid-dimension per processor is 10-20. In the current real-world applications the 
maximum grid dimensions are typically 160, and it is very likely that in the near future the 
grid sizes increase at most by factor of two. Thus, with current datasets the domain 
decomposition can scale to ~1000 cores and also with future datasets it is unlikely to be able 
to go beyond a few thousand cores with domain-decomposition. A further restriction of 
domain-decomposition is that memory requirements scale O(N2/P).  

Originally, in ground-state calculations the matrix diagonalization and Cholesky 
decomposition were done serially. Even though these operations have a very small prefactor, 
they scale O(N3) and thus become a serious scalability bottleneck with larger datasets. The 
code version in the beginning of the PRACE project had a preliminary Scalapack-
implementation which has now been refined. 

In addition to domain decomposition, density-functional theory and real-time time-dependent 
density-functional theory offer additional parallelization possibilities. 

In magnetic systems, the wave functions have a spin degree of freedom, and parallelization 
over spin is nearly trivial. There are only two spin values, so spin-parallelization enhances 
scalability by a factor of two at most. In periodic systems there is an additional k-point degree 
of freedom. Parallelization over k-points is also nearly trivial and it is very similar to the 
parallelization over spins. However, the number of required k-points decreases with 
increasing system size, so in large systems there are only few k-points which limit the 
scalability of k-point parallelization. The real-time TDDFT formalism is not compatible with 
periodic boundary conditions, so k-point parallelization cannot be used. The datasets used in 
current benchmarks do not employ spin or k-point parallelization. 

The final natural degrees of freedom for parallelization are the electronic states. Real-time 
TDDFT parallelization over electronic states is nearly trivial and requires very little 
communication. Thus, theoretically real-time TDDFT is well suited for petascale calculations. 
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In ground-state calculations the parallelization over electronic states is more difficult, as 
subspace diagonalization and orthonormalization require all-to-all communication of the wave 
functions. This communication cost is a constant O(N2). The code version in the beginning of 
the PRACE-project had the electronic states parallelization implemented for real-time 
TDDFT and a very preliminary implementation for ground state DFT calculations. 

There is relatively little compulsory IO in ground-state calculations, however for restart-
purposes wave functions can be written to disk. Wave function IO is required for starting a 
TDDFT calculation. Only a single process writes and reads the data, which is gathered from 
or distributed to other processes.  

The preprocessing step in ground state DFT is the generation of an initial guess for the wave 
functions, which is obtained from atomic-orbitals. The atomic-orbital calculation is 
parallelized but does not scale as well as the actual calculation. However, in real-applications 
the initialization time is typically insignificant compared to the full time. 

The preprocessing step for real-time TDDFT is a separate ground state DFT calculation. 

The current dataset for ground state calculation is a system of 256 water molecules, and few 
self-consistent iterations of the total energy calculation are performed. This dataset is not 
large enough for petascaling, but it is fairly easy to obtain or generate larger datasets.  

For real-time TDDFT calculations there are two datasets, a smaller 60 atom C60 fullerene and 
larger 55 atom Au55 cluster. While these datasets are not suitable for petascaling, larger real-
world datasets exist. Generally, the TDDFT calculations are significantly heavier than DFT 
calculations and exhibit also better scalability. Thus, at least 10-20 times more processors can 
be used in the TDDFT calculation than in the DFT calculation for the same dataset. 

3.10.2 Petascaling techniques 

Most of the effort in petascaling has focused on improving the parallelization over electronic 
states in the ground state calculations. The work has been done in close collaboration with 
other GPAW developers. 

The basic communication patterns in the software are point-to-point send and receives.  In the 
domain decomposition, point-to-point communication is needed only between nearest 
neighbours, in addition there are reduce operations over all domains which are needed for 
example when evaluating dot products. Point-to-point communication is mostly non-blocking, 
however it should be possible to increase the overlap of computation and communication by 
optimizing the program code more. 

In the ground state calculations, parallellization over electronic states is based on a pipeline 
where processes have a one-dimensional arrangement. Each process receives data only from 
the previous process in the row. After the process has performed the necessary computations, 
the data is passed on to the next process in the row. The communication is performed with 
non-blocking point-to-point operations. Reduce operations are needed when summing for the 
charge density. 

It was found that in MPP-Cray, rank placement is important when using domain 
decomposition and state parallelization together in DFT calculations. When using over 512 
processors, there were large random variations in the execution time of the program. For 
certain parts of the algorithm the times varied almost by a factor of two. In MPP-Cray it is 
possible to specify only whether the ranks are placed on the same node. By using a custom 
rank placement, where processes exchanging lots of data i.e. those communicating in the 
electronic state parallelization are in the same node if possible (there are eight cores in the 
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node in Cray XT5), the execution time remained practically constant between different runs, 
the time being also sligthly shorter than the best case with the default rank placement. 

There are no direct results about the importance of rank placement in FN-Power6, but the 
experiences from the GPAW developers with Blue Gene platforms indicate that the rank 
placement is important also in MPP-BG.  

The matrix diagonalization step of the subspace diagonalization is performed with Scalapack 
using a subset (typically 4x4 or 8x8) of all the processors. 

In the time-dependet calculations, the operations for different electronic states are nearly 
independent and only reduce operations are needed when constructing the charge density. 

3.10.3 Results 

The work done during the PRACE project in collaboration with GPAW developers has 
increased substantially the parallel scalability of the DFT calculations. Previously, the dataset 
of 256 water molecules scaled to 128 cores on MPP-Cray and now the same dataset scales to 
2048 cores with 75 % parallel efficiency when doubling the number of CPU-cores. Other 
platforms and bigger datasets should now be investigated in order to determine the limits of 
scalability. 

The main figures limiting the parallel scalability are the number of grid points per domain and 
the number of electronic states per processor. Minimum domain size is determined largely by 
the computation to communication ratio of finite-difference operations, and the minimum 
grid-dimension is currently 10-20 points. Other limiting factor for the domain decomposition 
are the PAW-method related operations within atomic spheres which introduce load 
imbalance. Optimizing the communication patterns of finite-difference operations could 
decrease the minimum grid size, but large benefits are not expected. 

The minimum number of electronic states per core seems  to be 100-200. Limiting factors for 
scalability are the computation to communication ratio of matrix construction and wave 
function rotation. Test calculations indicate that on MPP-BG the overlapping of computation 
and communication does not work very well, the execution times with blocking and non-
blocking calls in the state-parallelization produce nearly identical execution times. In MPP-
Cray the benefits of overlapping computation and communication are larger. 

The matrix diagonalization with Scalapack is done using only a subset of processors and does 
not scale very well, thus it can be considered a „serial“ part in the calculation, limiting the 
scalability. Further limitation in the current Scalapack implementation is that the input matrix 
is not distributed, and especially on systems with limited memory per core e.g. MPP-BG, 
memory requirements limit the maximum system size to a few thousand electronic states. 

The parallel scaling of TDDFT calculation has been good in all tested  platforms, the Au55 
example scales to 2048 cores both on MPP-Cray and FN-Power6. For petascale calculations it 
is possible that reading the wave functions from disk can limit scalability, thus parallel IO 
should be considered. In principle, TDDFT requires a standard DFT calculation as a 
preprocessing step which can be thought of as scalability bottleneck. However, as the DFT 
calculation is done in a separate step, and with the same system size, the scalability of the 
TDDFT calculation is considerably better. Therefore petascaling of the TDDFT calculation 
should be possible. 
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3.10.4 Conclusions 

Close collaboration with the GPAW development team has been important in the petascaling 
effort. Efficient overlapping of communication and computation is important especially for 
the parallelization over electronic states in ground state calculations, however, our 
experiences are that in MPP-BG the overlapping does not work very well. 

For the ground state calculation, the main remaining issue for larger scale calculations is the 
distribution of Hamiltonian and overlap matrices in the subspace diagonalization steps. 
Currently, the memory needed for storing the matrices limits the maximum size of the 
possible datasets. 

In time-dependent calculation, there are no clear bottlenecks for petascaling. 

In both calculation modes, further optimization of the program code could improve the 
scalability but very large enhancements are not expected. 

As the program retains mostly to point-to-point communication, and algorithms offer natural 
means for overlapping the computation and communication, it is important to have efficient 
implementation for these routines both in hardware and in MPI-implementation level. 

As only MPI is used currently, a threaded implementation e.g with OpenMP could be 
considered in the future. 

 

3.11 GROMACS 

Written by: Sebastian von Alfthan, CSC 
 
 
Gromacs is a molecular dynamics package primarily designed for biomolecular systems such 
as proteins and lipids. It is actively developed by an international team of contributors mostly 
originating from central and northern Europe. 
 

3.11.1 Application description 

The current version of the package is 4.0.5 and it consists of 370555 lines of C code. In 
addition to the simulation program there are almost 1 million lines of assembler code for non-
bonded interactions. The large number of lines in the assembler part is due to the fact that 
there are several versions supporting different instruction sets, some of which only differ by a 
small degree. There are also separate versions for Intel compilers and other compilers. The 
non-bonded assembler kernels support 3DNow!, SSE, SSE2, IA-64 and AltiVec. Gromacs is 
a well written and documented code, but the number of comments are quite limited, as in 
many other scientific codes.  

The parallelization is done using MPI. As for libraries it supports both FFTW2 and FFTW3 
but it is recommended to use FFTW3 due to its superior performance. Gromacs relies heavily 
on FFT computation for efficient computation of long-ranged forces. Gromacs also utilizes 
BLAS routines, but not in performance sensitive areas. 

In classical MD simulations one simulates material on an atomistic level. The particles 
represent atoms, or coarse grained particles representing a group of atoms. To simulate a 
system of particles one iteratively update the particle positions forward in time. At each time-
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step one computes the forces affecting each particle based on force-fields describing the 
interaction between the particles. These force-fields describe Coulomb (long ranged) forces, 
van der Waals interaction, bonds in polymers, etc. Additionally a real MD program 
implements constraints, e.g., to describe hydrogen bonds, and thermostats and barostats to 
simulate different ensembles, e.g., NVT, NPT. The main computational load in a typical MD 
program is the computation of forces. 

Short-ranged forces in Gromacs are computed using a domain decomposition scheme. The 
domain decomposition is able to dynamically load balance the workload.  

Long ranged forces can be computed in several ways in Gromacs; the two relevant ways are 
here reaction field (RF) and particle mesh Ewald (PME). The algorithmic complexity of RF is 
O(N) while it is Nlog(N) for PME,  N is here the number of particles. When using RF long 
ranged forces are essentially approximated using short ranged forces and the whole system is 
solved using domain decomposition. This algorithm shows excellent scalability up till the 
largest partitions we tested it on (40Tflop/s). PME is more accurate than RF. In PME the long 
ranged forces are computed in fourier space and a 3D-FFT has to be performed that involves a 
MPI_Alltoall routine. This is the main scalability bottleneck for Gromacs when PME is used. 
PME thus only scales up to 5 TFlops. In Gromacs 4.0.x the FFT is only parallelized in 1D, in 
version 4.1 it is planned to be parallelized in 2D. There are several problems with having it 
parallelized in only 1D. First, the grid dimensions of the grid in Fourier space are often quite 
small which severely limits the number of processes that can be assigned to the PME task. 
This is a the main problem on Blue Gene/P as one would need to scale to tens of thousands of 
processors and the grid dimensions is in the order of hundreds of slices. Second, one would 
not need a global all-to-all routine in the 2D case. 

The parallelization strategy when using PME is designed to extract maximum performance 
from multicore supercomputers. The program is essentially divided in half with some 
processes dedicated to computing PME forces, while the other processes are dedicated to 
calculating everything else. The program should be placed so that each node has both kinds of 
processes. The main benefit of this scheme is reduced network congestion as only one, or a 
few, processes per node execute the all-to-all operation. 

In PRACE we have several test cases but the one which is most relevant comprises two 
vesicles in water with 1752 POPC lipids and 334489 water molecules giving in total 1094681 
atoms. When using PME the number of grid points in the parallelized x-direction is 176. This 
test case was kindly contributed by Erik Lindahl, one of Gromacs developers. 

3.11.2 Petascaling techniques 

In improving the scalability we concentrated on PME, as that is the main problem. We 
improved it in two ways and tested the solutions on the Cray XT5 prototype.  
 

1. Improved Alltoall routine 
2. Hybrid (MPI+OpenMP) version 

 
1. Improved collective routines 
 
We improved the all-to-all on Louhi by creating a new library that wraps the native MPI 
library routine. This change is transparent to the program and only requires a recompilation. 
Essentially we first aggregate all data on each node using low-level shared memory routines 
(memory mapped files), even as the whole program is still a pure MPI program. In addition to 
MPI_Alltoall, similar optimized versions of MPI_Alltoallv, MPI_Allgather and 
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MPI_Allgatherv were also created.  The benefits are dependent on how efficiently the MPI 
implementation is able to utilize the SMP nature of the nodes. Using this routine with 
Gromacs increases its performance as the all-to-all routine is its main bottleneck in PME 
(Table 6). 

2. Hybrid (MPI+OpenMP) version 
 
Here we created a prototype quality fine-grained hybrid version of Gromacs where only the 
PME processes spawn threads. The results show that some speedup is obtained (Table 7). 
Speedup is achieved through improved performance of collectives, message aggregation and 
improvement in limited parallelism. The collectives, in this case the all-to-all routine, is much 
faster as it utilizes the same benefits as the shared memory library described above without 
having the data copy overhead. In addition to this we also get reduced number of messages as 
there are fewer slices in the FFT parallelization. Also very significant is the fact that one can 
now utilize more cores for PME computation as each PME task is parallelized with threads. In 
essence we use another level of parallelization in the OpenMP part.  

If also the short-range part was parallelized with OpenMP one could run one PME process 
and one short-range process  per node, and achieve  improved load balance by balancing the 
number of threads of the two MPI processes. 

3.11.3 Results 

1. Improved collective routines 
 
For the Cray XT5 the benefits of the shared memory all-to-all routine are significant, as can 
be seen from the measurements depicted below.  

 

 
Figure 25 Speedup of shared memory all-to-all routine compared to the original MPI routine.  
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Figure 26 Speedup of shared memory all-to-all vector routine compared to the original MPI routine.  

 
Figure 27 Speedup of shared memory all-gatherl routine compared to the original MPI routine.  
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Figure 28 Speedup of shared memory all-gather vector routine compared to the original MPI routine.  

 
When using the routine with Gromacs we see the following speedup. 

  
NP NP-PME Original wall-time(s)  Optimized wall-time(s)  Speedup 
352 88 402 384 1.05 
704 176 316 270 1.17 
1408 176 249 251 0.99 
Table 6 Speedup of Gromacs using the shared-memory MPI_Alltoal on the Cray XT5 prototype.  
NP is the total number of cores (about 10 GFlops per core). NP-PME is the total number of cores 
dedicated to PME computation 
 
The performance at 352 & 704 cores is better, and especially the scaling to 704 cores is 
improved. The case with 1408 cores is essentially the same. This is not surprising as we in 
that case have only one PME process per node. In that case no aggregation can be performed. 

 

2. Hybrid (MPI+OpenMP) version 
 
The speedup for the hybrid version is presented in Table 6. The results are promising taking 
into account the simplicity of the implementation. Speedup is limited by the fact that the 
implementation is of prototype quality and not all aspects of the PME calculation were 
parallelized with OpenMP.  
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NP  Speedup with four 

threads 
352 1.10 
704 1.34 
1408 1.26 
Table 7 Speedup of shared-memory MPI_Alltoall. NP is the total number of cores 
 

3.11.4 Conclusions 

The main bottleneck for scaling Gromacs is the PME algorithm. Using RF Gromacs is a 
petascale code (PRACE report D5.4), but using the PME approximation it is not even close to 
that scale. The developers are working on a 2D implementation of the parallel 3D FFT. 
Getting this done is of utmost importance. Additionally Gromacs benefits from a hybrid 
MPI+OpenMP approach. To get good scaling from the PME algorithm the machine has to 
provide a high performance MPI_Alltoall routine 
 
 

3.12 HELIUM 

Written by: Xu Guo, EPCC 
 
The application HELIUM uses time-dependent solutions of the full-dimensional Schroedinger 
equation to simulate the behavior of helium atoms. The source code was developed by 
Queen's University Belfast and has access restrictions.  

3.12.1 Application description 

The HELIUM source code is written in a single Fortran 90 file with 14569 lines. Sparse linear 
algebra is used in the HELIUM application. It is relatively straightforward to port HELIUM 
on different architectures as no specific libraries or environments are pre-required for the 
compiling and execution on most of the systems. However, due to the one-file large length 
source code, it could be difficult when trying to optimize HELIUM via manual code 
modifications. 

The original HELIUM code only used MPI for the parallelization. The calculation is split to 
each process for implementation. Both point-to-point and collective communications are used 
in the HELIUM code. 

The HELIUM application will write out results once every several time steps. The output 
frequency can be specified in the source code by particular parameters. In task 6.4, the total 
time steps was set to 80 and the writing operation was set to be implemented once every 20 
time steps. 

For task 6.4 of PRACE, the common used test cases on the prototypes Cray XT5 
(Louhi@CSC) and Power6 (Huygens@SARA) have a 1540-block problem size. A larger 
problem size of 3060 blocks was also benchmarked successfully on BG/P (Jugene@FZJ), 
which should be large enough for the petascaling. The 1540-block problem size may not be 
sufficient for the petascaling on some prototypes, such as BG/P, but it will be very 
straightforward to create the new petascaling test cases by defining suitable parameters in the 
HELIUM source code and then rebuilding the application. 
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3.12.2 Petascaling techniques 

The performance profiling results on the Power6 and Cray XT5 reveal that there are three 
main possible bottlenecks for the HELIUM petascaling performance: 

• The memory limit was always the most possible issue for a scaling failure as the 
HELIUM code is a big memory consumer; 

• When scaling the code to a large number of cores, the MPI communication cost will 
increase rapidly and result in being the biggest bottleneck; 

• There are some high time expenses in the large loop calculation routines; 

Based on the analysis of performance profiles, the main effort on petascaling techniques 
focused on improving the calculation/execution so as to be more efficient, as well as reducing 
the MPI communication costs. 

• Selecting proper compiler flags 
Proper compiler flags were selected based on the prototype architectures and the code 
features. It is a good starting point to improve the efficiency of the calculation 
obviously without modifying too much of the original source code.  

• Reducing the communications cost 

The MPI communications are quite costly when scaling to a large number of cores. 
However, some of the MPI communications were not necessary, and were therefore 
removed to reduce the communications cost.  

The routine Test_MPI was called every time for the code execution, which was only to 
test whether MPI works well on the given environments. This is only for the 
development debugging and not necessary for the real HELIUM application. In the 
routine Test_MPI, MPI_barrier, MPI_Allreduce and MPI_sendrecv were called 
multiple times. The call to Test_MPI at the code initialisation stage is therefore 
removed to reduce the communication cost. 

The MPI environment variables could be helpful to other applications on the 
prototypes, but there was not much to do to for the HELIUM source code with the 
MPI environment variables on Power6, Cray XT4/XT5 and BG/P. The MPI 
environments had very little effect on the MPI communications performance on these 
three prototypes. 

• Better memory/cache usage 

When benchmarking on Cray XT5, Power6 and BG/P for this task, most of the 
executions were on fully populated nodes. Since the memory limit is a big issue for 
the scaling, sometimes utilizing all cores in a node can help make HELIUM run better. 
For example, when running with 630 cores on the BG/P, the SMP mode was used for 
a successful execution, i.e. with four MPI tasks per node. However, the performance 
could be poor with when all nodes are not fully populated.  

Some manual code modifications were made to get a better memory/cache usage. This 
focused on merging the large loops together in proper orders or introducing temporary 
variables during the long calculations. The code modifications reduced the calculation 
routine time cost and cache misses effectively. The modified routines included 
Incr_with_1st_Deriv_op_in_R1, Incr_with_1st_Deriv_op_in_R2, 
Incr_with_2nd_Deriv_in_R1 and Incr_with_2nd_Deriv_in_R2. 
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Besides the three techniques above, another potential petascaling technique that can be 
applied is using OpenMP/MPI hybrid parallelization. Some experiments were done by 
implementing a hybrid version of HELIUM on both Power6 and Cray XT4/XT5 but the 
performance was very poor. This hasn’t been solved currently due to the time limit and may 
need further investigation (estimated at around 6 pm). 

It was a challenge to find the exact bottlenecks for the petascaling in the original source code, 
even with the profiling results. Not all possible petascaling techniques were suitable for 
optimising the HELIUM application. Sometimes the effect was not as good as expected. 

It is important to make sure the correctness of the code after every applied petascaling 
technique. Sometimes it is necessary to ask the developers to ensure the validity of the code 
modifications. For task 6.4, all the correctness tests were passed for the final results.  

• Power6 (Huygens@SARA): 
 

Compiler flags -qfree=f90 -O4 -qessl -qarch=auto  
-qtune=auto –qhot 

Tasks allocation Fully populated 
MPI communications optimisation Remove the calling of Test_MPI at the 

initialisation stage 
Manual code modifications 1) Merged some loops with the same boundaries 

2) Changed some loops’ iteration orders to have a 
continuous data access in cache 

3) Introduced some temporary variables to reduce 
floating point operations 

 
• Cray XT5 (Louhi@CSC): 
 

Compiler flags -O4 -OPT:Ofast:unroll_analysis=ON  
-LNO: fusion=2:full_unroll_size=2000:simd=2
-LIST:all_options=ON. 

Tasks allocation Fully populated 
MPI communications 
optimisation 

Remove the calling of Test_MPI at the initialisation 
stage 

Manual code modifications 1) Merged some loops with the same boundaries 
2) Changed some loops’ iteration orders to have a 

continuous data access in cache 
 
• BG/P (Jugene@FZJ): 
 
Compiler flags -O4 -qarch=450d -qtune=450  

-qlanglvl=extended -qfree=f90  
-qrealsize=8 -qsuffix=f=f90 -qessl 

Tasks allocation Fully populated (VN mode) and Quad populated 
(SMP mode) 

MPI communications optimisation Remove the calling of Test_MPI at the 
initialisation stage 

Manual code modifications 1) Merged some loops with the same boundaries 
2) Changed some loops’ iteration orders to have a 

continuous data access in cache 
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3.12.3 Results 

The 1540-block size HELIUM test case scaled successfully on the prototype Cray XT5 
(Louhi) up to 2485 cores. On Power6 (Huygens), the same problem size HELIUM test case 
was benchmarked up to 2485 cores, which scaled well to 1540 cores, but gave a poor scaling 
when using 2486 cores. On the prototype BG/P (Jugene), the 1540-block test case scaled up to 
3003 cores. A larger test case with 3060 blocks was also scaled successfully up to 46971 
cores on the BG/P prototype. The scalability and performance of HELIUM was improved 
when using proper petascaling techniques.  

• Cray XT5 (Louhi@CSC) 

The original HELIUM performance was compared with the performance of the new version 
of the code with the petascaling techniques, as shown below in Figure 29. Figure 30 is the 
corresponding cost plot. Note: cost = execution time * core number. I.e. a horizontal curve 
implies a linear scaling. It can be seen from the plots below that the HELIUM scaling 
performance and efficiency was improved on the Cray XT5 prototype after using the 
petascaling techniques. 

Table 8 below shows the MPI profiling results before and after removing the unnecessary 
communication routine Test_MPI. The result values are the percentage of communication 
time cost out of the total execution time cost. Both the communication percentage and 
synchronisation percentage were reduced according to the profiling results. 

 
 MPI_Sendrecv_replace MPI_Barrier_(sync) 

Original 7.00% 28.10% 
With no Test_MPI 6.6% 13.7% 

Table 8 MPI profiling comparison on Cray XT5 before and after removing Test_MPI. 
 
Table 9 shows the detailed routines profiling in which the code modifications (merging loops 
and setting the loops in proper orders) were applied.  A better memory/cache usage lead to a 
reduced time cost/percentage of these loops used for calculations. 
 

 Original New 
INCR_WITH_1ST_DERIV_OP_IN_R1 25 s 7.80% 19 s 6.20% 
INCR_WITH_1ST_DERIV_OP_IN_R2 20 s 6.20% 19 s 6.20% 

INCR_WITH_2ND_DERIV_IN_R1 6 s 1.90% 5 s 1.90% 
INCR_WITH_2ND_DERIV_IN_R2 6 s 1.90% 6 s 1.90% 

Table 9 Routine profiling comparison on Cray XT5 before and after merging loops. 
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HELIUM scaling performance on Cray XT5 (Louhi)
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Figure 29 HELIUM scaling performance on the prototype Cray XT5 (Louhi) 

 
 

HELIUM scaling cost on Cray XT5 (Louhi)
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Figure 30 HELIUM scaling cost on the prototype Cray XT 5 (Louhi) 
 

 
• Power6 (Huygens@SARA) 
 

The original HELIUM performance was compared with the performance of the new version 
of the code using the petascaling techniques, as shown below in Figure 31. Figure 32 is the 
corresponding cost plot. Note: cost = execution time * core number. I.e. a horizontal curve 
implies a linear scaling. It can be seen that after using the petascaling techniques, HELIUM 
scaled with a better performance on the Power6 prototype.  
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HELIUM scaling performance on Power6 (Huygens)
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Figure 31 HELIUM scaling performance on the prototype Power6 (Huygens) 
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Figure 32 HELIUM scaling cost on the prototype Power6 (Huygens) 

 
Table 10 below shows the MPI profiling results before and after removing the unnecessary 
communication routine Test_MPI on Huygens. The values are the communication 
percentage out of the total execution time, including the point to point communications, 
collective communications and the synchronisations. 

 
 Point to point Collective Synchronisation 

Original 10.82% 1.2% 23.56% 
With no Test_MPI 7.22% 0.26% 23.83% 

Table 10 MPI profiling comparison on Power6 before and after removing Test_MPI. 
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• BG/P (Jugene@FZJ) 
 
The Jugene machine consists of 72 racks, each with 32 nodecards containing 32 four-way 
compute nodes. This represents a total of 24912 processing cores clocking at 850 MHz with 
an overall peak performance of 1 petaflop. 2 Gbytes RAM per node is provided.  

The run-time environment on BlueGene/P provides three different execution ‘modes’: 

• SMP mode, with one MPI task per node 

• DUAL mode, with two MPI tasks per node 

• VN mode, with four MPI tasks per node. 

Tasks which run in DUAL or SMP mode have access to greater, or even exclusive, shares of 
the memory hierarchy per node. However it is usually the case that more effective use is made 
of the overall resource by using all available cores in the nodes (i.e. VN mode) and this is the 
mode used in the tests. VN mode limits memory availability per core to 512 Mbytes. This was 
sufficient RAM for all the tests apart from the 630 core case, which required SMP mode to be 
set. 

The BlueGene/P compute nodes are connected via five specialized network connections. 
Users can choose between MESH and TORUS topologies for a partition. These scaling tests 
specify TORUS wherever possible.   

The original HELIUM code runs were based on an L_max value of 20. This parameter 
determines the number of angular symmetries in the calculation. As a result of problems with 
this setting on other PRACE prototype systems, this was reduced to a value of 16 in order to 
reduce overall problem size. 

Weak scaling tests keep the local problem size constant as the core count increases. Thus the 
global problem size grows linearly as the number of cores increases. Ideal weak scaling is 
represented by similar timings for each core count (a flat profile). 

Strong scaling tests keep the global problem size constant as the core count changes. Thus the 
local problem size per core reduces as the core count increases. Ideal parallel strong scaling is 
represented by timings that decrease linearly as the core count increases. Due to the very large 
range of processor counts available on Jugene it is appropriate to provide two problem sizes: 
1540 global blocks for low processor counts and 3060 global blocks for higher processor 
counts. 

For both weak and strong scaling tests, parallel scaling is very good up to the 40TF mark 
(11781 cores). However, beyond this core count parallel scaling performance degrades 
considerably due to communication overheads and parallel I/O inefficiencies.  

Figure 33 shows the strong scaling of HELIUM on BG/P prototype, Jugene. The results of 
flag show the performance of using the proper compiling options with 1540 and 3060 block 
test case. The results of new are the data after removing unnecessary MPI routine and merging 
loops, etc. Figure 34 is the cost plot. The difference between the results of only using flags 
and using other techniques was quite small. Figure 35 and Figure 36 are the plots of weak 
scaling on BG/P prototype. 
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HELIUM strong scaling performance on BG/P (Jugene)
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Figure 33 HELIUM strong scaling performance on the prototype BG/P (Jugene) 
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Figure 34 HELIUM strong scaling cost on the prototype BG/P (Jugene) 
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HELIUM weak scaling performance on BG/P (Jugene)
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Figure 35 HELIUM weak scaling performance on the prototype BG/P (Jugene) 
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Figure 36 HELIUM weak scaling cost on the prototype BG/P (Jugene) 

 

 

3.12.4 Conclusion 

The employed petascaling techniques were efficient and improved the scaling performance on 
the Cray XT5 (Louhi@CSC) and Power6 (Huygens@SARA) prototypes. The HELIUM 
scaling on BG/P (Jugene@FZJ) scaled well up to 46971 cores for a large petascaling test case. 

Selecting suitable compiling options is a good starting point to improve the scaling 
performance without too much manual code modifications. 

MPI profiling and detailed user routine profiling are helpful to find out the scaling 
performance bottlenecks, but need to relate to the exact source code part. Reducing the 
unnecessary MPI communications can improve HELIUM scaling performance effectively. 
However, the MPI environment variables did not have too much effect on the HELIUM 
scaling performance on the Cray XT5, Power 6 and BG/P prototypes. 
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Proper manual code modifications may lead to a better memory/cache usage, but it depends a 
lot on the given architecture. It is very important to check the correctness after each code 
modification. Discussion with the original code developers may be helpful to make sure that 
the code modifications are valid. 

HELIUM is still a big memory consumer however and not much can be done to change this. 
For the very large problem size, the executions can fail even with a successful build due to the 
memory limit. Therefore not all the core numbers can be used to run a large problem size. 
Selecting a proper core number is essential for HELIUM to scale well on a given system. Half 
populated or quad populated nodes may be helpful for the porting and scaling, but the 
performance could be poor. 

The memory/cache, CPU architecture, CPU rate and interconnect can all affect the application 
performance if any changes occur. The petascaling performance and profiling should be tested 
on more architectures/prototypes if possible. 

A basic hybrid parallelization optimization was applied to HELIUM but didn’t get the 
performance improvements as expected. Further optimisations may require more challenging 
investigations and implementations. How to keep the code tidy and correct while improving 
the performance and scalability should also be noticed. 

 

 

3.13 NAMD 

Written by:  Joachim Hein  (EPCC) 
Collaborators: Martin Polak   (GUP) 

Paschalis Korosoglu  (GRNET) 
 
 
NAMD is a widely used molecular dynamics application designed to simulate bio-molecular 
systems on a wide variety of compute platforms [1,2].  NAMD is developed by the 
“Theoretical and Computational Biophysics Group” at the University of Illinois at Urbana 
Champaign. In the design of NAMD particular emphasis has been placed on scalability when 
utilising a large number of processors. The application can read a wide variety of different file 
formats for e.g. force fields, protein structure etc., which are commonly used in bio-molecular 
science. 

3.13.1 Application description 

The application source is written in C++ using Charm++ parallel objects [3] for the data 
exchange between the compute tasks. The actual NAMD source consists of 157 *.C files and 
196 *.h files.  These files contain a total of about 120000 lines of code. 

The required Charm++ can be built on a wide variety of communication protocols.  Charm++ 
is typically not installed on a computing platform, hence building Charm++ is typically the 
first step when installing NAMD.  The Charm++ source is distributed with the NAMD source.  
In the case of NAMD 2.7b1, Charm++ 6.1 is included.  For this investigation we have built 
Charm++ on top of the MPI library provided on the prototype architectures. In addition, on 
the prototype MPP-BG, we also build Charm++ directly on top of the system’s “native” 
comms layer, for which the Charm++ distribution provides the required architecture 
description files. Building a production version of NAMD requires the following libraries: 
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• TCL 

• Single precision version of FFTW 2.1.5 

• Charm++ 

NAMD uses a cut-off distance, which is specified in the input files. The forces between atoms 
separated by less than the cut-off distance are calculated directly in positions space. For atoms 
separated by more than this distance the long range electro-static forces are calculated in 
Fourier space using the particle mesh Ewald (PME) method. 

For its parallelisation NAMD uses a spatial decomposition. The simulation volume is divided 
into orthorhombic regions called patches [1]. The diameter of these patches is larger than the 
cut-off distance.  Hence for the calculation of the direct forces, knowledge of atom position on 
the home patch and the 26 neighbouring patches is all that is required.  

NAMD automatically adjusts the load balance during the first part of the simulation. The 
computational load is measured for each patch and patches are moved between the processors 
to balance the load. Most of the code required for the load balancing features is part of 
Charm++ instead of the actual NAMD source. The load balancing takes the first 300 time 
steps of a simulation. These slower initial steps need to be taken into consideration when 
estimating the performance of a large production run from a test simulation lasting only a few 
hundred steps. 

For this investigation we have obtained input data sets containing TCR-pMHC-CD complexes 
in a membrane environment [4]. These systems are interesting for studying immune response 
reactions triggered by transient calcium signalling. The basic data set contains four complexes 
and has a total size of about 1 million atoms. Larger input data sets of two and nine million 
atoms have been obtained by placing two or nine copies of the original system in a single 
simulation volume. The configurations use a step size of 2fs. A scientifically meaningful 
simulation of such a system requires a trajectory length of at least 10 ns4, which is equivalent 
to 5,000,000 simulation steps. 

 

3.13.2 Petascaling techniques 

The investigations done earlier as part of the PRACE project used NAMD version 2.6. A key 
problem with NAMD which was identified was the memory footprint of the application.5 This 
proved to be a particular problem for the MPP-BG and MPP-Cray prototype architectures, 
offering comparably small amounts of main memory per core. We have strong indications 
that the memory requirements were the key reasons behind the inability to run the largest 9 
million atom system with NAMD 2.6 on any architecture available to us. The memory 
footprint was seen as the main obstacle to petascaling. 

In March 2009 the NAMD development team made a beta release of the forthcoming NAMD 
version 2.7 publicly available. Among new features and improved performance it also 
promises improvements with respect to the memory footprint [6]. A simulation with reduced 
memory foot print requires a NAMD executable, which has been specially compiled for this. 
Simulations with reduced memory footprint are classified as “experimental” by the 
developers. 

Apart from compiling a separate executable, compressing the protein structure file (psf) is 
also required. To compress the psf-file a namd executable built without the memory 
compression is needed.  For our 2 million atom test system, the uncompressed psf file 
measures 295 MB, while the compressed psf file measures 116 MB. Using a compressed 
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input file also reduces the startup time significantly. For example on a 256 cores of the MPP-
Cray prototype startup time reduces from 53s to15s.  

In addition to compiling a NAMD version with reduced memory foot print the NAMD team 
recommends [6] using the options noPatchesOnZero and ldbUnloadZero. These 
options ensure that no compute work is placed on rank 0 and the processor with rank 0 is left 
for tasks such as data I/O and load balancing. 

Porting NAMD 2.7b1 to the prototype platforms and assessing how the new version addresses 
the problems encountered with version 2.6 was one of the main goals of the project in the 
recent months. Porting NAMD 2.7b1 also requires porting the latest version 6.1 of Charm++ 
to the target platform. 

3.13.3 Results 

The project succeeded in porting NAMD 2.7b1 to the MPP-BG, MPP-Cray and SMP-
FatNode-pwr6 prototypes. Using the reduced memory footprint did indeed show an 
improvement for the problems encountered with NAMD 2.6 

• On the MPP-BG with reduced memory footprint we had successful runs of the 1 
Million atom benchmark when using all four cores per node. Without reduced memory 
foot print we could use two cores at most.  For the two Million atom benchmark the 
executable with reduced memory footprint allowed utilising 2 cores per node while 
without reduced memory footprint only a single core per quad core node could be 
utilised. 

• Running the 2 Million atom benchmark on the MPP-Cray system without reduced 
memory footprint requires fine tuning of the resources (e.g. buffer space) given to the 
MPI library for the application to run reliably without either the application being 
unable to allocate memory or the MPI library being swamped by unexpected 
messages. Using the executable with a reduced memory footprint is more stable and 
requires less tuning. 

• We succeeded in running the 9 Million atom benchmark on the MPP-Cray and the 
SMP-FatNode-pwr6 system.  

To quantify the memory consumption further we used the xt-craypat tool on the MPP-Cray 
prototype to measure the memory foot print of the NAMD 2.7b1 when using the 2 Million 
atom benchmark. It turned out that MPI rank 0 (master task) has a significantly different 
memory footprint from the other ranks.  The investigation was repeated for three different 
values of the task count and we observed only a very limited dependence of the memory 
footprint on the task count. We also investigate the effect of the NAMD options 
noPatchesOnZero and ldbUnloadZero on the memory consumption by the master 
task. The following table summarises our findings: 
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Number of 

tasks 
Memory 
reduction 

No Patch 
on Zero 

Unload 
Zero 

Footprint 
rank 0 

Average 
footprint 

256 No Default Default 1.58 GB 0.87 GB 
512 No Default Default 1.58 GB 0.85 GB 
1025 No Default Default 1.52 GB 0.85 GB 
256 Yes Default Default 0.60 GB 0.44 GB 
512 Yes Default Default 0.58 GB 0.44 GB 
1025 Yes Default Default 0.60 GB 0.43 GB 
256 Yes Yes Default 0.60 GB 0.43 GB 
512 Yes Yes Default 0.58 GB 0.43 GB 
1025 Yes Yes Default 0.59 GB 0.42 GB 
256 Yes Yes Yes 0.56 GB 0.43 GB 
512 Yes Yes Yes 0.60 GB 0.43 GB 
1025 Yes Yes Yes 0.60 GB 0.42 GB 

Table 11 NAMD memory footprint 
 

The table shows that even with the reduced memory foot print, rank 0 still consumes 
significantly more memory than the other tasks.  The table also shows the NAMD options 
noPatchesOnZero and ldbUnloadZero do not yield a significant effect on the memory 
consumption.  At least not for the benchmarks used within this project. 

On the prototype MPP-BG we also experimented with the NAMD option ShiftIOtoOne, 
which moves the data IO from rank 0 to rank 1. It was observed that this lead to an 
executable, which would crash during writing of the final results. 

The above has demonstrated that when using NAMD 2.7b1 it is possible to simulate very 
large systems with millions of atoms on the prototype architectures. The next question is 
scalability, when a large number of processors are deployed. An initial assessment obtained 
detailed performance figures for the three input configuration files on the MPP-Cray and the 
SMP-FatNode-pwr6 prototypes. 

NAMD uses the initial steps to optimise its load balance, as discussed above. To obtain a 
more reliable estimate of the performance of a production simulation from short test runs we 
report on the NAMD benchmarking time.  Our test runs print three benchmark times, the 
average over steps 301-400, 401-500 and 501-600. We typically note the best of these times, 
however, typically the differences between the three are at the few percent level.  In the 
following figures we multiply the benchmark time with the numbers of computational cores 
utilised for the simulation, which is the total cost per step in core seconds. For a perfectly 
scaling code this would result in a flat line.   

The following figures show the cost for the MPP-Cray and SMP-FatNode-pwr6 prototype, 
when using NAMD 2.7b1 with memory reduction. Comparing the performance of the NAMD 
version 2.6, 2.7b1 and 2.7b1 with memory reduction, the latter proved to be the best 
performing version [7].  On the SMP-FatNode-pwr6 system best performance is observed per 
physical processor when simultaneous multithreading (SMT) is used [7]. In case of NAMD 
this means placing two computational tasks on a single physical core. 

The results show that NAMD can efficiently utilise several thousand compute tasks on the 
PRACE prototypes. This holds even for the smallest benchmark with 1 million atoms. When 
increasing the task count from a few hundred to a few thousand tasks, the efficiency dropped 
by less than 50%. 
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Figure 37 Computational cost per step for the MPP-Cray prototype forNAMD 2.7b1 with memory 

reduction 
 

 
Figure 38 Computational cost per step for the SMP-FatNode-pwr6 prototype when using NAMD 2.7b1 

 with memory reduction.  The results use the SMT feature of hardware – when using 1024 physical 
processors, 2048 computational task are placed on the hardware. 

 
The next question we would like to address is whether multimillion atom benchmarks make 
sense from a bio-science point of view.  We estimate the wall clock time required for a 10ns 
trajectory.  This is shown in the following figure as a function of the peak performance of the 
partition of the prototype. 
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Figure 39 Wall clock time required for a 10ns simulation for NAMD 2.7b1 with memory reduction. 

 
The figure shows that NAMD 2.7b1 is capable to create a 10ns trajectory for the 2 Million 
atom benchmark in less than 2 days of wall clock time. To create such a trajectory for the 
larger 9 million atom system would take less than 8 days of wall clock time when using a 20 
TF machine partition. The time waiting for the solution and the resource level required are by 
no means unreasonable for a peta-scale system, given the scientific interest justifies the 
consumed resources. 

3.13.4 Conclusions 

The possibility to reduce the memory footprint in the new NAMD 2.7b1 is crucial to utilise 
NAMD at the peta-scale.  A reduced memory footprint enables utilisation of compute 
architectures offering limited memory per computational core, such as the MPP-BG 
prototype. The reduced memory footprint is also required to simulate the system with 9 
million atoms. 

There are still some challenges left concerning the memory consumption of NAMD. On the 
MPP-BG prototype, we did not succeed in utilising all cores on the nodes for the 2 million 
atom benchmark and have not been able to get the 9 million atom benchmark running at all. 
On the MPP-Cray prototype with 1 GB of memory per core, running the 9 million atom 
benchmark on 4096 cores failed. The application indicated it could not allocate the memory it 
requires. 

One of the key issues left concerning memory consumption is that NAMD appears not to 
feature a proper distributed memory model – the memory consumed per task does not seem to 
reduce when more tasks are deployed. This will prevent NAMD from efficiently running 
scientific cases with tens of millions of atoms on a future multi petaflop system, unless the 
system offers significant memory per compute core. Whether it is possible to re-engineer 
NAMD to offer a proper distributed memory architecture, requires more insight into the 
software architecture than we have been able to gain during the course of this project. An 
alternative mitigation strategy might be to rewrite NAMD or parts of it, to utilise more than a 
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single thread per compute task.  This would allow having more memory available for each 
compute tasks without leaving a significant number of cores idle. 

In summary our investigation shows NAMD is highly efficient when utilising several 
thousand computational tasks. This makes the simulation of bio-molecular systems with 
several million atoms feasible on a peta-scale architecture. 

 

3.14 NEMO 

Written by: John Donners, SARA 
 

NEMO (Nucleus for European Modelling of the Ocean) is a state-of-the-art modeling 
framework for oceanographic research, operational oceanography seasonal forecast and 
climate studies. It includes ocean dynamics, sea-ice, biogeochemistry and adaptative mesh 
refinement software. 

3.14.1 Application description 

The NEMO code is completely written in Fortran 90 and consists of many modules. It is well 
written and structured, with a description of the purpose and development history of every 
routine. The code only partially describes the arguments and local variables, which is 
impractical, especially in combination with the (too) concise variable names. 

The code is parallelized using pure MPI. It uses a regular 2-dimensional domain 
decomposition which is static, so the model needs to be recompiled for every change of the 
decomposition. ECMWF mentioned that it worked on a version of NEMO that does not 
require recompilation, but this is still in development. The model can remove domains which 
consist of only land-points; a utility gives the minimum nr. of tasks required to run a certain 
domain decomposition. Because for the PRACE benchmark the number of cores was fixed, 
the utility was used in reverse, ie. to determine the domain decomposition that would have the 
most 'empty' domains. Andrew Sunderland has implemented irregular (but still rectangular) 
domain sizes in NEMO (not as part of PRACE). To achieve a good load balance, the 
workload per processor or area needs to be known well to choose the domain decomposition. 
Probably the workload varies during the simulation, which requires a dynamic or easily 
changeable decomposition. 

NEMO uses a separate library for I/O (IO-IPSL), which is built on top of NetCDF. Note that 
it could also use another file format, called dimg. This library is not developed by the NEMO 
team and is therefore not considered for modification. However, it seems from benchmarks 
that the I/O is a prominent factor above 1000 MPI tasks. 

NEMO uses finite differences method on a regular, 3-dimensional grid. It has advanced 
advection-diffusion schemes and can incorporate many tracers in the ocean. The sea ice 
component uses about 10% of the computational load. The surface boundary condition can be 
calculated using two different algorithms: a preconditioned conjugate gradient (pcg) 
algorithm or a successive over-relaxation (sor) method. Both methods have a low computation 
to communication ratio, but different communication patterns. Their relative computational 
load (however, mostly due to communication) is about 20% and quickly increases with 
numbers of tasks. 
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3.14.2 Petascaling techniques 

The 'north fold' is a line in the model across the north pole, which is shared by several 
processors. The exchange of data is slightly more complicated than the halo exchange at other 
domain edges, because it has either one or two neighbours. It is therefore implemented in 
three steps: gather the boundary data from all local domains onto one processor apply the 
boundary condition on this one processor and scatter the updated boundary data back to all 
local domains. This 'serial' operation starts to become a bottleneck when using more than 200 
processors. On the Power6 system we have tried a few different approaches for the 
communication at the north fold: 

1. to replace gather/scatter with one allgather operation and remove the scatter operation 
to save communication time. Unfortunately, the runtime increased by 25% on the 
huygens-Power6 system. 

2. to initially determine locally the neighbours at the north fold and then send to and 
receive from the neighbours. At first, we used array slices together with asynchronous 
communication, but that does not work. The fortran compiler creates a temporary copy 
of the sliced array where all data is available contiguously in memory. This temporary 
copy is destroyed after the call is made. However, the nature of the asynchronous MPI 
call needs the array data available after the call is completed. This can only be solved 
using permanent copies, or an MPI derived type. We have chosen to use permanent 
copies using persistent communication channels. Because NEMO uses staggered 
grids, the neighbours are slightly different for variables on different grids. Therefore, 
different communication channels are required for every  grid. The results are binary 
compatible and the scalability (speedup at double the amount of cores) improves 
significantly from 2.5TF to 5TF on Power6 (1.48 => 1.66) and Cray XT4 (1.13 => 
1.33). (1PM) 

NEMO has the option to use two different solvers for the surface boundary equation: 
preconditioned conjugate-gradient (pcg) and successive overrelaxation (sor). With the original 
communication routines, both methods give a very bad scaling characteristic, because both 
require several hundreds of iterations with halo exchanges. Both methods require a periodic 
Allreduce call (not necessarily every timestep) to determine the convergence. However, from 
1000 cores it becomes clear that both methods have different bottlenecks and different 
possible solutions for further scalability: 

1. The pcg algorithm needs two further Allreduce calls every iteration, and it usually 
requires a few hundred iterations every timestep. The large amount of Allreduce 
calls becomes the bottleneck at high task numbers. The deflated conjugate-gradient 
method could significantly reduce the number of iterations that the pcg solver 
needs to converge (maybe even a factor of 10) and extend the scalability to several 
thousands of cores. This method divides the complete mesh into a small number of 
deflation groups, and the idea is that the convergence speeds up if the solution has 
been found in a separate group. Ocean models like NEMO are usually converged 
in a large part of the domain, except for the region around the north pole. This 
indicates that the deflation method could be succesful in ocean models. The 
deflation method is not yet implemented. 

2. The sor algorithm needs more iterations, but doesn't need any additional Allreduce 
calls. The bottleneck is therefore the exchange of the halos.  

Derived MPI datatypes are implemented to speedup the performance of the east-west halo 
exchange in the communication subroutine. The arrays are laid out in memory as east-to-west, 
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north-to-south and top-to-bottom. This method is implemented for 2D arrays (no vertical axis) 
and an implementation for 3D arrays is similar and planned. The domain is split in two 
horizontal dimensions, so halo exchanges are needed in the east, west, north and south 
directions. The halos along the northern and southern edges are contiguous in memory and 
can therefore easily be communicated with MPI. The halos along the eastern and western 
edges are not contiguous in memory and are now copied to and from temporary arrays. The 
implementation of this array copy interchanges both array dimensions, which results in lots of 
cache misses. MPI allows for a vector type that consists of a series of equally spaced blocks. 
The size of the blocks needs to be the same on the sending and receiving end, but the spacing 
can be different. With this method the temporary arrays can be removed completely and many 
vendor-specific MPI libraries contain optimizations for this MPI types that are much better 
than naive manual code. The scalability has improved remarkably on Power6 (1.66=>1.85 up 
to 10TF) and on Cray XT4 (1.33=>1.44). Unfortunately, this method did not yet work on 
BlueGene/P. 

3.14.3 Results 

• The use of Scatter and Gather operations is replaced by sends and receives, which 
improves scalability on all platforms. 

• The use of MPI vector types to exchange halos that are non-contiguous in memory 
also improve scalability on all platforms. 

3.14.4 Conclusions 

• Scatter and Gather operations are essentially serial in nature, and when used with large 
arrays this can quickly become a serious bottleneck for scalability. 

• The key bottleneck is the solver, solver algorithms suffer from their very low 
computation/communication ratio. The conjugate-gradient algorithm could profit from 
a decrease in the number of iterations through the deflated conjugate-gradient method, 
while the successive over relaxation method would gain mostly from faster halo 
exchanges. 

 

 

3.15 NS3D 

Written by: Harald Klimach, HLRS 

 

NS3D is a code for direct numerical simulation (DNS) of the compressible 3D Navier-Stokes 
equations and is used for the simulation of sub-, trans- and supersonic flows. It uses compact 
finite differences in two dimensions and a spectral ansatz in the third. Integration in time is 
done using a fourth order Runge-Kutta scheme. 

3.15.1 Application description 

The Code is completely written in Fortran 95 and neatly separated into modules. The code 
authors try to keep a uniform format throughout the application. Generally useful comments 
are found in most parts of the code, but mostly in German. 



D6.4  Report on Approaches to Petascaling 
 

PRACE - RI-211528  26.10.2009 
   

99

The most time consuming algorithm in the application is the solving of tridiagonal equation 
systems for the compact finite difference scheme. This roughly amounts to 40 % of the total 
computing time. 

The next computational intensive algorithm is the FFT which amounts to around 25 % of the 
total computing time. The third major computing component with 17 % is the evaluation of 
long complicated terms for time derivatives. 

Preprocessing within the code itself consists mainly of reading the data files and performing 
some minor operations, the needed time for this is negligible and already parallel. 
Preprocessing outside the actual code has to be done in the sense of setting up a so called 
baseflow, which is a 2D solution of the larger flow structures, for which the DNS is 
performed. However the computational load for this is very minor and done serially. The 
decomposition is done in two dimensions and the partitions are computed in parallel using 
MPI. In the third dimension the FFT has to be solved for the spectral ansatz, so a 
decomposition is not easily possible. Within each partition, shared memory parallelization is 
implemented by using the NEC Microtasking feature. The decomposition has to be done 
before the compilation, as the partition sizes are hard coded into the program, and need to be 
known at compile time. 

The IO is done using the eas3 library and its binary format. Periodically a restart file is written 
to disk, these files are the largest possible ones, as they contain all necessary information to 
start the simulation from that point again. Beside the restart files the actual output with only 
selected values is done, either once at the end of the simulation or for transient simulations 
every given timestep interval. Principally there is no difference between the output and restart 
files, thus the restart file output is representative for the complete application. 

The dataset we are using is derived from a testcase where two flows meet after a plate and 
create a shearwake when they are intermixing. This setup is for example appearing at the 
outlet of a turbine, where especially the noise generation is of great interest. 

The dataset can be easily enlarged, by extending the computational domain in flow direction, 
as this extension is currently of most scientific interest in order to follow the generated 
structures further downstream. For the current benchmarking analysis a simply extended 
baseflow is used, derived from the original realistic benchmark, however a more realistic 
baseflow for a very large simulation area could easily be generated, however from a 
computational point of view there would not be a large difference between these testcases. 

3.15.2 Petascaling techniques 

In the code, a hybrid parallelization concept of domain decomposition based on MPI and 
shared-memory parallelization with Microtasking is implemented. Based on the domain 
decomposition a graph-communicator is created which distributes the processes according to 
the connectivity of the nodes. Data exchange is mainly point-to-point (blocking and non-
blocking) and broadcast communication is used only during initialization. 

Concerning scaling, the tridiagonal solver for the compact finite differences is the most 
relevant part. In order to avoid serialization due to the recursive loops of the Thomas 
algorithm, a pipelined version of this method is implemented. It uses the fact that not only one 
but up to 25 derivatives must be computed and works as follows: the first domain starts with 
the recursive loop of the first derivative. After its completion, data is transferred to the next 
domain which continues with this derivative. Concurrently the first domain starts to work on 
the second derivative. This procedure continues accordingly for the following 
domains/derivatives. It yields a speed-up of (m·n)/(m+n-1) for the tridiagonal solver, where n 
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is the number of domains in the current direction and m is the number of derivatives (here 
m=25). This limits the speedup of the tridiagonal solver to m=25 in each direction. However 
all other parts of the code including I/O are local for each MPI process and thus the overall 
scaling is better. Such theoretical analysis of scaling is confirmed by previous tests up to 
moderate numbers of processors. Optimizations of the tridiagonal solver (see D6.5) 
automatically improves the overall scaling by reducing the time spent in the pipelining 
subroutines. 

If the described limitations, due to solving of the tridiagonal system are too restrictive, the 
code also allows to switch to explicit finite differences. These are less accurate but then all 
computing operations are local and data transfer at the interfaces is required only once per 
intermediate time step. 

As an alternative, it might be possible to use the compact scheme only within each domain, 
but larger explicit stencils at the domain interfaces. By increasing the stencil, similar 
numerical properties of explicit and compact finite schemes can be achieved but data transfer 
increases. 

In order to avoid data exchange of the complete flow field, domain decomposition is not 
applied to the spanwise direction with its Fourier discretisation. However an alternative 
formulation based on compact finite differences is already implemented. Thus there is also the 
option to extend the domain decomposition to the third direction in the future. 

Up to now shared-memory parallelization is only implemented via NEC specific 
Microtasking. To use shared-memory parallelization on other machines as well, it would be 
necessary to convert those compiler directives to OpenMP, which is a major effort. 

The load balancing and MPI communication system in the application is already quite 
sophisticated, and as only nearest neighbor communication is deployed this promises only 
little improvements. Thus focus has been laid upon the tridiagonal solver and reducing its 
share of the computational time consumption. However the deployed strip mining 
mechanisms also help the shared memory parallelism, as it provides blocks of reasonable size 
for each thread to act upon. 

The restructuring of the shared memory parallelism within the NEC-MicroTasking framework 
already took around 2 PM. One of the most essential parts of the work was to ensure the 
correctness of the results after modifying the code. 

Pre- and Postprocessing are negligible, even on large partitions their time consumption 
accounts for less than 2 %. 

3.15.3 Results 

The scaling behaves quite as expected on the SMP-ThinNode-x86 and the SMP-
ThinNode+Vector, however on the SMP-FatNode-pwr6  there is an extraordinary good 
scaling behavior even with the compact finite difference scheme, which is the only one 
analyzed so far. On this system even a superlinear speedup can be seen, which is supposed to 
be due to caching effects in the strong scaling analysis, and points to possible single core 
optimizations by better cache usage. 

On the MPP-Cray it seems to be quite obvious, that explicit finite difference schemes are 
necessary to make efficient use of large system partitions. However even the compact finite 
differences are already scaling quite well on that system. An opportunity for improvement 
might have been shared memory parallelism within the MPI communication layout, so we 
started out exploring this scheme. However, as this feature was implemented in a NEC-SX 
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specific way, this analysis was done on the NEC-SX9 which is part of the SMP-
ThinNode+Vector prototype. 

 
Figure 40 Effect of shared memory parallelism before and after tunings on a single NEC-SX9 node 

 

In Figure 40 the impact of using shared memory parallelism together with MPI processes is 
shown. This analysis was done on a single dedicated NEC-SX9 node with 16 processors. As 
can be seen, the execution is slowed down when using shared memory parallelism in 
combination with MPI. After the tunings, where the shared memory parallelism is deployed 
on code blocks instead, this effect got less bad, but still remained. In fact, if the shared 
memory parallelism is completely disabled at compile time, the execution is even faster by 10 
% than depicted for the single task in the graph. 

As can be seen in Figure 41, this still holds true for larger partitions of the machine, in fact 
even on the complete machine with 12 nodes, it is beneficial to use a pure MPI-
implementation. In the light of this result it is questionable, if a significant benefit can be 
drawn by applying OpenMP directives for other platforms. For systems with large numbers of 
processors it is most probably better to use explicit finite differences instead. 
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Figure 41 Analysis of several task per process combinations on 8 and 12 NEC-SX9 nodes 

An overview for the scaling enhancements gained by the deployed blocking mechanisms and 
increased efficiency of the tridiagonal solver is given by Figure 42. As can be seen, the 
scaling improved together with the single node performance by the applied modifications. 
However for this smaller test case after 4 nodes the efficiency breaks down, as the problem 
sizes per processor get too small for the vector architecture. 
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Figure 42 Scaling before and after optimisation on the NEC-SX9 processors in comparison to ideal scaling 

of the original code 

3.15.4 Conclusions 

NS3D has been developed on and for the NEC SX series, where each processor is quite 
powerful, thus only a few of them are needed to gain short execution times. Therefore scaling 
was not the main focus of the developers so far and the most efficient but inherently 
sequential compact finite differences are the preferred discretisation method. Even so the first 
results on the investigated PRACE platforms showed reasonable scaling with pure MPI 
parallelization and without tunings with respect to scaling. 

The analysis of hybrid parallelism for this code showed no advantage for shared memory 
parallelism within the MPI processes. This is probably due to the well decomposable problem 
in MPI with only nearest neighbor communication involved. Yet, scalability is limited by the 
solving of the tridiagonal equation system, which therefore has to be dropped on systems with 
very high numbers of processors, like MPP-Cray. This has yet to be analyzed. Rewriting the 
shared memory parallelism to OpenMP for those systems, however, is deemed as not worth 
the effort for this code. 

The main scaling improvement in this application was gained by decreasing the time fraction 
used by the inherent sequential tridiagonal solver. In other terms there is only little room for 
improvement of the scalability, as only nearest neighbor communications are deployed in an 
already quite sophisticated way. Different communication layouts may be tested for further 
small improvements, though. It may also be possible to combine some of the messages to 
larger ones. 

The main task still subject to investigation is the behavior of the code when using explicit 
finite difference schemes. 



D6.4  Report on Approaches to Petascaling 
 

PRACE - RI-211528  26.10.2009 
   

104

 

3.16 Octopus 

Written by: Fernando Nogueira, UC-LCA 
 
 
Octopus is a computer code to calculate excitations of electronic systems. The code relies on 
Density Functional Theory (DFT) to accurately describe the electronic structure of finite 1-, 
2- and 3-dimensional systems, like e.g. quantum dots, molecules and clusters. Although 
further code development is still needed, there is also the possibility of describing infinite 
systems. The code is released under the GNU Public License and is freely available at: 
http://www.tddft.org/. 

3.16.1 Application description 

The code is mainly written in FORTRAN 90, but it contains some parts written in C and it 
also relies on several Perl scripts. The code consists of approximately 120k lines of 
FORTRAN 90 code, and 20k lines of C code. 

Besides an MPI library, the code requires some standard external libraries: FFTW, BLAS, 
LAPACK, and GSL. Other libraries are also required, but they are currently bundled with the 
code: METIS and/or ZOLTAN for parallel partitioning, NEWUOA for derivative-free 
optimizations, POISSON_ISF and SLATEC for the solution of Poisson’s equation, QSHEP 
for interpolations, and LIBNBC for non-blocking communications. 

Octopus uses auto-tools to ease the compilation process and is thus very easy to compile for 
different architectures/systems.  

Octopus is a tool for the calculation of electronic excitations, using the Time-Dependent 
formulation of DFT (TDDFT). TDDFT calculations start from a converged DFT ground-state. 
Due to this, octopus must also compute the ground-state of the system of interest, and this 
step can be viewed as a pre-processing step.  

In Octopus the functions are represented in a real space grid. The differential operators are 
approximated by high-order finite differences. The propagation of the time-dependent Kohn-
Sham equation is done by approximating the exponential of the Hamiltonian operator by a 
Taylor expansion. 

Octopus has a multilevel parallelization. First, the processors are divided in groups, and each 
one gets assigned a number of orbitals. This is a very efficient scheme, since the propagation 
of each orbital is almost independent. The limitation to scalability is given by the number of 
available states, but this number increases linearly with the system size. Then the real space is 
divided in domains assigned to different processors. For the application of differential 
operators the boundary regions have to be communicated. This is done asynchronously, 
overlapping computation and communication. The scaling of this strategy is limited by the 
number of points in the grid, that as in the previous case, also increases linearly with the 
system size. Finally each process can run several OpenMP threads. The scalability is limited 
by regions of the code that do not scale due to limited memory bandwidth. 

The ASCII input file is parsed by an engine that allows for the use of variables. It also 
automatically assumes default values for all input parameters that are not explicitly assigned a 
value in the input file. The output is plain text for summary information, and platform-
independent binary for wave functions. 



D6.4  Report on Approaches to Petascaling 
 

PRACE - RI-211528  26.10.2009 
   

105

3.16.2 Petascaling techniques 

Octopus is designed so that data is partitioned among processors. However there is some 
amount of data that has to be stored in every processor and is independent of the number of 
processors in the particular parallelization level. When the systems to be studied are large and 
a large number of processors are used, the amount of non-distributed data becomes 
considerable, so one of the first tasks to achieve petascaling was to reduce the amount of this 
data. 

One of the main improvements performed in the code was to rewrite performance-critical 
routines so that they work with blocks of vectors at a time, instead of working with single 
vectors. This allows us to group communication operations in the code, reducing the effect of 
communication latency. Working by blocks is also beneficial in some cases for single 
threaded execution performance, since more efficient matrix-matrix multiplication operations 
can be used. 

Since memory constraints were determined to be one of the key limitations for parallel runs, a 
hybrid OpenMP + MPI parallelization was implemented. This is particularly critical for 
systems like the BG/P were the memory per processor is small in comparison with the 
requirements of Octopus. The operation by blocks mentioned above was useful to improve the 
OpenMP implementation, since it exposes more parallelism to the low-level routines. 

 

3.16.3 Results 

For the PRACE benchmark two different datasets were considered: the first consists of a 
fullerene molecule containing 240 atoms (960 electrons) and the second is a fragment of the 
light-harvesting complex in spinaches, containing 650 atoms (1654 electrons). These are 
physically relevant benchmarks designed to run up to several hundreds of processors, so that 
they would fit in PRACE prototypes. They are, therefore, not suitable to scale to PetaFlop/s 
machines. It is trivial to extend these tests to such machines by taking a larger fullerene or a 
larger fragment of the light-harvesting complex. 

In the tables below, green indicates superlinear scaling, blue indicates suspicious results in 
need of confirmation and red points to possible bad scaling. “tdtime” is the time, in seconds, 
to perform 10 time-steps of the propagation of the Kohn-Sham wavefunctions. A realistic 
simulation would require several thousand time-steps. All time-steps take strictly the same 
time. Scaling was computed by comparing the ratio of “tdtime” values to the ratio of the total 
number of threads. The mflops values are real, measured internally by octopus. These values 
are an underestimation as not all parts of the code are considered, but work is currently in 
progress to have better estimates through the use of performance counters throughout the 
entire code (using PAPI).  
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ncpus nodes taskspeode threadsask tdtime tdmflops 
total 
mflops scaling 

BlueGene               

256 64 1 4 103.1 607.6 38886.4 1.00 

512 128 1 4 56.16 565.9 72435.2 0.93 

1024 256 1 4 32.65 486.7 124595.2 0.80 

FN-pwr6               

64 2 32 1 107.23 1012.6 64806.4 1.00 

128 4 32 1 70.58 759.2 97177.6 0.75 

256 8 32 1 43.06 603.6 154521.6 0.60 

512 16 32 1 15.59 833.8 426905.6 0.82 

TN-x86               

16 2 8 1 301.21 1465.8 23452.8 1.00 

32 4 8 1 160.28 1382.5 44240 0.94 

64 8 8 1 81.77 1365.1 87366.4 0.93 

128 16 8 1 42.86 1321.7 169177.6 0.90 

Cray XT               

32 4 8 1 243.66 909.4 29100.8 1.00 

64 8 8 1 133.66 835.2 53452.8 0.92 

128 16 8 1 72.83 777.8 99558.4 0.86 

Pwr6+Cell               

8 4 2 1 2949.58 299.4 2395.2 1.00 

16 8 2 1 1478.58 298.6 4777.6 1.00 

32 16 2 1 756.26 293 9376 0.98 

64 32 2 1 657.95 169.7 10860.8 0.57 
Table 12 Results for C240. 
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ncpus nodes taskspeode threadsask tdtime tdmflops 
total 
mflops scaling 

BlueGene               

512 128 1 4 112.18 506.9 64883.2 1.00 

1024 256 1 4 59.35 479.1 122649.6 0.95 

2048 512 1 4 31.84 453.2 232038.4 0.89 

FN-pwr6               

128 4 32 1 99.72 989.6 126668.8 1.00 

256 8 32 1 53.08 915.4 234342.4 0.93 

512 16 32 1 27.26 880.4 450764.8 0.89 

1024 32 32 1 74.61 152.9 156569.6 0.15 

TN-x86               

32 4 8 1 367.32 1051.7 33654.4 1.00 

64 8 8 1 169.75 1137.9 72825.6 1.08 

128 16 8 1 88.48 1091.4 139699.2 1.04 

256 32 8 1 47.82 1009.8 258508.8 0.96 

Cray XT               

64 8 8 1 270.96 712.8 45619.2 1.00 

128 16 8 1 146.37 659.7 84441.6 0.93 

256 32 8 1 80.16 602.3 154188.8 0.84 

Pwr6+Cell               

32 16 2 1 1897.79 203.6 6515.2 1.00 

64 32 2 1 797.39 242.2 15500.8 1.19 

128 64 2 1 697.9 138.4 17715.2 0.68 
Table 13 Results for 650-atom light-harvesting complex. 

 

3.16.4 Conclusions 

Scaling seems to be excellent for each problem size and runs could be performed efficiently 
up to 2 to 4 threads per atom. Note that the second benchmark is roughly a factor of two more 
demanding than the first one. Comparing both sets of results, there seems to be a linear 
improvement of the scaling with the system size. This is extremely promising, as there are 
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many systems, typically of biological interest, that contain from 10 to 1000 times more atoms 
than those used in the benchmarks. This indicates that calculations for these larger systems 
would scale to tens of thousands of processors, being thus ideal candidates for the new 
PRACE PFlop/s machines. 

The superlinear behaviour in the second benchmark, for some architectures, can be easily 
explained. In single node machines, most of the methods used in octopus are typically limited 
by memory access. By increasing the number of nodes, the required memory per node 
decreases, alleviating the memory access problem and increasing overall efficiency. However, 
the increase of the number of nodes brings communication overhead problems, that eventually 
dominate the overall scaling, lowering the efficiency. 

The results marked in blue are suspicious as they do not follow the trends. In the Cell 
prototype, these suspicious cases appeared together with a network warning regarding a 
missing network interface. This might point to a misconfiguration of the machine. The same 
can be said of the FN-power6 results. 

Finally, in the BlueGene, the code seg-faulted when using non-blocking communications 
(with two different implementations, one using LIBNBC and the other using directly non–
blocking point to point communications). This can limit the parallel performance. A solution 
is still being actively investigated.  

 

3.17 PEPC 

Written by: Lukas Arnold, FZJ 
 
 
PEPC is a parallel tree-code for rapid computation of long-range (1/r) Coulomb forces for 
large ensembles of charged particles. The heart of the code is a Barnes-Hut style algorithm 
employing multipole expansions to accelerate the potential and force sums, leading to a 
computational effort O(NlogN) instead of the O(N(squared)) which would be incurred by 
direct summation. Parallelism is achieved via a `Hashed Oct Tree' scheme, which uses a 
space-filling curve to map the particle coordinates onto processors. 

3.17.1 Application description 

The source code is divided into two parts: the general PEPC-library, which provides the 
kernel of the benchmark, and an application frontend. In the beginning of the benchmarking 
progress, in the PRACE context, the PEPC-B frontend was used. This frontend is used to 
calculate laser-plasma interaction. As the benchmark is focusing only on the electromagnetic 
interaction, the benchmark framework has switched to PEPC-E. This frontend provides an 
optimized, mostly in the sense of memory management, way to solve the benchmark problem, 
as it deals only with electromagnetic interaction.  

The full code is written in Fortran 90 and does not use any external library. 

The code is well written, but hardly documented. In the current state the maximum number of 
MPI tasks is limited by the memory requirements. The main problem is the memory size of 
the oct tree, which grows nonlinearly with the number of MPI tasks. As long as this limitation 
is not solved, PEPC will not be capable of utilizing a petaflop machine. To approach this 
limitation, each MPI task must not store global information about the oct tree, as it is done 



D6.4  Report on Approaches to Petascaling 
 

PRACE - RI-211528  26.10.2009 
   

109

now, but only partial information. However, this approach will result in a fundamental 
restructure of the communication scheme. 

The main algorithm is the following: at first one has to generate all particle-interaction lists, 
than all forces are communicated and summed and finally the equation of motion for each 
particle is evaluated. The main computational load, in terms of FLOP/s, is the function 
'sum_forces', which calculates all acting forces; it contains about 90% of the total floating 
point operations.  

The PEPC-B frontend needs some pre-processing steps, which are divided in two steps: an 
application external and an application internal step. The external step is mainly the build up 
of directory structures and the creation of particle lists. The application internal pre-
processing step is the initialization of the initial values for the simulation. There are no post-
processing steps. The PEPC-E frontend has eliminated the external steps. 

The parallelization strategy in PEPC is to distribute all particles equally on the processes, with 
respect to their physical positions. Each process collects all information needed to integrate 
the equation of motion for its particles from all other processors. Obviously each process 
provides information, particle positions or mulitpole moments, for the others. Thus the 
communication pattern is not structured or only next neighbor dominated but global, due to 
the long range electromagnetic interaction. The parallelization is realized within the MPI 
framework. 

The current I/O strategy is that each process creates a single file and writes its particle 
properties in text mode to this file. This works fine for small processor numbers but will not 
work for large partitions. This is a scaling task, i.e. the output will not create many small files, 
which are accessed only serially in the worst case, but one single file in parallel and binary 
mode. 

A dataset for PEPC is a particle distribution, i.e. the prescription of the (initial) position and 
velocities as well as other properties. This means that it is easy to generate any problem size, 
just by modifying the particle number. Petascale and real world datasets are in the order of 50 
to 100 million particles, or even higher. 

 

3.17.2 Petascaling techniques 

The current status of the petascaling effort is to test the new PEPC-E frontend. Up to now the 
code runs for up to 8192 cores on the MPP-BGP and can thus saturate all target prototypes but 
the MPP-BG/P.  

The scaling of the old version (PEPC-B) is shown in Figure 43 and the scaling of the new 
PEPC-E frontend on the target architectures is shown in Figure 44. Note, that the two figures 
cannot directly be compared, as the solver and the problem size are different. The important 
point is the possibility to use larger partitions with the new version of PEPC. 
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Figure 43: Scaling of PEPC-B on target architectures 

 

 
Figure 44: Scaling of PEPC-E on MPP-BG architecture 

 
The main difference between the two PEPC versions is the memory management. The 
limiting factor for using large partitions is the memory available for each core, as this is 
nonlinearly dependent on the number of MPI tasks, i.e. it grows very strongly with the 
number of tasks. Due to this, PEPC-B is, at least at the current state of development, limited 
to about 1024 MPI tasks. The PEPC-E frontend is, in contrast to PEPC-B, using just the 
PEPC core functionality, the tree code, and no additional physical features, like laser pulses 
for example. These additional features were and are not used for benchmarking, but they 
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generate a lot of overhead, especially in the memory footprint. In addition to this, some not 
needed structures have been removed to further decrease the memory needs.  

Although this resource usage reduction increases the scaling range of PEPC, the fundamental 
limits remain and avoid the scaling on a petaflop machine. The main development effort done 
right now is to fundamentally redesign PEPC to run and scale on partitions in the order of a 
petaflop machine. The currently followed way is to leave the homogenous path, this means 
that all MPI tasks are equal, and to setup a heterogeneous strategy. This will include two types 
of actors: so called data brokers and computing nodes. The computing nodes will not have 
any global information, like they do now, but will rather know which information they have 
and which they need to do the computation. All detailed physical information, i.e. the 
particles, are stored and computed on these computing nodes. On the other side, the data 
brokers will have global information, but with a limited scope. They will know all other data 
brokers and their corresponding computational regions. Their main functionality will be the 
creation of communication paths between the computing nodes and the caching of frequently 
used information. 

The following example demonstrates the new strategy. A common situation in a PEPC 
simulation is the request for multipole moments of a distant particle cluster. What happens 
now is that the requesting node and its neighbours ask the distant node separately for the same 
information. The network path for such a request might be quite long, for example on the 
torus network of the MPP-BG/P architecture, and the same information is multiply transferred 
across the network. At this stage the data brokers come to their functionality. The 
neighbouring nodes indicate the data broker the need for distant information, which now 
assigns just one of them to do the distant communication and the others to ask for the 
requested information to their neighbour, which actually does the communication. Obviously 
the non assigned node can start other distant communication and share their communicated 
information with the others, using only neighbour communication. In this way the 
communication scheme will be more scalable and the diagonal elements of the 
communication matrix will become more dominant. Additionally, as the timescales of a single 
time step and the change in the multipole moments of large particle cluster are very different, 
the data broker will be able to speculatively prefetch data and even distribute it to its assigned 
computational nodes, using the overlap of computation and communication. 

As this is in the early stage of development, no data has been collected. The effort to 
restructure the communication scheme and to integrate it in the current production workflow 
will be in the order of one person year. 

Pre- and post-processing in PEPC-E is restricted to the creation of the initial particle position 
and to the cleaning up. The particle creation in the pre-processing is serial, due to the 
capability to verify the results on all prototypes and all partition sizes. As the initial particle 
positions are randomly set, the same random number sequence has to be used, i.e. it must not 
depend on the number of MPI tasks, the compiler and the architecture. To do so, each MPI 
rank computes, but does not store, the initial conditions for all particles in a well defined way 
and keeps just the one which are assigned to it. As this is in the order of a few seconds and 
does not depend on the number of MPI tasks, no effort is needed to reduce this procedure. The 
post-processing time is not significant.  

3.17.3 Results 

The speedup gained on the different platforms is in the order of 1.8, at small partitions, to 1.5, 
on the largest partitions. This speedup is not fundamentally increased by the change from 
PEPC-B to PEPC-E, but the maximal partition size was increased. As PEPC has a non 
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structured communication scheme, involving the communication of all tasks with all other 
ones, this scheme does not scale well and so does the application. Applying the new 
heterogeneous strategy will advance the parallelization of the communication scheme, 
resulting in a higher global speedup. 

3.17.4 Conclusions 

The current development stage focuses on a fundamental restructure, as described above, of 
the communication scheme which will not be optimized for any specific physical network, at 
least not at this stage. However, one might expect that the data broker and computing node 
separation could benefit from a hierarchical network topology. In addition to this, PEPC’s 
scaling might also be improved if the MPI support of the computation and communication 
overlap is well supported, as the new communication strategy will include a prefetching 
scheme.  

 

 

3.18 SIESTA 

Written by: Rogeli Grima, BSC 
 

SIESTA is a method to perform electronic structure calculations and ab initio molecular 
dynamics simulations of molecules and solids. It implements, in self consistent DFT, the 
order-N techniques developed for tight-binding. 

3.18.1 Application description 

SIESTA is a program written in Fortran with about 200.000 lines of code. Initially, it was a 
purely serial code. This was convenient for many "modest" users, who used single 
workstations, and this gave it a rapid popularity. Later, parallelism was added "on top", with 
the main priority being not to compromise serial execution, and without revising the 
algorithms for good parallelism. Unsurprisingly, this leads to unbalanced executions. The 
program uses several external libraries: BLAS, LAPACK, SCALAPACK, MPI, METIS and 
ARPACK. 

SIESTA is a purely academic project. It is the result of the contribution of many different 
people with different backgrounds. The code style is not uniform and some parts of the code 
are well documented and readable, but some others not. Although it is not free software, it is 
distributed free of charge to all academic users. 
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These are the main parts of the program: 

 DO Time/movement loop 
• Construction of Overlap matrix: S 

  DO Self-consistency loop 
• Construction of Hamiltonian 

matrix: H 
• Compute eigenvalues: H·x = λ·S·x 

  ENDO 
 ENDO 
 

In the original code the construction of the Hamiltonian and the overlap matrices were 
parallelized with MPI. During this process SIESTA computes the contribution of every orbital 
to every point of a three dimensional mesh. The original implementation distributes this mesh 
equally among all the processes. This was a bad idea because the density of orbitals in the 
mesh can be different and this can lead to an unbalanced workload distribution. 

Meanwhile, the computation of eigenvalues of the system was done using SCALAPACK. We 
found several problems in this library: It only works with dense matrices (The hamiltonian 
and the overlap matrices are sparse structures); it computes all the eigenvalues of the system 
(we do not need them all); finally it only scales to several hundreds of processors. 

3.18.2 Petascaling techniques 

Our first goal in order to improve the parallelization of SIESTA was to fix the problem with 
the unbalance in the workload during the construction of the Hamiltonian matrix. This 
unbalance arises because the work associated with every point of the mesh is different. In fact, 
the construction of the Hamiltonian matrix has four steps and every step has a different cost 
for every point of the mesh: 

• Rhoofd: The amount of computation depends on the number of orbitals that intersects 
every mesh point. 

• Poison: Computation of a 3-dimensional FFT. The amount of computation is uniform. 

• Cellxc: We only have to make computations on those mesh points intersected by 
orbitals 

• Vmat: Has the same pattern as Rhoofd. 

We have created three data distributions that are optimal for every function. Every time we 
enter into a new function we use a new data distribution. This means that the processes have 
to communicate in order to get the proper data. These communications are point-to-point. The 
information to send or receive can be in any other process. For this reason we have 
precomputed a scheduling in order to overlap the communications and avoid blocking 
situations. After a self-consistency step the atoms and the orbitals of the system can move 
inside of the grid and we should recompute the data distributions and communications 
scheduling. 

The parallelization is done with MPI, but we have also used OpenMP in order to reduce the 
number of domains. We use bigger domains which means that the number of communications 
between processes is reduced. The introduction of OpenMP inside of SIESTA has been 
straight forward because we have used a fine-grain parallelization. In order to guarantee the 
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workload balance we have used a dynamic scheduling inside of the parallelized loops. This 
hybrid parallelization will be helpful to adapt the application to many kinds of architectures. 

The computation of eigenvalues is the most expensive part of SIESTA. For big problems it is 
an O(N3) task, while the construction of the Hamiltonian is just O(N). In order to deal with the 
problems that we have found in the SCALAPACK library we have tried an iterative method 
to compute eigenvalues. Iterative methods allow us to take advantage of matrix sparsity, 
because it does not need to make any transformation to the matrix. In fact, the matrix is only 
used to compute matrix per vector operations. The other advantage of iterative methods is that 
we don't need to compute all the eigenvalues and we can stop searching once we have found 
the desired ones. The iterative methods have 3 critical parts: 

• Matrix per vector operation: It represents the main computation part of the method. It's 
very important to optimize the communications of this function. 

• Orthogonalization of a vector: Most of the iterative methods use a base of orthogonal 
vectors. Every orthogonalization represents a global reduction among all the 
processes. 

• Resolution of the projected system: In order to solve our problem we project it into a 
smaller one. This means that in every step of the method we should compute the 
eigenvalues of a smaller problem (using LAPACK). This is done in serial (in fact the 
computation is replicated in all the systems to avoid communications). 

In order to guarantee the scalability of the sparse matrix per vector operation we have used the 
library METIS. METIS produces a domain decomposition that reduces the size of the border 
among domains and the number of neighbours. This means that we should do less 
communications and the data that we should send or receive is lower. We have also 
precomputed a scheduling in order to overlap communications. 

We have implemented two different iterative solvers: Jacobi Davidson (JD) and Modified 
Lanczos Method (MLM). In the first version of the JD we found serious problems of stability 
so we decided to move to the MLM. This is much more stable than the other in that we 
always get good eigenvalues. 

3.18.3 Results 

The new data distributions used during the construction of the Hamiltonian matrix has 
increased the scalability of the program. The original code had very few communications but 
the load balancing was not good, especially on those problems where the orbitals were not 
distributed uniformly in the mesh. This has been solved by using a dynamic mesh distribution 
that adapts to the orbitals distribution. 

Meanwhile, in the MLM, we haven't achieved good results. However, we have done a good 
work implementing an efficient matrix per vector computation. We have tested this part and 
we have seen that it can scale to more than 1000 processors. The problem is that with more 
than 100 processors the sequential part of the MLM becomes relevant. 

The problem of MLM is that it needs to create a Krylov space which is bigger than the 
number of eigenvalues it needs to compute. If N is the size of the problem and M is the krylov 
space dimension, the complexity of the matrix per vector operation is O(N), while the 
complexity of the sequential part is O(M3). This means that MLM is not a good choice to 
compute a large number of eigenvalues. 
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3.18.4 Conclusions 

We have done a good job in the construction of the Hamiltonian matrix and in the matrix per 
vector operation (used by iterative methods), obtaining good scalability, but we have failed in 
the selection of the modified Lanczoss method for SIESTA. This method is good when the 
number of eigenvalues to compute is small. However, the things that we have learnt 
implementing this method are useful for implementing other iterative methods. We are 
currently working with the Jacobi-Davidson method (JD). This method has a restart step that 
reduces the size of the Krylov space. This means that the sequential code doesn't grow with 
the size of the problem. For the time being we are happy with the scalability of this method, 
but we are still working on its stability and its convergence. We have tested many SIESTA 
examples that generate matrices with a bad condition number. This makes work harder for 
iterative methods. 

 

3.19 QCD 

Written by: Lukas Arnold, FZJ 
 
 
The quantum chromodynamics (QCD) benchmark consists of five kernels, each representing 
different implementations of solvers for the lattice QCD. All kernels are packed into one 
executable resulting in a single benchmark. 

3.19.1 Application description 

The source code is divided into the wrapper part (written in C) and the kernels called within 
it. The kernels are written in C and in FORTRAN. The whole benchmark does not depend on 
any external library. 

The code is well structured and thus readable. This is due to the fact that these kernels are not 
the production codes used by the corresponding scientific groups, but rather portable and 
stand-alone implementations of some well known lattice QCD solvers.  

As only benchmarking versions of the kernels are used, there is no significant pre- or post-
processing. This is also true for file I/O. 

The parallelization strategy is to split the computational domain, a 4d or 3d grid with periodic 
boundary conditions, into regular domains and distribute one domain to each computing units. 
Each of these sub-domains needs some information from its neighbors for the solver in the 
domain interior. This information corresponds to boundary hyper-surfaces which must be 
exchanged every iteration. This exchange is the main communication task and it is 
implemented within the MPI framework, at least for the portable kernel implementations. 
Three of the kernels (A, C and E) require regular calls to global sums of scalar values which 
are performed a few times every iteration.  

The problem size for the QCD benchmark is defined by the grid size. The initial conditions 
for the solver are analytically available so no datasets are needed for the benchmarks. Thus 
any problem size can be generated including datasets for petascaling. The benchmark is set up 
with respect to current scientific problem sizes as well as beyond them to utilize the future 
petascale machines.  
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3.19.2 Petascaling techniques 

The QCD benchmark kernels do not include any special petascaling techniques, but are rather 
implemented in a portable way. However, due to the locality of the solver, only nearest-
neighbor communication is needed. These implementations work very well and scale on all 
target prototypes, see Figure 45 toFigure 47. Note that all the kernels except for C use strong 
scaling, i.e. a fixed overall problem size; kernel C uses weak scaling, i.e. a fixed problem size 
per processor. 
 

 
Figure 45: QCD kernel scaling on MPP-BGP. All kernels, but KC, are run for strong scaling. 

 
 

 
Figure 46: QCD kernel scaling on SMP-FatNode-pwr6. All kernels, but KC, are run for strong scaling. 
 
This communication scheme works especially well on the MPP-BG, as this scheme benefits 
from the low communication latency. This is true for all kernels. However, to achieve better 
overall performance, the production codes use in some cases communication techniques 
which do not use MPI but low level, strongly hardware dependent programming. For instance, 
on the MPP-BG the network unit can be programmed directly to further reduce latencies and 
increase the bandwidth. This programming technique depends, at least for the MPP-BG 
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architecture, strongly on undocumented as well as unsupported hardware interfaces. This 
implies a very high effort for the implementation and for maintenance, as it is not guaranteed 
that the interfaces do not change with any OS update. The effort needed (implementation and 
maintenance) for such a highly specialized version might consume up to 20% of the total, i.e. 
research, time. 
 

 
Figure 47 QCD kernel scaling on MPP-Cray. All kernels, but KC, are run for strong scaling 

 
 

3.19.3 Results 

No new scaling techniques have been applied to the lattice QCD benchmark, as the 
benchmark’s techniques are already very efficient. 

The locality of the involved solvers, i.e. only communication between a few partners, ideally 
been neighbours in the network geometry, has to be considered, enables the lattice QCD 
benchmark to scale to very large partition sizes.  

The scaling has been already presented in Figure 45 to Figure 47, showing a very good, i.e. 
nearly linear, scaling behavior. The reason for a non linear speedup at the end of the scaling 
curves for the SMP-FatNode-pwr6 and the MPP-Cray architectures might reflect the 
scalability limits of the underlying network.  

More details on parallelization can be found for example in [18]. 

3.19.4 Conclusions 

The scaling of the lattice QCD benchmark is very good, even for the portable 
implementations provided for PABS. The main reason for this is the quite regular 
communication which is restricted only to nearest neighbours. In production codes this 
communication can be overlapped with computation, as the computational workload for each 
lattice point is high in the solver phase, i.e. the computational domain, can be split in two 
parts: the inner and the boundary part. Thus the boundary part is computed first and while the 
exchange of these boundary parts is in progress the inner part is solved. 
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The benchmarks provided here show, that a dedicated 4d torus network, like the one used in 
the MPP-BGP, works best for lattice QCD, as it fits exactly the applications communication 
scheme.  

In general there is no fundamental scaling limit for lattice QCD. However, the lattice size has 
to be adapted accordingly to the given partition size. The main limiting factor is the scaling 
property of the computing system. 

 

3.20 Quantum_Espresso 

Written by: Carlo Cavazzoni, CINECA 
 
 
QUANTUM ESPRESSO (QE) is an integrated suite of computer codes for electronic-
structure calculations and materials modelling at the nanoscale, based on density-functional 
theory, plane waves, and pseudopotentials (norm conserving, ultrasoft, and PAW). 
QUANTUM ESPRESSO stands for opEn Source Package for Research in Electronic 
Structure, Simulation, and Optimization. It is freely available to researchers around the world 
under the terms of the GNU General Public License. More information and reference are 
available at www.quantum-espresso.org 

3.20.1 Application description 

QE is mainly written in Fortran90, but it contains some auxiliary libraries written in C and 
Fortran77. The whole distribution is approximately 500K lines of code, even if the core 
computational kernels (CP and PW) are roughly 50K lines each. The QE distribution is by 
default self contained, all what you need are a working Fortran and C compiler. Nevertheless 
it can be linked with most common external libraries, such as fftw, mkl, acml, essl, 
ScalaPACK and many others. External libraries for FFT and Linear Algebra kernels are 
necessary to obtain optimal performance. QE contain dedicated drivers for FFTW, ACML, 
MKL, ESSL, SCSL and SUNPERF FFT specific subroutines. 

QE has been developed over time by many researchers who are not necessarily experts in 
code development and design, anyhow in the last years a lot of effort has been dedicated in 
making the code more readable and more easily extensible. Core numerical algorithms with 
the highest impact on performance are well separated from the rest of the code. This fact 
together with the modular structure of the code should make optimizations and petascaling 
techniques easy to implement. 

Main algorithms in the code are FFT, iterative diagonalization of Hermitian matrix, matrix 
multiplications. On average the code spends roughly half of the time in linear algebra 
subroutines and half in FFT subroutines, but this proportion can vary very much with the 
simulated systems. The time spent for linear algebra is mainly time spent in matrix 
multiplications. There is no separate pre and post processing steps for the main computational 
kernels, even if the electronic states, charge density and potential computed with the main 
codes (CP and PWscf) many post processing computations can be applied to compute all 
ground state physical properties of a given system. Sometimes this computation can be 
heavier than the main computation itself. 

Both data and computations are distributed in a hierarchical way across available processors, 
ending up with multiple parallelization levels that can be tuned to the specific application and 
to the specific architecture. More in detail, the various parallelization levels are geared into a 
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hierarchy of processor groups, identified by different MPI communicators. In this hierarchy, 
groups implementing coarser-grained parallel tasks are split into groups implementing finer-
grained parallel tasks. The first level is image parallelization, implemented by dividing 
processors into n image groups, each taking care of one or more images (i.e. a point in the 
configuration space, used by the NEB method). The second level is pool parallelization, 
implemented by further dividing each group of processors into npool pools of processors, 
each taking care of one or more k-points. The third level is plane-wave parallelization, 
implemented by distributing real- and reciprocal-space grids across the nPW processors of 
each pool. The final level is task group parallelization, in which processors are divided into 
ntask task groups of nFFT = nPW/ntask processors, each one taking care of different groups 
of electron states to be Fourier-transformed, while each FFT is parallelized inside a task 
group. A further paralellization level, linear-algebra, coexists side-by-side with plane-wave 
parallelization, i.e. they take care of different sets of operations, with different data 
distribution. Linear algebra parallelization is implemented both with custom algorithms and 
using ScaLAPACK; on massively parallel machines this yields superior performance. 
Recently a first hybrid MPI+OpenMP parallelization has been implemented.  

The input is constituted from plain text ASCII files with the description of the simulation and 
the tables for the atomic pseudo-potentials; the output is plain text for summary information, 
XML-like files for exchanging data with other packages and binary for wave functions. 
Binary wave function files are by far the heaviest output of the code and each processor writes 
its wave function components in a separate file. 

For the PRACE benchmark two different datasets have been prepared, both scaling at least up 
to 20TFlops. The first dataset contains 443 atoms and run roughly in 20 minutes at 10TFlops, 
the seconds contains 686 atoms and run roughly 1 hour at 10TFlops. Physically the simulated 
system in both test cases represents an Iridium surface with a Graphene sheet (Graphite 
monolayer) on top of it. A smaller version (called test version) of the 443 atoms dataset has 
been used for optimization and profiling. The two dataset have been tailored for the PRACE 
prototype systems and probably are not big enough for petascaling. 

There are a number of real world datasets of scientific and technological interest that are big 
enough for petascaling. The same datasets described above can be easily extended to build a 
new input suitable for petascaling. Enlarging the simulated system in this case is scientifically 
relevant because it can increase the accuracy of the simulation itself. Nevertheless for QE 
building a new input describing a new system is not an issues at all, starting atomic position is 
all what is needed. 

3.20.2 Petascaling techniques 

With QE, five main petascaling techniques have been applied: Mixed parallelism useful for 
all SMP node machines, substitution of blocking communication with non blocking one, 
vectorization of some key computations for vector machines, more MPI parallelism, and 
tuning of data distribution parameters to get the best scalability. 

The first and most important petascaling techniques has been the implementation of a hybrid 
MPI & OpenMP version of the code. This effort was motivated by the need to improve the 
scalability of the code on new petascaling machines with many thousands of computing cores. 
PRACE in this regards has played an important role to convince the development team of QE 
that the hybrid parallelization could not be delayed. A lot of work has been done and further 
details could be found in the chapter 2 when discussing hybrid parallelization as a general 
technique for petascaling.  
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The second technique regards the substitution of an MPI alltoall communication in the data 
transposition contained in the parallel 3DFFT between FFT along z and FFT in the xy plane. 
Together with this new subroutine we have also introduced the option to remove all barriers in 
the code. In fact, using barrier could give some performance improvement on some 
architectures (InfiniBand cluster) but on some other architectures (like XT5) it can decrease 
the performance. On BG/P MPI barriers in the code have no effect. 

The third petascaling technique is more specific for the SX9 architecture. Here some relevant 
function and loops have been vectorized. In particular we have vectorized all loops calling 
point functions that were relevant for the performance. In fact QE contains several loops over 
the real and reciprocal grid where for each point of the grid a function is evaluated. This does 
not cause problems on scalar architectures since the functions are quite complex and contain a 
lot of computation. On SX9 instead the loop over the grid destroys the vectorization with a 
big loss in performance. 

The fourth petascaling technique originates from the runs on BG/P with a very high number 
of cores. These runs have shown that there are some parts of the code that unexpectedly do 
not scale at all, above a certain number of processors. Here is the explanation for this behavior 
and the solution we adopted.  

Some contributions to the energy and the potential are computed with a loop over the atoms 
of the simulated system. This loop is parallelized over processors, so that every processor gets 
a subset of the atoms. This is fine if the number of atoms is larger than the number of 
processors, on BG/P instead we are always in the condition where the number of processors is 
much larger than the number of atoms (at least for the PRACE benchmark test case). Then we 
have to change the loop parallelization so that, when the number of processors is larger than 
the number of atoms, each atom is assigned to a group of processors. Then the computations 
required for each atom have been parallelized among the processors of the group. Files 
affected: flib/distools.f90 PW/paw_init.f90 PW/paw_onecenter.f90. 

This technique is completely platform agnostic, but it affect mainly the execution on BG/P 
because, as explained is the only platform where the number of MPI tasks used is much larger 
than the number of atoms. Main difficulties were connected to the fact that we had to change 
the distribution of a given data structure (the atoms), substituting MPI tasks  with MPI 
communicators, and arranging a new algorithm hierarchically distribute computations among 
communicators and inside communicators.  

Finally, as a petascaling technique, it is possible to play with parameters governing data 
distribution to tune them to specific hardware. QE is written using a hieratical set of MPI 
communicators, and data can be distributed in different ways among processors changing the 
relative size of communicators. The parameters to play with are: number of pools, that 
controls how many MPI tasks should take care of each k-points in reciprocal space; the 
number of task groups, that controls how many orbitals (electronic wave functions) should be 
assigned to each task group; the size of diagonalization group that control how many MPI task 
should take part to the linear algebra subtask; and finally, after the Hybrid parallelization has 
been implemented, the ration between the number of MPI tasks and OpenMP threads. As can 
be seen the space of possible combinations is quite large and depending on the architecture 
and on the input dataset. Here the possibility to give guidelines for each architecture, a good 
experience of the users and the possibility to do warm up runs to test the different 
combinations before the production runs are fundamental to use QE in the most efficient way. 

The effort required by the implementation of the Hybrid parallelization is roughly 8 PM, the 
effort for the implementation of a non blocking data transposition and vectorization is 0.5 PM 
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each, whereas the effort for the tuning of data distribution parameters could be estimated in 
0.2 PM for each new run on a new architecture. 

With the possibility to run a huge system on petascaling machines, initialization and post 
process become quite relevant tasks. In QE initialization of computation is parallelized and, 
even if it does not scale as well as the main iteration loop, usually it is not relevant since it 
takes a factor of 10-20 less than the rest of the computation. Nevertheless, this is not 
completely true on all architectures, from the run performed within PRACE some situation 
emerges where this limitation can become relevant, maybe not in the present generation of 
machines but probably in the next one. Therefore some work could be planned to improve the 
parallelization of the initialization. Concerning the post process, QE comes with many tools to 
give the possibility to the users to compute all quantities related to the Quantum Mechanical 
ground state of the system. All post processing codes are already parallelized, some of them 
scale even better than QE, some other scale less. The scalability of the post processing codes 
depends very much on the kind of computation they perform, but it has to be pointed out that 
less attention is paid to the parallelization of post processing codes rather than the main codes, 
so it is possible that with big petascale size simulations some of them can not be used due to 
limitation in the scalability. 

3.20.3 Results 

Using the hybrid parallelization model (MPI & OpenMP) the gain in terms of speedup is 
proportional to the number of cores per node there are in a given architecture. Unfortunately, 
this is not exactly equal to the number of cores per node, at least not on all architectures. 
There are architectures (like BG/P) where the overhead for thread management is quite high, 
others (like Power6) where it is negligible. Moreover, since changing the ratio MPI 
tasks/threads implies a change in the distribution of data, the gain in term of performance is 
not linear with the number of threads. Most of the time it is a matter of finding the best 
compromise between the number of MPI tasks and the number of Threads. Finally on thin 
node clusters, like BG/L, the usage of hybrid parallelism is mandatory for large simulations 
because of memory limitation, on fat node clusters with many cores per node it is possible to 
reduce the number of MPI tasks used, thus improving the scalability quite a bit. In fact the 
scalability of QE for a given simulation is limited by the data distribution among MPI tasks, at 
a certain point there are no more data to distribute. 

The following table shows the performance difference between hybrid and pure MPI code in 
SMP execution mode on BG/P using the GRIR443_test testcase: 

 Hybrid Pure MPI

nodes used 1024 1024 

cores 4096 1024 

init_run 126s 230s 

electrons 336s 634s 

walltime 490s 891s 

Table 14 GRIR443 test run using hybrid and pure MPI code 
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As can be seen there is roughly a factor of two, where in theory there should be a factor of 4. 
This is due to the overhead of the multithreading but also due to the fact the MPI tasks in the 
Pure MPI runs are alone in the node and can use all the memory bandwidth. 

To better estimate the overhead of using the Hybrid code on BG/P a run with the same 
number of nodes and the same number of cores has been performed. Here the testcase is 
AUSURF112, smaller than GRIR443_test, in order to fit into the node memory. 

 Hybrid Pure MPI

cores 256 256 

init_run 62s 61s 

electrons 808s 681s 

walltime 879s 754s 

Table 15 AUSURF112 test run using hybrid and pure MPI code 
 
Here Pure MPI code has been run in VN mode and Hybrid code in SMP mode. This is not 
exactly a measure of the overhead because the data distribution between the two runs are 
different. 

The use of Hybrid programming mode has let QE scale on BG/P up to 65000 cores, with the 
possibility to scale even further, especially for the large dataset GRIR686, making QE for this 
dataset scale to the whole machine. Test case GRIR686 (run in SMP mode using hybrid 
MPI+OpenMP paradigm) 

executable parameters cores init_run sec. electrons sec. walltime sec. 

-ntg 8 16384 906 1955 2915 

-npool 2 -ntg 8 32768 543 1419 2014 

-npool 4 -ntg 8 65536 291 560 1012 

Table 16 Test case GRIR686 
 
Note that large discrepancies between computation (init_run+electrons) and job walltime 
seem related to the load of the I/O subsystem. The number of pools (-npool) is increased in 
order to use all available memory. When the flag –npool is not used this means that only one 
pool will be used. 

The results in terms of performance improvement using the data transposition with non 
blocking communications in the 3D FFT and having eliminated the MPI barrier are reported 
below for Cray XT5 prototype. 

Here we have used the input dataset GRIR443 (test version) with the craypat performance 
analyzer. The execution line is as follows: 

aprun -n 512 -N 8 ./pw.x+pat -ntg 8 -input grir443.in 
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This results in terms of wall time of the to codes: 

    Process |  Process | 
       Time |    HiMem | 
            | (MBytes) | 
 738.172904 |      817 | MPI_BARRIER and MPI_ALLTOALLV 
 704.416084 |      817 | no MPI_BARRIER and non blocking transp. 

 
Regarding the fourth technique, it mainly affects the performance on BG/P where the number 
of cores used is much larger than the number of atoms of the system used for the benchmark. 
Below is the performance gain obtained on BG/P with the modified subroutines. 
Test case GRIR443 test, number of cores 4096, execution command: 

mpirun -exe ./pw.x -mode SMP -np 1024 -verbose 2 -args "-ntg 8 -
input grir443_test" 

Performance improvement 

timing before after 

walltime 16m 7.18s 9m19.97s 

init_run 141.63s 133.99s 

electrons 636.47s 399.88s 

 
 
Finally we present the result of the performance improvement that can be obtained by 
changing parameter for data distribution. In particular we show here the results using different 
number of task groups. The use of task groups is required in order to scale when using a 
number of MPI tasks greater than the radix of the 3D FFT along z, but they can also be used 
to improve performance or scalability per se, since changing the parameter changes the ratio 
between how often the data transposition is called and the total amount of data exchanged 
(e.g. increasing task groups decreases the number of times the transposition is called but 
increases the data exchanged at each call). Here again, as above we have used the dataset 
GRIR443 (test version) on XT5 for three values of task group sizes: 4, 8 and 16. From the 
test, a value of 8 was optimal for 512 cores. 

Profile by Function using 4 task groups 

aprun -n 512 -N 8 ./pw.x+pat -ntg XX -input grir443.in  

XX is the number of task groups 
 
    Process |  Process | 
       Time |    HiMem | 
            | (MBytes) | 
 774.952205 |      814 | XX = 4 
 738.172904 |      817 | XX = 8 
 808.389620 |      816 | XX = 16 
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Another data distribution parameter that can be tuned is the number of pools. When pools are 
in use k points in reciprocal space are distributed to pools and in this case the scalability is 
linear with the number of pools. The drawback is that the use of memory is also linear with 
the number of pools, so it is not always possible to use a larger number of pools. The number 
of pools is also limited by the number of k points in the input dataset. 

3.20.4 Conclusions 

QE is a tightly coupled application parallelized using MPI (before the work on hybrid 
parallelism) relying on global communications (especially MPI_ALLTOALL), where the 
number of MPI tasks is a critical factor for scalability. In fact to exploit the full power of 
parallel architectures QE had to be run with one MPI task per core. This ratio is not 
sustainable any more, since on present and future architectures the number of cores per node 
is increasing and the memory per core and bandwidth per core are decreasing, making the 
core too restricted for MPI tasks. OpenMP allow a natural way to distinguish between intra 
and extra node parallelism. For this reason the parallelization of the data and algorithms in QE 
has been rewritten to take advantage of this hierarchy. 

To implement hybrid parallelism we tried to combine the efficiency of multithreaded libraries 
available on most architecture with the explicit OpenMP code on the heaviest loops. It is more 
difficult and perhaps too early in view of the state if various MPI implementations to mix MPI 
and OpenMP more intimately. 

It is important to underline that a hybrid application is also more complex in terms of data 
distribution so the relation is less obvious between the performances and the number of cores, 
different combination of tasks/threads may show quite different behaviours, depending on the 
dataset. With respect to pure MPI applications, more performance tests have to be done to get 
the best performance for a given dataset. 

As a general rule, if the hybrid paradigm has been implemented correctly, we can estimate 
that with respect to the pure MPI application, the scalability is increased by a factor 
proportional to the number of cores per node. 

This is good for weak scalability but also for strong scalability in those contexts where one 
does not aim only at simulating larger systems but also to simulate the same system but for a 
longer time, like it happens in meteo-climate applications and molecular dynamics. 
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4 Summary 

 
The petscaling of twenty applications has shown that it is not possible to recommend a single 
set of generic optimizations that is suitable for all codes, there are some which show good 
scalability for many codes or that should be pursued further in the future. One example is 
hybrid parallelization, which demonstrated promising results, although surprisingly few of the 
applications employ this technique fully at the moment. However, many are planning to do so 
in the future.  

Since each application has been ported to several of the prototypes systems, the application 
evaluation shows the suitability of a given architecture for running different types of codes. 

Although many applications have achieved scalability during Task 6.4, well above their 
original counterpart, it appears that some applications are not suitable for petascaling in their 
current state. There are several common reasons for this:  

One is that the core algorithms do not inherently scale to petaflop/s performance. Rewriting or 
changing the algorithm seems the only option with inherent parallelism. A common 
bottleneck is the solver and many report that the Deflated Conjugate Gradient solver is an 
interesting solver to look into for future petascale optimizations.  

A few applications also have problems with large datasets when petascaling. Quadratically or 
exponentially increasing memory requirement prevent the use of datasets sufficiently big for 
petascaling. The opposite is also true in that no useful datasets exist which are big enough for 
petascale runs. 

Pre/post-processing also poses a bottleneck for petascaling, since it is done sequentially in 
some applications. This is usually not a problem for normal runs but in petascale machines the 
data which needs to be pre/post-processed will increase substantially, which can take more 
time than the computation itself. 

Finally communications patterns also play an important role in petascaling. Some applications 
contain many synchronization points or global MPI calls and will thus have difficulty scaling 
further due to the number of nodes in a petaflop/s machine. 

In conclusion, the experiences gained during the scaling of the applications on the prototypes 
will be essential when porting and scaling applications on the PRACE Tier-0 petascale 
systems. Furthermore, since each application has been ported to multiple prototypes the 
intricacies of each prototype are better know, which will make it easier to petascale 
applications in the continuation of the PRACE project. 

 


