
OAuth2 Handshake
Setting up the OAuth2 handshake requires two steps: (1) You need to register your microservice as an OAuth2 client in
Drops. To do so, you have to contact the administrator of the Heureka! architecture and please her / him to add your
microservice to the Drops database. If you setup a development system, you are the administrator by yourself. In that
case consider the description below. (2) You have to implement your part of the handshake.

The OAuth handshake implements only the exchange of user data. It does not implements a users session for your
microservice. Thus, after implementing the OAuth handshake, you will have access to the user data and you can use the
libraries you know to implement a session for the user and your microservice.

The Cookie with the name VCA_POOL_DROPS is encrypted by Drops. Do not try to use this cookie! Instead,
implement a session handled by your own application.

This implementation just removes the question for consent of the user for sharing the personal data. So, clients
libaries can still be used without additional code work.

Setup a microservice as OAuth2 client in Drops
Considering the discussion about the number of systems for one microservices, keep in mind that you normally have to
register only one OAuth client for your microservice. No matter how many systems are part of your microservice.

1. You have to log into Drops as an administrator. Use the Heureka! console to to configure your user as an
administrator.

2. Create the microservice as an OAuth2 client: Open the form using the menu (Admin > Oauth Clients) and enter an
ID , a Secret , a Redirect URL , and a Grant type for the new service.

The ID can be any unique identifier, for example the microservices name.

The Secret should be known only to Drops and the new microservice. Thus, I would recommend to generate a
key using KeePass enter it into the form, save it in a KeePass database, and enter it to the microservices
deployment configuration.

https://soteto.informatik.hu-berlin.de/docu/technical-documentation
https://keepass.info/

The Redirect URL will be defined by the microservice developer and should be given the Heureka! architectures
administrator. The given URL identifies the endpoint that is used by Drops to redirect the users client back, if the
authorization code has been successfully created.

The chosen Grant types define the possible authorization workflows possible between Drops and the
microservice. Currently, Drops allows only authorization code .

Protocol flow
The RFC 6749 defines multiple possible interactions between clients and OAuth provider. A general workflow is defined in
§1.2 of the protocol.

Drops implements the authorization code handshake. Thus, the client has to redirect to Drops, which redirects the user
to the login page, if no session exists. Otherwise, Drops will validate the requesting microservice, generates an
authorization code , and redirects back to the requesting microservice with the authorization code attached. Using
this code, the service is able to request an access token that can be used to query information about Drops currently
logged in user. At this point, the microservice is able to create its own user session. Handling of this additional user
session should be synchronized with the Drops session, thus we implemented a so called OAuth message broker .

Endpoints
Implementation of the OAuth2 handshake requires to know the endpoints of Drops, but also to know which enpoints
have to be implemented.

The following endpoints of Drops can be used:

drops.authorization.code = ${drops.url.base}/oauth2/code/get?

client_id=${ID}&response_type=code&state=${any_context_string}&redirect_uri=${redirect_uri}&ajax=false

https://tools.ietf.org/html/rfc6749

drops.access.token = ${drops.url.base}/oauth2/access_token

drops.get.profile = ${drops.url.base}/oauth2/rest/profile?access_token=${drops.access.token}

You have to replace the ${drops.url.base} by the host and potentially path to the deployed Drops microservice.

There are some parameter to consider. First, to get an authorization_code Drops needs to identify your service. For this
purpose, add the ID of your microservice and the redirect_uri are required in the query string. Furthermore, you can
attach a state that will be returned to you, to encode some context information, like the current page of the user.
Additionally, the optional boolean parameter ajax encodes, if the response should be JSON encoded in any case
(including the case no user is currently logged in) or if Drops is allowed to redirect in some cases to the login page:
${drops.url.base}/oauth2/code/get?

client_id=${ID}&response_type=code&state=${any_context_string}&redirect_uri=${redirect_uri}&ajax=false .

The access token endpoint expects some query parameter: grant_type , client_id , client_secret , redirect_uri ,
and code . While the grant_type has to be the currently chosen one (e.g. authorization_code), the next three
parameter identify the microservice and have to be the same as added to Drops. The code parameter has to contain the
received authorization code .

Last, requesting the profile information requires to hold a valid access token that has to be attached to the request as a
query parameter.

Additionally, you have to prepare an endpoint by yourself, that takes an authorization_code and initiate the next step
using the authorization_code . Drops appends the authorization_code to the given Redirect URL , thus you are free
to design your URLs.

Example endpoints: https://ms.de/ (takes the code as part of the path), or https://ms.de?code= (expects the code as
a query parameter with the name code).

If you are implementing a frontend application that is using REST calls to communicate with a backend system,
you need to set the parameter ajax=true to receive JSON in all cases (success and failure). Thus, you can handle
the response by yourself.

If you are running your microservice on another port than the Heureka! platform, Drops will throw some CORS
errors (https://developer.mozilla.org/de/docs/Web/HTTP/CORS/Errors). You can solve the issue by adding your
domain name and the chosen port to the allowed origins array of the Drops backend. Alternatively, you can add it
to the configured server names.

Example
An example controller implemented using Play2 Framework and written in Scala could have the following functions:

package controllers

import javax.inject._

import models.AccessToken

https://developer.mozilla.org/de/docs/Web/HTTP/CORS/Errors
https://github.com/SOTETO/heureka#changing-server-name
https://github.com/SOTETO/heureka#server-name
https://www.playframework.com/
https://www.scala-lang.org/

import play.api._

import play.api.libs.json.Json

import play.api.mvc._

import play.api.libs.ws._

import play.api.Configuration

import scala.concurrent.ExecutionContext

import scala.concurrent.ExecutionContext.Implicits.global

class HomeController @Inject() (ws: WSClient,conf : Configuration) extends Controller {

 /**

 * Create an Action to render an HTML page with a welcome message.

 * The configuration in the `routes` file means that this method

 * will be called when the application receives a `GET` request with

 * a path of `/`.

 */

 def index = Action {

 Ok(views.html.index("Your new application is ready."))

 }

 def login = Action {

 val url = conf.getString("drops.url.base").get + conf.getString("drops.url.code").get +

 conf.getString("drops.client_id").get

 Redirect(url)

 }

 def receiveCode(code: String) = Action.async {

 val url = conf.getString("drops.url.base").get + conf.getString("drops.url.accessToken").get

 val clientId = conf.getString("drops.client_id").get

 val clientSecret = conf.getString("drops.client_secret").get

 val accessToken = ws.url(url).withQueryString(

 "grant_type" -> "authorization_code",

 "client_id" -> clientId,

 "client_secret" -> clientSecret,

 "code" -> code,

 "redirect_uri" -> "http://localhost:8080/endpoint?code="

).get().map(response => response.status match {

 case 200 => AccessToken(response.json)

 case _ => println(response.status);throw new Exception

 // Todo: throw meaningful exception considering the returned error message and status c

 })

 accessToken.flatMap(token => {

 val url = conf.getString("drops.url.base").get + conf.getString("drops.url.profile").get

 ws.url(url).withQueryString(

 "access_token" -> token.content

).get().map(response => response.status match {

 case 200 => Ok(

 Json.obj("status" -> "success", "code" -> code, "token" -> token.content, "user" -> response.

)

 case _ => Ok(

 Json.obj("status" -> "error", "code" -> code, "token" -> token.content, "response-status" ->

)

 })

 })

 }

}

Grav was with by Trilby Media.

http://getgrav.org/
https://trilby.media/

