
Shared Session
The Heureka! architecture is used as a base for the collaboration support tool Pool . Thus, almost all microserives
implementing functional requirements need to identify the user. A unique authentication for every microservice implies a
lot of problems: There are more possible problem sources, maintenance becomes hard to apply and a user needs to
enter his or her credentials every time the user switch between microservices. The latter is serious usability issue and can
hinder adaption. Therefore, the Heureka! architecture implements an OAuth 2 provider that can be used to share a users
session between microservices.

The microservice Drops implements a secured session handling and an OAuth 2 provider that trusts all microservices that
are deployed inside the Heureka! infrastructure. Therefore, it implements an OAuth 2 handshake using grant type
Authorization Code that redirects to a OAuth client with an authorization code without asking the users permission. The
OAuth client has to be part of the internal microservice network to receive an access token. Thus, the users data is kept
save without asking for the users permission on each time the user switches between microservices.

Drops does not implement the original Authorization Code workflow. So, there is no way to receive an access token from
without the internal microservice network.

Authentication of microservices becomes a critical security challenge for the Heureka! architecture. Drops can trust a
microservice if and only if the microservice is hosted by the organization hosting the Heureka! architecture. Undoubtedly,
microservices can implement security issues, but since the HeurekaA architecture addresses socio-technical
organizations, we need to ensure clean implementation of microservices during a quality assurance process before
deployment. For now, all microservices are deployed using a virtual network at the one server, so no external
communication (using the internet or at least LAN) is needed. Thus, authentication is implemented using a naive
microservice id and secret combination. This combination is send only for requesting the access token.

Ensure that the authentication data of your microservice is secret for each deployment (test, staging, live)! Additonally, do
not save these data in any kind of client application, like javascript Web-Apps! These types of application will be
discussed later.

OAuth 2 handshake
Drops allows the user to initiate a server session. A encrypted HTTP cookie is used to store all information needed to
identify the user on server side. Additionally, Drops implements an OAuth2 provider. Thus, another microservice is able to
REDIRECT to Drops in order to request an authorization code.

1. Request from Client to Microservice

2. REDIRECT from Microservice to Drops

3. Drops checks if the redirecting Microservice is trusted (the URL contains an identifier)

4. Drops generates the Authorization code

5. Drops redirects back to the Microservice OAuth2 endpoint (given as parameter AND saved in Drops database)

2

https://oauth.net/2/
https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/grant-types/authorization-code/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Redirections

6. Microservice is able to initiate a direct REST-based communication to Drops and requests the Access Token
without redirect

7. Drops responses with the users data

8. Microservice can initiate its own user session

Web Apps
Some microservices will implement a Web-App architecture. Such applications are based on HTML, CSS and Javascript.
Mostly, there is also some backend implementing a RESTful API to save and synchronize data entered by users. If the
microservice credentials are saved on client devices, our concept of trusted OAuth2 handshake has serious security issues
since we are not able to prevent misuse of these credentials. Thus, the backend systems have to handle the trusted
OAuth2 handshake. The question remains of how to implement the user session for the frontend. Short answer: You
won't need a frontend session. The user session is needed for three purposes: (1) Control access, (2) use the user
information for further handling, and (3) display the user. First, you have to keep in mind, that your and your users data is
protected by the backend. So, if a user tries to request specific data using your RESTful API, your backend can grant or
forbid access. Thus, if a user is entering spaces that are not allowed for this user, your backend won't send data, but it can
send a status 403 FORBIDDEN and an optional message. That way your frontend can handle the access control. Second,
to handle the currently logged in user, your backend has to implement a special route that (1) is secured and (2) return
the UUID of the user. Thus, the frontend can use the user in forms and other interaction elements. If your system has to
display the user (case (3)), you should use widgets for user display prepared by Drops. In case your frontend is delivered
by a special webserver with no connection to your backend system, you have to implement the trusted OAuth2
handshake for the delivering webserver to receive the users UUID .

OAuth Message broker
If the trusted OAuth2 handshake was successful, a users session can be established. An important requirement is to keep
the session synchronized. That means, updates of the exchanged user information have to be cascaded, and also the
logout event. For this purpose, the Heureka! infrastructure hosts a message broker system. Drops publishes these events:

type: LOGOUT

body: UUID of user

type: user.UPDATE

body: UUID of user

type: user.CREATE

body: UUID of user

type: user.DELETE

body: UUID of user

Your microservice can listen to these events for the purpose of synchronization.

Grav was with by Trilby Media.

https://soteto.informatik.hu-berlin.de/docu/architecture/dUIfc#widgets
http://getgrav.org/
https://trilby.media/

