
Dynamic UI Fragment
Composition
The microservice architecture primarily addresses the distribution of responsibility within the project. Considering loosely
coupling and high cohesion also the introduction of a central user interface (UI) is not expediently. Implicitly, the diverse
small project teams are responsible for their microservices including the user interface.

Next to the challenge of the distribution of responsibility, also the basic principles of Human-Computer-Interaction (HCI)
have to be considered and implemented. Furthermore, the use case of a coherent organization like Viva con Agua forces
to consider a Corporate Design (CD)
Besides non-functional requirements, the microservices have to follow informal
behaviors as described in this concept. Moreover, new social procedures and protocols have to ensure the alignment of
the microservice implementations to the sketched concept.

Solution
The Heureka! architecture is implemented as Rich-Internet-Application (RIA) to address the requirements of the Pool . It
will be possible to use the system on the desktop, but also on a mobile device in the browser.
Thus, client technologies
are limited to HTML, CSS and JavaScript.

The sketched solution bases on two columns:

Shared CSS

Widgets

The shared CSS allows to jointly use design elements and layout descriptions. Therefore, it enables a common CD.

Widgets support the reuse of UI elements by various services. So, many services will need to select users using the UI.
Users are managed by the microservice Drops and thus, also the UI elements handling users should be implemented by
Drops. Next to maintainance issues, also a CD and the consistence of user experiences will be supported by the concept
of widgets.
Furthermore, the architecture considering widgets directly support the concepts of loosely coupling and high
cohesion regarding the UI.

General and global elements, like the navigation or central, static content (impress or header) can become implemented
as widgets.

Shared CSS
Global CSS is implemented and delivered by the microservice Dispenser that mainly focusses non-functional
requirements. Thus, the CSS can be integrated by other microservices by just adding the reference to the global CSS file.

2

The CSS follows the guidelines regarding modular CSS (https://css-tricks.com/css-style-guides/
and
http://cssguidelin.es/), works as a pattern library and is implemented in LESS (http://lesscss.org/) to support maintainance
and further development.

Widgets
The microservices can use widgets to provide functions including the user interface. Thus, other microservices are able to
integrate these functions with only a minimal effort.
Widgets can be integrated just by using a URI specific to the widget.
The concept follows the idea of transclusions. The providing microservices are the source for the URIs and by a GET call,
the user interface element is delivered.
These user interface elements are not just static content, but implement dynamic
behavior.

Next to the standard behavior of HTML elements, also JavaScript implementations can be used. The styling can become
implemented by using the global CSS as well as styled (scoped) tags specific to the widget.

The delivered widget always implements HTML code extended by CSS and JavaScript. Since widgets will often require
some parameterization and may have return values or side effects, take a look at the How-To of implementing widgets.

Furthermore, every widget requires a documentation describing the parameterization, the behavior, possible return
values and side effects.
Supporting the decentral and loosely coupled management of the project, widgets have to be
deployed using semantic versioning (http://semver.org/).

Grav was  with by Trilby Media.

https://css-tricks.com/css-style-guides/
http://cssguidelin.es/
http://lesscss.org/
https://soteto.informatik.hu-berlin.de/docu/how-to/widgets
http://semver.org/
http://getgrav.org/
https://trilby.media/

