
Microservices as CSCW
components
Case Study: Pool of Viva con Agua de St. Pauli e.V.
Viva con Agua de St. Pauli e.V. (https://www.vivaconagua.org/) is a German non-governmental organization that aims to
collect donations and raise awareness for Water, Sanitation and Hygine projects worldwide. Viva con Agua can be
classified as an evolutionary-teal organization (Laloux 2014) and thus, it consists of about 50 crews (regional,
decentralized and loosely coupled groups) of volunteers in Germany, Austria and Swiss.

In 2011 the increased number of volunteers required a technical support tool and the organization implemented the first
version of the Pool.
Managing the different activities of the organization, but also communication and handling of
finances become core functionalities of the Pool.
Thus, the social system shapes the functions and also is shaped by the
functions of the Pool.

Viva con Agua is successful, because many people participate with joy and creativity. It is not about having larger, but
more and outstanding events. Thus, the decentralization of the organization guarantees the success of Viva con Agua
and is directly supported by the Pool.

At the same time, the decentralization becomes a challenge for the further development of the Pool and its adjustment
to the changes of the social system. How to bring the different developments of various crews and their required
technical support into one tool?
So, for example, one crew needs a chat, while the next crew explicitly refuse to use a chat
to ensure the human contacts between the supporters.

Implementing such different requirements is complex and needs a well coordinated bigger team of software developers.
Many organizations, as the non-governmental Viva con Agua, are not able to maintain the required software
development projects.

IT project culture
Thus, the Heureka! architecture allows to move the social concept of Viva con Agua to IT projects. Developers should
become intrinsically motivated and should have fun in realizing the project.
The new version of the Pool bases on the
Heureka! architecture and is named Pool . Thus, it is a composition of several small, decentrally organized and loosely
coupled software artefacts.

Software developers involved in the project are aligned to the symbiotical relation between social and technical system.
Thus, structures similar to open source communities may evolve, but also student works and support of other
organizations may implement some change.
Furthermore, the loosely coupling between the participants has to be
ensured. Therefore, it should require only less effort to learn about the Pool² and the Heureka! achitecture. Additionally,
the independence of technologies should be assured.

2

2

https://www.vivaconagua.org/en/

Microservice architecture
The previously mentioned challenges will be addressed by a loosely coupled architecture. Nowadays, microservices are
typically used (Newman, 2015). A microservice is a stand alone application running in one process and implements a
strong cohesion regarding a bounded context. Furthermore, such a service constantly communicates with other services
using leightweight technologies, like RESTful webservices.
A set of such microservices is named a microservice
architecture (Newman, 2015; Dragoni et al., 2017).

Since microservices are loosely coupled to each other, a free choice of technology is possible, considering the constraints
of section concepts.
Also coordinative dependencies are restricted and thus, the architecture allows to integrate many
different and not or loosely coupled software developers.

Figure 1
sketches the
functional
requirements
of the Pool
projected to a
microservice
architecture.
Drops handles
the user
profiles, while
stream holds
the finances
and waves the
activities and
events. Bloob

implements communication functions.

Concepts describes the non-functional requirements as well as some of the microservices implementing these needs.
Furthermore, some non-functional requirements are still open, like an Awareness component.

A microservice architecture implicits some challenges not occuring in classic monolithical architectures, like implementing
a Shared Session between the microservices. How to implement the communication between microservices? How to
ensure the usage of a common corporate Design (CD) without implementing duplicate code?

Concepts
Several challenges have to be considered for implementing a microservice architecture. This section draws an overview
about the basic concepts addressing the technical challenges. The list is a first orientation for implementing a
microservice.

Name Beschreibung Status

Dynamic UI
Fragment
Composition

In a decentralized microservice architecture the implementation of a user interface becomes a
challenge. Since a central service implements strong dependencies to other microservices, such an
implementation is no solution for the required loosely coupling. Thus, every service has to
implement an own user interface, considering a corporate design and should avoid code
duplication. The present concept describes how these aims can be reached.

IN
USE

Business
Object
Exchange

One microservice is responsible for (multiple) business objects (BO). These BO may have to be
transfered to other microservices, to use the described information for other requirements. The
present concept describes the BO exchange using RESTful webservices.

IN
USE

2

https://soteto.informatik.hu-berlin.de/docu/architecture/shared-session
https://soteto.informatik.hu-berlin.de/docu/architecture/oes
https://soteto.informatik.hu-berlin.de/docu/architecture/dUIfc
https://soteto.informatik.hu-berlin.de/docu/architecture/dUIfc
https://soteto.informatik.hu-berlin.de/docu/architecture/oes

Name Beschreibung Status

Shared
Session

Microservices need to identify users. Avoidung the implementation of authentification functions
per microservice, the present concept explains the implementation of a shared session using a
OAuth2 handshake.

IN
USE

References
(Dragoni et al., 2017) N. Dragoni et al., “Microservices: yesterday, today, and tomorrow.” Cornell University, 2017.

(Laloux 2014) F. Laloux, Reinventing Organizations, 1st ed. Brussels: Nelson Parker, 2014.

(Newman, 2015) S. Newman, Building Microservices, 1st ed. O’Reilly Media, 2015.

Grav was  with by Trilby Media.

https://soteto.informatik.hu-berlin.de/docu/architecture/shared-session
http://getgrav.org/
https://trilby.media/

