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Abstract 

Volatility Forecasting is an interesting challenging topic in current financial instruments as it is directly 

associated with profits. There are many risks and rewards directly associated with volatility. Hence 

forecasting volatility becomes most dispensable topic in finance. The GARCH distributions play an important 

role in the risk measurement and option pricing. The min motive of this paper is to measure the performance 
of GARCH techniques for forecasting volatility by using different distribution model. We have used 9 

variations in distribution models that are used to forecast the volatility of a stock entity. The different GARCH 

distribution models observed in this paper are Std, Norm, SNorm, GED, SSTD, SGED, NIG, GHYP and JSU. 

Volatility is forecasted for 10 days in advance and values are compared with the actual values to find out the 

best distribution model for volatility forecast. From the results obtain it has been observed that GARCH with 

GED distribution models has outperformed all models. 
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1. INTRODUCTION 

Volatility plays a key role in finance it is responsible for option pricing and risk management. 

Volatility is directly associated with risks and returns, higher the volatility the more financial 

market is unstable. It may result in both High profits or huge loses if volatility is changing at higher 
rate. Volatility directly or indirectly controls asset return series, equity prices and foreign exchange 

rates. If the pattern of volatility clusters is studied for longer duration we observe that, once if 

volatility reaches its highest point then it will continue for a longer duration. These are readily 
recognized by Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model 

introduced by Bollerslev [1986]. The volatility models identify and track the volatility clusters that 

are reaching either higher peaks or lower peaks by modeling the volatility clusters. In every period, 

the arrival of cluster is demonstrated as another advancement term with fluctuation scaled up by the 
data of profits and volatilities in the past periods. While considering the volatility dynamic with 

standout lagged period, the GARCH (1, 1) model has turned into a workhorse in both scholarly and 

practice because of its effortlessness and instinctive understanding. 
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While applying GARCH models in monetary danger administration, the conveyance of GARCH 

developments assumes a critical part. From the meaning of GARCH model, it is clear that the 
restrictive circulation of future returns has the same shape as the appropriation of the advancements. 

Subsequently, an unseemly model on the appropriation of advancements might prompt either 

underestimation or overestimation of future dangers. Furthermore, diverse appropriations of 
GARCH advancements might likewise prompt distinctive choice estimating results. This paper 

looks at a current analysis structure on the dispersion of GARCH advancements, what's more, 

exhibits its downside when applying to money related time arrangement. Further, we add to an 

option technique, especially towards applications to money related time arrangement. 

The recent work carried in the field of finance using Garch techniques are discussed in this section. 

Francesco Audrino [2016][1] discuss about Volatility Forecasting on SP 500 data set considering 

Downside Risk, Jumps and Leverage Effect. The paper forecast the leverage effect separated into 
continuous and discontinuous effects, and past volatility are separated into good and bad leverages. 

Momtchil Dojarliev [2014][2] researched on the volatility and value risk evaluation for MSCI North 

American Index, the paper compares techniques such as Naïve, GARCH, AGARCH and BEKK 

model in forecasting volatility. Out of all the techniques Naïve has the highest failure rate and 
BEKK model has highest successful rate. Karunanithy Banumathy [2015][3] in their research work 

modeling in Stock Market volatility using GARCH, Akaike Information Criterion (AIC) and 

Schwarz Information Criterion (SIC), the study proves that GARCH and TGARCH estimations are 
found to be most appropriate model to capture the symmetric and asymmetric volatility 

respectively.  

Amadeus Wennström [2014][4] research on volatility forecasting and their performance of 6 
generally used forecasting models; the simple moving average, the exponentially weighted moving 

average, the ARCH model, the GARCH model, the EGARCH model and the GJR-GARCH model. 

The dataset used in this report are three different Nordic equity indices, OMXS30, OMXH25 and 

OMXC20. The result of this research work suggests that EGARCH has better MSE (Mean Square 

Error) rates compared to other techniques. Yiannis Dendramis [2012] [5] measure performance of 
option parametric instability models, as EGARCH or GARCH models, can be extensively enhanced 

in the event that they are joined with skewed conveyances of return innovations. The execution of 

these models is observed to be like that of the EVT (compelling esteem hypothesis) methodology 
and it is superior to that of their expansions taking into account Markov administration exchanging 

effects with or without EGARCH effects. The paper …recommends that the execution of the last 

approach can be additionally significantly enhanced on the off chance that it depends on …altered 
residuals got through instability models which take into account skewed appropriations of return 

developments. 

BACK GROUND 

Amid the most recent couple of decades have seen a huge number of various recommendations for 

how to show the second momentum, are referred as Volatility. Among the models that have 
demonstrated the best are the auto-regressive heteroskedasticity (Arch) group of models presented 

by Engle (1982) and the models of stochastic change (SV) spearheaded by Taylor (1986). During 

the last couple of years ARFIMA sort demonstrating of high-recurrence squared returns has 
demonstrated exceptionally productive [6]. Forecasting the unpredictability of profits is key for 

some ranges of finance, it is understood that financial return arrangement show numerous non-

ordinary qualities that cannot be caught by the standard GARCH model with a typical blunder 

dissemination. In any case, which GARCH model and which error appropriation to utilize is still 
open to address, particularly where the model that best fits the in-test information may not give the 



International Journal of Soft Computing, Mathematics and Control (IJSCMC), Vol. 5, No. 2/3, August 2016 

3 
 

best out-of-test instability gauging capacity which we use as the foundation for the determination of 

the most effective model from among the choices. In this study, six mimicked examines in GARCH 
(p,q) with six distinctive mistake circulations are completed[7].The Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) model, intended to display instability bunching, displays 

overwhelming tailedness paying little heed to the appropriation of on its development term. While 
applying the model to money related time arrangement, the conveyance of advancements plays an 

imperative part for risk estimation and option valuing [8]. 

Financial related returns arrangements are essentially described by having a zero mean, showing 

high kurtosis and little, if any, connection. The squares of these profits frequently present high 
connection and perseverance, which makes ARCH-sort models suitable for evaluating the 

restrictive unpredictability of such procedures; see Engle (1982) for the original work, Bollerslev et 

al (1994) for a review on instability models and Engle and Patton (2001) for a few expansions. The 
ARCH parameters are typically assessed utilizing most extreme probability (ML) techniques that 

are ideal when the information is drawn from a Gaussian circulation [9]. 

This paper looks at the anticipating execution of four GARCH (1, 1) models (GARCH, EGARCH, 
GJR and APARCH) utilized with three dispersions (Normal, Student-t and Skewed Student-t). They 
investigate and look at changed conceivable wellsprings of conjectures upgrades: asymmetry in the 
contingent difference, fat-followed conveyances and skewed appropriations. Two noteworthy 
European stock records (FTSE 100 and DAX 30) are considered utilizing day by day information 
over a 15-years time span. Our outcomes propose that enhancements of the general estimation are 
accomplished when topsy-turvy GARCH are utilized and when fat-followed densities are checked 
in the contingent change. Also, it is found that GJR and APARCH give preferred figures over 
symmetric GARCH. At long last expanded execution of the estimates is not obviously watched 
when utilizing non-ordinary conveyances [10].  
 
This paper breaks down the system, results and exactness of GARCH (1, 1) models used with three 
appropriations (Normal, Student-t and Skewed Student-t). They examine and contrast different 
conveyances with get high determining precision through rolling out improvements in asymmetry 
restrictive change, skew and fat followed circulations. Two vital European stock records (FTSE 100 
and DAX 30) are examined using each day data over a 15-years time span. Our results suggest that 
improvements of the general estimation are expert when hilter kilter GARCH are used and when 
fat-took after densities are considered in the prohibitive change. Likewise, it is found that GJR and 
APARCH give favored guesses over symmetric GARCH. Finally extended execution of the gages 
is not clearly watched while using non-common dispersals [11].  
 
This paper thinks about 330 ARCH-sort models as far as their capacity to portray the restrictive 
difference [12]. The models are looked at out-of-test utilizing DM–$ swapping scale information 
and IBM return information, where the last depends on another information set of acknowledged 
change. We discover no confirmation that a GARCH (1, 1) is beated by more refined models in our 
investigation of trade rates, while the GARCH (1, 1) is obviously second rate compared to models 
that can oblige an influence impact in our examination of IBM returns. The models are contrasted 
and the test for unrivaled prescient capacity (SPA) and the rude awakening for information 
snooping (RC). Our observational results demonstrate that the RC needs energy to a degree that 
makes it not able to recognize "great" and "awful" models in their investigation [12]. 
 

2. VOLATILITY 

In finance, Volatility is defines level of variety of an exchanging trade prices after some time as 

measured by the standard deviation of profits. Historic volatility is gotten from time arrangement of 

past business sector costs. A suggested unpredictability is gotten from the business sector cost of a 
business sector exchanged subsidiary (specifically a choice). The image σ is utilized for 
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unpredictability, and compares to standard deviation, which ought not be mistaken for the 

comparatively named difference, which is rather the square, σ
2
.The three principle purposes of 

estimating Volatility are for knowing risk, allocation of assets, make profit with financial trading. A 

huge piece of volatility forecasting is measuring the potential future misfortunes of an arrangement 

of advantages, and keeping in mind the end goal to gauge these potential misfortunes, gauges must 
be made of future volatilities and relationships. In asset management, the Markowitz methodology 

of minimizing risk for a given level of expected returns has turned into a standard methodology, and 

obviously an assessment of the fluctuation covariance network is required to measure volatility. 

Maybe the most difficult use of forecasting volatility is to utilize risk factors for building up a risk 
oriented return model.  

3. METHODOLOGY 

The methodology can be split into 4 steps such as Data Acquisition, Data Preprocessing, Estimation 

of Volatility, Forecasting using GARCH Techniques and Result Comparison. Data acquisition is the 
first step, the stock market closing. The detailed explanation of steps is explained below. 

Data Acquisition – this paper uses 10 years of stock market data for volatility forecasting. We have 

selected the SP 500 index as the input dataset. SP 500 end of the day stock data is downloaded from 

Yahoo Finance. This paper uses 10 years of historical data ranging from 5
th
 December 2005 to 4

th
 

December 2015. 10 years of data set resulted in 2514 samples of data set. One row of data is 

generated per day except on Saturday and Sunday as their will be no transactions on weekends. 

 

Fig.1 Closing Prices of SP 500 Index for a period of 10 years 

3.1 Data Preprocessing  

The downloaded data consists of 6 columns such as Date, Open, High, Low, Close, Volume and 

Adjusted Closing prices. The data when downloaded is in the recent date first order, the data is 
arranged to contain recent date at the last to predict the volatility values for net 10 dates. The data is 

checked for missing values or NA values, such data will be either replaced with mean or median or 

deleted.  

4.2 Estimating Volatility 

The volatility is estimated from open, high, low and close values of stock data; generally volatility 

is calculated as the standard deviation or returns of stock data. The volatility is calculated by 
considering every 10 days as interval of stock data. Close Method is the most commonly used 
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volatility calculation technique. This method works on closing prices of the stock data. The plot of 

estimated volatility for SP 500 using Close price is as shown in Fig.1 

VolatilityClose=  cc = 
 

    
∑         

    ……………………………………………….…….. (1) 

Forecasting of Volatility - The volatility estimated from close technique is forecasted using Garch 

technique. In this paper we apply Garch with different distribution models in order to forecast 
accurately. The volatility is forecasted for 10 days in advance.  

4.3 Result Comparison 

The results of Garch technique with different models are compared with error measuring parameter 

MSE. The distribution model with lowest MSE value is considered as the most accurate distribution 

model compared to other models. The main aim of this research is to find out a distribution model 

with lowest error. 

 

Figure 1. Volatility of SP 500 Index for a period of 10 years 

 

4. GARCH TECHNIQUES 

Generally GARCH is referred as Generalized Autoregressive Conditional Heteroskedasticity model, 
intended for volatility is clustering and displays heavy-tailedness depending upon the selection of 

innovation term. While applying Garch model to forecast volatility, the distribution of innovation 

terms plays a critical part for risk estimation and option pricing. GARCH models have been created 

to clarify the unpredictability grouping. In the GARCH model, the development (or remaining) 
conveyances are thought to be a standard typical dispersion, regardless of the way that this 

presumption is frequently dismisses experimentally. Consequently, GARCH models with non-

ordinary advancement dissemination have been produced. In this research Garch techniques on 
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applying different innovation models to conclude about a better forecasting model. Financial 

models with long tailed distributions and volatility clustering have been acquainted to overcome 
issues with the authenticity of traditional Garch models. These traditional models of financial time 

series lack the explanation of homoskedasticity, skewness, substantial tails, and instability grouping 

of empirical asset returns.  

In GARCH models, the probability density function is written in terms of the scale and location 

parameters, standardized to have mean zero and variance equal to one. 

αt = (µt, σt, ω)    ……………………………………………………..………………………………….…….(2) 

Where the conditional mean is given by 

µt = µ(θ, xt) = E(yt|xt)……………………………………………………………………………....(3) 

and the conditional variance is, 

σ
2
t = σ

2
(θ, xt) = E((yt − µt)

2
|xt) ……………………………………………………………………(4) 

with ω = ω(θ, xt) denotes the others parameters of the distribution, perhaps a shape and skew 
parameter. The conditional mean and variance are used to scale the innovations, 

zt(θ) = yt − µ(θ, xt)σ/(θ, xt) ………………………………………………………..……………..(5) 

Having conditional density which may be written as, 

g(z|ω) = d/dzP(zt<z|ω) ……………………………………………………………………………..(6) 

5.1 Student distribution 

The GARCH-Student model was initially utilized portrayed as a part of Bollerslev (1987) as a 

distinct option for the Normal appropriation for fitting the institutionalized developments. It is 

depicted totally by a shape parameter ν, yet for institutionalization we continue by utilizing its 3 
parameter representation as takes after 

f(x) = 
  

     

 

√      
 

 
 
    

      

  
   

   

 
 
……………………………………………………………………………(7) 

Where α, β, and ν are the area, scale and shape parameters separately and Γ is the Gamma capacity. 
Like the GED dispersion depicted later, this is a unimodal and symmetric dispersion where the area 

parameter α is the mean (and mode) of the dissemination while the change is 

Var(x) = 
  

     
 ………………………………………………………………………………………………..(8) 

For the purposes of standardization we require that: 

Var(x) = 
  

     
 = 1 …………………………………………………………………………………..………...(9) 
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That implies 

   
     

 
 …………………………………………………………………………………………………….(10) 

Substituting β into f(x) we obtain the standardized Student's distribution 

f  
   

 
) = 

 

 
f(z) = 

 

 

  
     

 

√      
 

 
 
 (1+ 

  

     
 )  

   

 
  …………………………………………………………….....(11) 

 

5.2 Normal distribution 

The Normal Distribution is a circular appropriation portrayed totally by it initial two minutes, the 
mean and change. Formally, the arbitrary variable x is said to be typically disseminated with mean 

µ and change σ2 with thickness given by  

f(x) = 
 

          

  

    
 ……………………………………………………………………………………………...(12) 

Taking after a mean filtration or brightening process, the residuals ε, institutionalized by σ yield the 

standard typical thickness given by  

f(
   

 
) = 

 

 
 f(z) = 

 

 
 (

       

   
 ) ………………………………………………………………………….……….(13) 

To get the restrictive probability of the GARCH process at every point in time, the contingent 

standard deviation σt from the GARCH movement progress, goes about as a scaling component on 

the thickness, so that  

LLt(zt; t) =  
 

  
 f(zt) ……………………………………………………………………………………..…..(14) 

Which outlines the significance of the scaling property. At last, the ordinary conveyance 

has zero skewness and zero overabundance kurtosis. 

5.3 Skew Normal distribution 

In probability theory and statistics, the skew normal distribution is a continuous probability 

distribution that generalizes the normal distribution to allow for non-zero skewness. 

Let  (x) denote the standard normal probability density function 

 (x) = 
 

   
  

  

  ……………………………………………………………………………………………..(15) 

With the cumulative distribution function given by 

 (x) = ∫       
 

  
 = 

 

 
        

 

  
  ……………………………………………………………………….(16) 

A stochastic procedure that supports the conveyance was depicted by Andel, Netuka and Zvara 
(1984).[1] Both the dispersion and its stochastic procedure underpinnings were results of the 

symmetry contention created in Chan and Tong (1986), which applies to multivariate cases past 
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ordinariness, e.g. skew multivariate t dissemination and others. The dispersion is a specific instance 

of a general class of circulations with likelihood thickness elements of the structure f(x)=2 φ(x) 
Φ(x) where φ() is any PDF symmetric around zero and Φ() is any CDF whose PDF is symmetric 

around zero 

f(x)=2 φ(x) Φ(x) .............................................................................................................................................(17) 

5.4 Generalized Error distribution 

The Generalized Error Distribution (GED) is a 3 parameter distribution belonging to the exponential 

family with conditional density given by, 

f(x) = 
  

     
   
 

 

      
 

       
 ……………………………………………………………………………………....(18) 

With, and speaking to the area, scale and shape parameters. Since the conveyance is symmetric and 

unimodal the area parameter is likewise the mode, middle and mean of the conveyance. By 

symmetry, every odd minute past the mean are zero. The fluctuation what's more, kurtosis are given 
by 

Var(x) =     
 

   
        

       
 …………………………………………………………………………………….(19) 

Ku(x) = 
        

        

       

        
 …………………………………………………………………………………….(20) 

As abatements the thickness gets atter and atter while in the farthest point as! 1, the 

dispersion tends towards the uniform. Uncommon cases are the Normal when = 2, the 

Laplace when = 1. Institutionalization is straightforward and includes rescaling the 

thickness to have unit standard deviation 

Var(x) =     
 

   
        

       
 = 1…………………………………………………………………………………. (20) 

That implies    √ 
  

 
       

       
…………………………………..…………………………………………. (21) 

5.5 Skewed Distributions 

Fernandez and Steel (1998) proposed introducing skewness into unimodal and symmetric 

distributions by introducing inverse scale factors in the positive and negative real half lines. Given a 

skew parameter the density of a random variable z can be represented as: 

f (z|ξ) = 
 

       [f(ξz) H(-z) + f(            ………………………………………………………….….….(22) 

Where ξ, H (.) is Heaviside function. The absolute moments, requirements for deriving central 

moments are as follows 

Mr= 2 ∫    

 
        …………………………………………………………………………...…….……. (23) 

The mean and variance are defined as  
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E (z) = M1 (ξ -    ) ……………………………………………………………………………...…………. (24) 

Var(z) = (M2 – M1
2
)(             1

2 
– M2 …………………………………………………………….(25) 

5.6 Skew Student distribution 

The Normal, Student and GED distributions have skew variants which have been standardized to 

zero mean, unit variance by making use of the moment conditions given above. 

5.7 Normal Inverse Gaussian distribution 

The normal-inverse Gaussian distribution (NIG) is a continuous probability distribution that is 
defined as the normal variance-mean mixture where the mixing density is the inverse Gaussian 

distribution. The NIG distribution was noted by Blaesild in 1977 as a subclass of the generalized 

hyperbolic distribution discovered by Ole Barndorff-Nielsen, in the next year Barndorff-Nielsen 
published the NIG in another paper. It was introduced in the mathematical finance literature in 

1997. 

The Inverse Gaussian distribution are controlled by   the location,                            and 

           , their relation is refereed as   

          ………………………………………………………………………………...…………….(26) 

The probability density function is given by 

    (
 √         

 √         
 )            …………………………………………….............……………………….(27) 

Where Ki denotes Bessel function of third kind 

5.8 Generalized Hyperbolic distribution  

The General Hyperbolic distribution was popularized by Aas and Ha (2006) because of its 

uniqueness in the GH family in having  g one tail with polynomial and one with exponential 

behavior. This distribution is a limiting case of the GH when       | and       where v is the 

shape parameter of the Student distribution. The domain of variation of the parameters is     R and 

v> 0, but for the variance to be infinite v> 4, while for the existence of skewness and kurtosis, v > 6 

and v> 8 respectively. The density of the random variable x is then given by: 

f(x) = 

 
   
       

   
     

 

 (
 

 
)  

 √  (          )             

 √         
     

 

…………………………….…………….……………..(28) 

5.9 Johnson’s reparametrized SU distribution 

The reparametrized Johnson SU distribution, discussed in Rigby and Stasinopoulos (2005), is a four 

parameter distribution denoted by JSU (       ), with mean and standard deviation for all values 
of the skew and shape parameters and respectively.  
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The probability density function is given by 

 

    

 

√   (
   

 
)  

  
 

 
          

    

 
   

 ……………………………………………………….……………..(29) 

                         

6. Results  

This research mainly focused on exploring Garch techniques with different distribution models. 

Garch techniques were tested with 9 different distribution models on the same data set to forecast 

10 days in advance. The future 10 forecasted values are tabulated in table and compared with rest of 
the other models. The Actual volatility values are calculated from the original stock data by 

considering 10 days more of SP 500 closing prices than used for forecasting with Garch techniques.  

The actual values of volatility and forecasted volatility with different Garch distribution models are 
tabulated in the table. The accuracy of the forecasting techniques is measured using Mean Square 

Error (MSE) parameter. The MSE of the forecasting models are tabulated in the table. The Garch 

distribution model with lowest MSE value for all the 10 forecasted value is considered as accurate 
forecast model. From the table it is evident that Garch technique with GED distribution is having 

lowest MSE values. Hence Garch technique with GED model can be considered as accurate 

technique compared to other models.  

Table 1. Actual and Forecasted volatility values for 10 days 

Day 

Forecast 

Actual 

Volatility 
Std Norm SNorm GED SSTD SGED NIG GHYP JSU 

T+1 0.1146 0.1140 0.1163 0.1165 0.1129 0.1142 0.1131 0.1136 0.1137 0.1137 

T+2 0.1143 0.1149 0.1181 0.1185 0.1131 0.1152 0.1135 0.1143 0.1145 0.1144 

T+3 0.1023 0.1157 0.1198 0.1204 0.1132 0.1162 0.1138 0.1149 0.1152 0.1151 

T+4 0.1061 0.1165 0.1214 0.1221 0.1134 0.1172 0.1142 0.1155 0.1159 0.1158 

T+5 0.1063 0.1173 0.1229 0.1239 0.1136 0.1182 0.1146 0.1161 0.1166 0.1165 

T+6 0.0897 0.1181 0.1244 0.1255 0.1137 0.1191 0.1149 0.1167 0.1173 0.1172 

T+7 0.0841 0.1189 0.1257 0.1270 0.1139 0.1201 0.1153 0.1173 0.1179 0.1178 

T+8 0.0793 0.1196 0.1270 0.1285 0.1141 0.1210 0.1157 0.1179 0.1186 0.1185 

T+9 0.0611 0.1204 0.1283 0.1299 0.1142 0.1218 0.1160 0.1185 0.1193 0.1191 

T+10 0.0649 0.1211 0.1295 0.1312 0.1144 0.1227 0.1164 0.1190 0.1199 0.1197 
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Table 2.Mean square error of forecasted values 

Error 

rates 
Std Norm SNorm GED SSTD SGED NIG GHYP JSU 

T+1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

T+2 0.00000 0.00001 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

T+3 0.00018 0.00031 0.00033 0.00012 0.00020 0.00013 0.00016 0.00017 0.00017 

T+4 0.00011 0.00023 0.00026 0.00005 0.00012 0.00007 0.00009 0.00010 0.00009 

T+5 0.00012 0.00028 0.00031 0.00005 0.00014 0.00007 0.00010 0.00011 0.00010 

T+6 0.00081 0.00120 0.00128 0.00058 0.00087 0.00064 0.00073 0.00076 0.00076 

T+7 0.00121 0.00173 0.00184 0.00089 0.00129 0.00097 0.00110 0.00114 0.00114 

T+8 0.00163 0.00228 0.00242 0.00121 0.00173 0.00132 0.00149 0.00154 0.00153 

T+9 0.00351 0.00452 0.00474 0.00282 0.00369 0.00302 0.00329 0.00338 0.00337 

T+10 0.00316 0.00418 0.00440 0.00245 0.00334 0.00265 0.00293 0.00303 0.00301 

 

6.1 Results Comparison 

There has been a tremendous research in GARCH models in volatility forecasting, all these 

forecasting researches are based on usage of different GARCH techniques such as EGARCH, 

TGARCH and GARCH with maximum likelihood estimation.  According to Ghulam Ali [2013] 
[16] results on Garch model suggests that with wider tail distribution, the TGARCH model is 

reasonable for explaining the data. GARCH with GED distributions have comparative advantage 

over GARCH with normal distribution. The research paper of Yan Goa [2012] [17] compares 
various GARCH techniques and the observation according to that paper are as follows: GED-

GARCH model is better than t-GARCH, and t-GARCH is better than N-GARCH.  Yiannis 

Dendramis [5] the GARCH model performance in stocks suggests that the skewed t-student and 

GED distributions constitute excellent tools in modeling distribution features of asset returns. 
According to Abu Hassan [18] [2009] suggest among GARCH with norm and s-norm and t-norm 

distributions t norms outperforms the other distribution models. 

The results in this paper also suggests that the GARCH model with GED distributions have minimal 
mean square errors and it outperforms other GARCH distribution models. 

7. Summary 

The aim of this research work is to forecast volatility with high accuracy using different 

distributions of Garch techniques. This paper uses SP 500 indices stock market end of the day data 

for a period of 10 years for volatility forecasting. The volatility was calculated using standard 
deviation of returns over period of time. The volatility was given as input for Garch techniques with 

different distribution parameter. The research work uses 9 Garch distribution models that are used 

to forecast the volatility. The different GARCH distribution models used in this paper are Std, 
Norm, SNorm, GED, SSTD, SGED, NIG, GHYP and JSU. Future values of Volatility are 

forecasted for 10 days in advance and values are compared with the actual values to find out the 

best distribution model. Based on the results obtained it has been observed that GARCH with GED 
distribution models predicts volatility with least error compared to other models. The future work of 

this research can be the application of Hybrid distribution models to forecast volatility. The Hybrid 

distribution models may involve combining two or more techniques to improve the results. 
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Table. 1 contains the actual volatility values for the next 10 days recoded after the values are 

obtained. The Table.2 contains the MSE rate of the forecasting techniques and the actual values, the 
result suggest GARCH with GED distribution models predicts volatility more accuracy compared to 

other techniques. This technique is highlighted in bold as shown in the tables. 
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