
 

  

Abstract—The paper describes the crucial role of phantoms 

in Microwave Imaging (MWI) for medical devices. Accurate 

modelling of numerical scenarios is crucial in designing, 

testing, and developing MWI devices. Phantoms with 

appropriate tissue electrical properties are inevitable 

components of imaging scenarios. Therefore, high computing 

resources are required to develop such phantom, and EM 

simulation of such scenarios requires a more prolonged time. A 

defined blueprint is required to reduce the complexity of such 

scenarios to use them effectively for MWI purposes. In the 

given paper, a brief study of the three-dimension voxel model 

of the head is presented, where a unit cell is a cube with tissue-

mimicking properties. The phantom is developed on the  

WIPL-D Pro EM simulation platform. Further, the voxels are 

grouped in the form of N x N x N, where N is the number of 

voxels on each axis. Homogenization techniques are 

implemented on the grouped voxels and result in one big cube, 

the main building element of the electromagnetic model. The 

RCS simulation is performed with plane wave excitation for 

different values of N, and the results are analyzed for 

convergence to the reference model. Also, the relative mean 

absolute deviation (RMA) of the whole phantom as a result of 

the homogenization process is presented and its convergence is 

compared with the convergence of the mean deviation of 

simulated results. 

 
Index Terms—Head phantom; Microwave Imaging; Voxel 

Model; Zubal 

I. INTRODUCTION 

BRAIN stroke has been one of the leading causes of death 

in humans over the last decade. Early-stage screening of 

stroke is a crucial step for diagnosis and treatment purposes 

[1]. Conventional technologies such as MRI, CT and X-ray 

are the gold standard for stroke detection due to accurate 

scanned results with high spatial resolution for clinical 

diagnosis. Although, these methods have several 

disadvantages, such as expensive procedures, low portability 

and ionizing radiation [2] – [3]. On the other hand, 

Microwave Imaging (MWI) is envisioned as a 

complementary tool to the imaging technologies for brain 

stroke detection. It is a low health risk, non-invasive, and 

cost-effective procedure [4] – [5]. 

Developing medical devices based on microwave imaging 

requires accurate electromagnetic modelling of imaging 

scenarios. The vital components of imaging scenarios are 

powerful EM simulation environment, anthropomorphic 
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phantoms, tissue electrical properties and a measurement 

system. The simulation tool provides ease in modelling and 

accurate numerical analysis. The measurement system 

reduces to the antenna system around the organ of interest. 

Tissue mimicking properties help to understand the wave 

propagation through the human organ. Realistic human-like 

phantoms are crucial to understanding the complex structure 

of the organ with defined electrical properties. Modelling 

complex phantoms is the decisive factor for the accuracy 

and validation of the imaging scenario. Voxel and STL 

formats are widely available for designing phantoms [6]. 

The source format of the phantom is highly complex and 

requires efficient strategies to reduce the complexity of the 

structure while retaining accuracy.     

The proposed study is focused on the study and accurate 

design of voxel based anatomically realistic head phantom 

for MWI purposes. The phantom data is usually derived 

from MRI images. The model is obtained from an online 

repository [7] in binary format. The 3D EM simulation 

platform WIPL-D Pro helps to transform the medical data 

into the 3D electromagnetic head model [8]. The unit 

structure of the actual phantom is a voxel or small cube with 

a side length of approximately 1 mm. The source file 

contains around 4 million such voxels. Each voxel has its 

own defined tissue properties. Simulation of such a model is 

very challenging. Therefore, with efficient procedures, the 

complexity is reduced. The voxels are grouped to form a big 

cube and then homogenization techniques are implemented 

on these big cubes. As mentioned, each voxel defined with 

one cube leads to a huge requirement of resources, therefore 

at the initial stage voxels are grouped using the parameter N, 

where N denotes the total number of voxels along each axis. 

The reference model is created with N=3. The 

homogenization is implemented using various mixing 

formulas [9]. A group of voxels with the given value of N is 

treated as one big cube, and its electrical property is derived 

from the averaging techniques. Implementing these methods 

significantly reduces the computational requirement and 

speeds up the simulation for EM analysis within the 

measurement system. In order to study the agreement 

between homogenization techniques and reduction in 

complexity, EM simulation is performed for various values 

of N ranging from 3 to 12 voxels in each axis. The excitation 

is a plane wave for the bistatic RCS estimation. The 

deviation between the reference model and the model with 

higher values of N gives the information on the accuracy of 

the simplification process in terms of % error. At the same 

time, the Relative Mean Absolute (RMA) differences 

between the reference model and other models (with N>3) 

give insight in the averaging process and its convergence.  

The paper is divided into three main sections. Section II is 

about the voxel model and homogenization techniques, 
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Section III is focused on numerical results, and Section IV 

concludes the paper. 

II. VOXEL PHANTOM AND HOMOGENIZATION 

A. Voxel phantom 

The voxel phantom represents dispersive dielectric 

properties data of a part of the human body (organ(s)), as a 

result of the MRI (Magnetic Resonance Imaging) or CT 

(computed tomography x-ray) scans of respective human 

body part [7]. 

That scan outputs the grid of points, named voxels, 

distributed in three-dimensional volume that covers the 

scanned organ with a specific resolution. Each voxel brings 

different dielectric properties of tissue. Although some 

phantom use Cole-Cole and Debye parameters to present 

dielectric properties of the tissue [10] - [11], this type of 

phantom comes with the binary input that holds 

identifications of tissue types for each voxel. The number of 

voxels varies depending on organ size and scanning 

resolution from 2 to 20 million or more. The resolution or 

distance between voxels is considered around 0.5 mm or 

1 mm. Some of the voxels contain information on the 

surrounding media, in our case it is air. 

However, it is very challenging and still under research to 

simulate the entire model with millions of unknowns, 

defined with thousands of domains i.e., closed regions with 

the same dielectric properties. Today’s most robust full 

MoM solver, WIPL-D, reinforced with the HOBFs and fully 

parallelized, still requires large simulation time for millions 

of unknowns. Therefore, we designed a simple procedure, 

built-in WIPL-D, for transforming the medical data to the 

electromagnetic model being simulated in a reasonable 

amount of time and providing valuable information for 

overall phantom analysis. 

B. Homogenization 

All the voxels are treated as small cubic volumes in space 

with specific dielectric constant values. Generally, these 

values are different for different voxels but are similar for 

the voxels of the same tissue type. In order to decrease the 

complexity of such a significant problem, we perform the 

averaging techniques on voxels. We create bigger cubic 

volumes that contain several voxels, taking the same number 

of voxels per each of the coordinate axes of a new, larger 

volume. If we treat one voxel as a small cube with a size 

equal to the resolution of the phantom, we create a big cube 

with N voxels per axis. Fig. 1 shows a preview of the Zubal 

head phantom [7] in two resolutions N=3 and N=8 on the 

WIPL-D Pro platform. 

 

 
Fig. 1.  Zubal anthropomorphic head phantom. Left, resolution N=3 and 

right, resolution N=8. 

By increasing N, the resolution and therefore the complexity 

is gradually decreased, but the error due to averaging 

procedure is increased. 

The new, big cube, represents a building element of the 

electromagnetic model. Its effective permittivity is obtained 

using mixing or averaging formulas applied to all the 

dielectric constant values of the voxels inside the same cube. 

These formulas were initially implemented for physical 

mixtures. 

Standard averaging formula implements standard 

arithmetic mean: 

 

                             (1) 

 

where  is voxel dielectric constant and  is voxel volume. 

Lichtenecker formula is a logarithmic formulation of 

physical components of the mixture as shown below: 

   

                                                (2) 

 

The formula has been established for biological materials 

such as human blood [12]. 

Looyenga equation is considered to be the most reliable 

formulation to predict the effective permittivity of the 

mixture [13] - [14]: 

 

                                                (3) 

 

where . Looyenga equation is considered up to 

third degree. All the formulas were implemented and the 

results of conversion of the phantom to the electromagnetic 

model as well as simulated results, and its comparison, were 

provided for each of the formulas. That is given in the next 

section. 

 Once the effective dielectric constant that represents 

averaged value of all the voxels permittivity inside a big 

cube is obtained, the second level of homogenization is 

applied. It implies all the big cubes being considered to 

define a finite number of the domains. Hence the number of 

big cubes is still significant, for example, more than 100000 

in some cases, each cube cannot represent a separate 

domain. Therefore, all the cubes are divided into several 

groups, where, inside each group, a relative deviation of the 

effective dielectric constant is kept below some small 

threshold. In other words, the cubes in the group possess 

similar values of effective dielectric constant. One group 

defines one domain. The domain dielectric constant is a 

mean value of all effective dielectric constants within the 

group. The domain dielectric constant is assigned to all the 

cubes in the group as their new averaged value (new 

effective dielectric constant) because it is used in the 

electromagnetic simulation of the phantom. We called it 

“the assigned dielectric constant”. 

The number of the domains approximately goes from 100 

to 300 for all the resolutions and all four mixing formulas 

considered in the paper. The higher the resolution (lower N) 



 

the number of domains generally decreasing and approaches 

to the number of different tissue types in the model. Each 

domain represents a closed region, and all the mesh 

elements, or big cubes’ sides, inside the domain were 

removed to reduce complexity and thus the number of 

unknowns in the final model. Only domains’ surface mesh 

elements took part in the MoM simulation. 

 The last part of big cubes’ creation is the calculation of 

the deviation. For each cube, the deviation is calculated per 

the above-mentioned formulas. The formula used for 

averaging is also used for calculating deviation. The only 

difference is that part  in the above equations is changed 

with the  which is the deviation of one small 

voxel. Therefore, the Lichtenecker method is given as 

 

                                      (4) 

 

standard and Looyenga method is  

 

                                            (5) 

 

where  ,  is voxel volume and  is the 

assigned dielectric constant value. 

Therefore, a mean deviation for each big cube is 

calculated as the mean absolute distance of each voxel in the 

cube from the assigned dielectric constant value, rather than 

the distance from the averaged value . 

C.  Estimation of Error 

In the end, the deviation for the whole phantom is 

obtained from the particular deviations of big cubes. This 

value actually represents the error raised from the averaging 

procedure. 

The error value is also calculated using a specific formula 

which is similar to the averaging process, so, either with 

standard, Lichtenecker or Looyenga procedure. 

Lichtenecker method 

 

                                                    (6) 

 

standard and Looyenga method 

 

                                                 (7) 

 

where  is number of big cubes,    is the big 

cube deviation and  is big cube volume. We can calculate 

the average value    of the whole phantom using the 

Lichtenecker method 

 

                                              (8) 

 

standard and Looyenga method   

 

                                               (9) 

 

where  is number of big cubes,  ,  is voxel 

volume of -th voxel in the -th big cube and  is voxel 

dielectric constant of -th voxel in the -th big cube. The air 

voxels are omitted from the overall phantom. 

 Now, we can calculate the relative mean absolute error of 

the whole phantom as 

 

                                                 (10) 

 

This value is provided at the end of the conversion process 

of the phantom to the electromagnetic model, ready for 

simulation.  

The relative mean absolute deviation of simulated results 

is given by 

 

            , (11) 

 
where  is the number of directions for bistatic RCS far- 

field, here 73x37 for azimuth and elevation,  is far-field 

for phantom with resolution N and  is far-field for the 

reference fantom. 

III. RESULTS 

We used the Zubal head phantom for analysis. The full 

MoM electromagnetic simulations were performed in 

WIPL-D software. 

Simulations in WIPL-D provide results for bistatic RCS 

in a number of space angles, with plane wave excitation. 

The results were provided for different resolutions 

N=3, 4… 12 and for all mixing formulas, Lichtenecker and 

Looyenga where M=1, 2, 3. We also provide the RMA 

values for all the conversions. 

The phantom with the highest resolution, N=3, is taken as 

the reference result. At the operating frequency of 1 GHz, 

this phantom has 500000 unknowns with around 

100 domains and the resolution is about 3.5 mm. Simulation 

time on the machine Intel(R) Xeon(R) CPU E5-2650 v4 @ 

2.20GHz (2 processors), with 48 logical processors, 256 GB 

of RAM and 4 GPU cards NVIDIA GeForce GTX 1080Ti, 

is about 7.3 hours. 

All other phantoms were compared to this reference 

phantom, mean deviation of the RCS far-field is calculated 

for each of them relative to the reference phantom i.e., 

RMAsim. In the same manner, the differences were provided 

for the RMA values too, relative to the reference phantom. 

The next four figures present a comparison of RMAsim and 

RMA relative to the reference phantom. 

 



 

 
 
Fig. 2.  Lichtenecker method. The Error for the blue trace represents the 

mean deviation of the RCS far-field relative to the reference phantom N=3 
i.e., RMAsim. The Error for the red trace represents differences in RMA also 

relative to the reference phantom N=3. N is resolution. 

 

 
 
Fig. 3 Looyenga method, with M=1 degree. The Error for the blue trace 

represents the mean deviation of the RCS far-field relative to the reference 

phantom N=3 i.e., RMAsim. The Error for the red trace represents differences 

in RMA also relative to the reference phantom N=3. N is resolution. 

 

 
 
Fig. 4.  Looyenga method, with M=2 degree. The Error for the blue trace 

represents the mean deviation of the RCS far-field relative to the reference 

phantom N=3 i.e., RMAsim. The Error for the red trace represents differences 

in RMA also relative to the reference phantom N=3. N is resolution. 

 

 
 
Fig. 5.  Looyenga method, with M=3 degree. The Error for the blue trace 

represents the mean deviation of the RCS far-field relative to the reference 

phantom N=3 i.e., RMAsim. The Error for the red trace represents differences 

in RMA also relative to the reference phantom N=3. N is resolution. 

IV. CONCLUSION 

We present a novel technique for the conversion of large 

voxel phantoms by averaging and homogenization of the 

voxel data to the electromagnetic simulation ready model. 

The obtained model is suitable for analysis of the imaging 

scenario, with reasonable simulation time. 

We’ve also shown the estimated error, or relative mean 

absolute value RMA, as a result of the simplification 

process. A comparison in error behavior between RMA and 

simulated RCS results is provided. It can be seen that the 

RMA expresses very similar behavior with the mean 

deviation in simulated results, for different resolutions, 

relative to some phantom of a very high resolution taken as 

the reference. The estimated convergence of the RMA can 

serve as a guide of anticipating the characteristics of the 

phantom before performing electromagnetic simulation 

itself. 
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