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Abstract 

This work proposes a novel deep learning based method 

for the identification of periodic patterns in 

Electrocardiographic Imaging (ECGI) signals and 

demonstrates its ability to identify, quantify, and visualize 

recurring patterns. 

ECGIs from AF patients obtained prior to pulmonary 

vein isolation (PVI) are encoded to a lower-dimensional 

feature space using a 3D-CNN autoencoder, and further 

processed with principal component analysis to aggregate 

recurring patterns and quantify their contribution to the 

overall spatiotemporal propagation pattern.  

Several markers are evaluated as potential predictors 

of AF recurrence. The variance captured by the first 3 

principal components (PCs) varied from 19.8% to 59.2% 

(32.2±9.35) in different patients showed an inter-segment 

correlation exceeding 64%. Similarly, the number of PCs 

necessary to explain 90% of variance in ECGI recordings 

varied from 20 to 90 (56.2±20.1) demonstrating a varying 

number of propagation patterns across patients, which 

was reproducible intra-patient with an inter-segment 

correlation higher than 69%.  

In addition, backpropagation-based saliency maps are 

computed to identify in which atrial regions the captured 

patterns occur. Saliency maps are visualized on 3D atrial 

models to aid in the interpretation and anatomical 

contextualization. 

 

1. Introduction 

AF is characterized by an irregular electrical activity, 

and the quantification its regularity remains a challenging 

task. Previous works have evaluated regularity in 

electrophysiological signals, investigating spatiotemporal 

stability and variability. In [1] the authors demonstrated 

that spatiotemporal variability in 12-lead ECGs is a 

predictor of AF recurrence after catheter ablation. In 

another recent study [2] the authors demonstrated that 

electrophysiological spatiotemporal stability varies among 

different regions of the left atrial endocardium. Similarly, 

the authors in [3] have shown that periodic activation 

patterns in the epicardium are associated with re-entrant 

AF drivers, which, in turn, lead to spatiotemporally stable 

patterns on electrograms. 

The previous findings may lead to the hypothesis that 

ECGI could constitute a non-invasive method to identify 

regions with periodic behaviour, and that such regions 

could carry information regarding patient prognosis and 

the recurrence of AF after PVI. With this hypothesis in 

mind, this work presents a novel method for identifying 

and visualizing quasiperiodic AF patterns in ECGI maps, 

and illustrates its ability to identify, quantify, and localize 

periodic patterns. 

 

2. Materials and Methods 

2.1. Data Acquisition and Pre-Processing 

Body surface potential recordings from 29 patients in 

AF were obtained prior to PVI. Atrial geometries were 

obtained from MRI imaging, while torso geometries were 

captured using a photogrammetry system. The acquisition 

and pre-processing protocols were previously described in 

detail in [4]. For each personalized atrial geometry, 2-

dimensional conformal maps are computed to represent 

ECGI signals as sequences of square, 2-dimensional 

images using the method presented in [5]. Patients were 

followed-up 6-months after PVI and classified as recurrent 

or non-recurrent. 

Videos of epicardial voltage in the atria are standardized 

such that each pixel is zero centred and has a standard 

deviation of 1. Values above 2.0 and below -2.0 are 

truncated, to prevent outliers. 

 

2.2. Autoencoder Training and Encoding 

Video segments are encoded to a lower-dimensional 

feature space using a 3D-CNN autoencoder, for which the 

architecture and training hyperparameters are determined 

empirically. Figure 1 shows a symbolic representation of a 

3D-CNN autoencoder. The autoencoder is trained using 

the Adam optimizer [6] minimizing the mean squared error 

between input and output video segments. Once the 

appropriate autoencoder architecture is determined, video 

segments of the patients in our cohort are encoded to a 

lower dimensional space using only the encoder (Figure 1, 

purple). To capture the dynamic properties of the signal, 

video segments of 128ms with a step size of 8ms are 

employed, resulting in segments consisting of 16 images. 

The generated encodings (Figure 1, yellow) are 

flattened into 1D vectors and processed using principal 
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component analysis resulting in a further dimensionality 

reduction and PCs that represent linear combinations of co-

occurring spatiotemporal features in the encoding, 

captured by single variables. 

 

 
Figure 1. Schematic of a 3D-CNN autoencoder. Purple: 

Encoder which reduces the dimensionality of the input data 

to a latent space (yellow). Blue: Decoder which 

reconstructs the input video from the compressed 

information in the latent space. 

 

2.3. Encoding Analysis 

The encodings are analysed in terms of the variance 

captured by the first 3 PCs and the number of PCs 

necessary to capture 90% of the encoding variance. 

Differences in distributions across the two patient groups, 

recurrent and non-recurrent at 6-month follow-up, are 

assessed using the Mann-Whitney U test. 

 

2.4. Visualization 

To determine the localization of patterns captured by 

PCs, backpropagation-based saliency maps according to 

[7] are derived. By computing the derivative of each image 

within the input video to the encoder, with respect to the 

PC, heatmaps indicating pixel importance, hence the 

contribution of each pixel to the PCs are generated. 

While natively the 3D-CNN autoencoder operates on a 

sequence of 2D images, saliency maps are reconstructed 

on the original 3-dimensional atrial geometries for easier 

visualization and interpretation. Saliency maps are 

compared to the phase of ECGI signals to investigate what 

propagation patterns are captured by the proposed method. 

 

3. Results 

3.1. Autoencoder Training and Encoding 

The resulting autoencoder architecture is presented in 

table 1. The obtained configuration yields a mean squared 

error between input and reconstructed segments of 0.017 

and 0.025 on the training and validation set respectively, 

which is deemed sufficient for the application. 

 

 

 

 

 

Table 1. Autoencoder Architecture. Conv3D: 3D 

Convolution. L-ReLU: Leaky Rectified Linear Unit. Tanh: 

Hyperbolic Tangent. 

 

Layer 

No. 

Layer 

Type 

Output 

Shape 

Activation 

Function 

0 Input (16, 64, 64, 1) - 

1 Conv3D (16, 64, 64, 128) L-ReLU 

2 Max Pooling (8, 32, 32, 128) - 

3 Conv3D (8, 32, 32, 64) L-ReLU 

4 Max Pooling (4, 16, 16, 64) - 

5 Conv3D (4, 16, 16, 8) Tanh 

6 Max Pooling (4, 8, 8, 8) - 

7 Up-sampling (4, 16, 16, 8) - 

8 Conv3D (4, 16, 16, 64) L-ReLU 

9 Up-sampling (8, 32, 32, 64) - 

10 Conv3D (8, 32, 32, 128) L-ReLU 

11 Up-sampling (16, 64, 64, 128) - 

12 Conv3D (16, 64, 64, 1) Linear 

 

3.2. Encoding Analysis 

Figure 2 portrays the phase computed on personal atrial 

geometries for the two patients with the lowest and highest 

number of PCs required to capture 90% variance (14 vs. 

85, variance captured by the first 3 PCs: 53.2% vs. 30.2%). 

Notice that the patient in which less variance is captured 

by the first 3 PCs and requiring more PCs to capture 90% 

of variance displays a more complex activity with a higher 

number of simultaneous wavefronts. 

 

 
Figure 2. A: Phase computed on the atrial geometries of 

patients with simple (A) and complex atrial activity (B). 

Joint plots of inter-segment correlations, and histograms 

of the evaluated parameters for the entire cohort are 

presented in Figure 3. The variance captured by the first 

three PCs varied from 19.8% to 59.2% (32.2±9.35). The 

number of PCs necessary to explain 90% of variance in the 

encoding varied from 14 to 85 (53.6±19.7) demonstrating 

varying degrees of spatiotemporal organization. These 

parameters were found to be reproducible intra-patient in 

different signal segments with correlations of 64%, and 

69% respectively. 
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The Mann Whitney U test for the extracted parameters 

did not show significant differences between patients 

exhibiting AF recurrence at follow-up. The captured 

variance by the first 3 PCs and the number of PCs required 

to capture 90% of variance showed p-values of 0.073 and 

0.27 respectively. 

 

 

 
Figure 3. Correlation and histogram plots of extracted 

parameters for two separate segments in each patient. Top: 

Variance captured by the first 3 PCs. Bottom: Number of 

PCs required to capture 90% of variance. 

 

 

3.3. Visualization 

Two of the generated saliency maps are shown in Figure 

4. Figure 4A shows the phase computed on the patient’s 

geometry with a large propagation occurring in the atrial 

roof, and a rotor in the inferior pulmonary vein. It can be 

observed that that low-frequency, high variance PCs (Fig. 

4B) capture conduction patterns spanning large regions of 

the atria, while the high-frequency, lower variance PCs 

(Fig. 4C) point towards the rotor in the pulmonary vein. 

 

  

 

 
Figure 4. A: Phase of atrial activity on the patient’s 

personalized geometry. B, C: Saliency computed for PCs 

with dominant frequencies of 5.65 and 16.1 Hz 

respectively. 
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4. Discussion 

This work presents the first application of deep learning 

to the identification of periodic propagation patterns in 

ECGI recordings obtained from AF patients. It 

demonstrates that the varying degrees of complexity 

encountered in ECGI signals of AF patients can be 

quantified and visualized. 

The presented method extends the previously 

mentioned works that have demonstrated different degrees 

of organization in electrophysiological recordings during 

AF. Unlike previous works, which evaluated the entire 

signal [1] or regions of the atria individually [2], this 

method inherently aggregates co-occurring patterns, and 

characterizes them based on their contribution to the whole 

atrial activity. Furthermore, the use of saliency maps for 

visualization demonstrates the ability to visualize the 

location of captured patterns on personalized patient 

geometries.  

This study was performed on a small cohort of patients, 

all undergoing PVI, which made the evaluation of clinical 

implications and recurrence prediction difficult. Patients 

were described in terms of PCA markers, as well as 

spectral properties, and atrial anatomy was not considered 

for prediction. While this work does not evaluate the 

captured patterns within the anatomical context, it presents 

a method which localizes the captured patterns and 

visualizes the location on the personalized geometry, 

which could enable the contextualization of captured 

periodic patterns and atrial regions, and possibly aid in the 

identification of ablation targets. 

Further, the presented method could be extended to a 

semantic description of the captured patterns. Such 

analysis could identify which captured patterns carry 

information relevant to patient treatment and ensure that 

saliency maps are generated based on clinical significance. 

 

5.  Conclusions 

A novel method to assess the spatiotemporal behaviour 

of activation patterns in ECGI is presented, that captures 

different degrees of complexity in AF patients and 

visualizes the electrophysiological patterns. The method 

detects temporally co-occurring features and identifies 

spectral parameters of said features. Furthermore, it allows 

for the visualization of the patterns on 3-dimensional 

personalized geometries, which facilitates a 

contextualization of captured propagation patterns with 

anatomical atrial regions. 
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