SOME ALIPHATIC MONOCARBOXYLATE COMPLEXES OF BIVALENT ME'TALS IN AQUEOUS SOLUTION. PART IIL. LEAD ACETATO COMPLEXES AND LEAD PROPIONATO COMPLEXES

By S. K. Siddhanta and S. N. Banerjee

Hjerrum's method for deternining the values of suceessive constants in step equilibrin has been shown to be ansuitable in cases where the ligand is charged, Saitable modifications have been introduced to adapt Bjerrum's arethod in cases of charged ligand, taking into acconnt the activity coefficients of the ions present in the solation, calculated by the application of the "Debye-Huclel limiting law' from the value of the ionic strength of the solution tuixture.
'I'he $\dot{p}_{4} s$ of agueous solution mixtures of lead acetate and nitric acid at different concentraiions after attamment of equilibrinn; have been determined, and the datn utilised to calcalate the thermodynamic dissociation coustants, K_{1} and K_{2}, for the two successive equilibria,

$$
\mathrm{Pb}_{2} \rightleftharpoons \mathrm{PbA}^{+}+\mathrm{\Lambda}^{-} \text {and } \mathrm{Pb} \mathbf{A}^{+} \rightleftharpoons \mathrm{E}^{2+}+\mathbf{A}^{-}
$$

(where, A stunds for acetate or propionate ion), applying Bjerrum's method modified as above. Thé inapplicability of the Dehye-Huckel limiting law to electrolyte solutions at finite concentrations has also L een properly considered, and ingenious corrections have been made in finding the value of K_{1} and K_{2}, which are $3 \mathrm{I} .2 \times 10^{-3}$ and 3.31×10^{-3} at $31.34 .5^{\circ}$ respectivels fcr lead acetate and $55^{1} \times 10^{-3}$ and 457×10^{-3} at room temperature $\left(21-30^{\circ}\right)$ for lead propionate.

A complex of the type $M A_{2}$, where M is a bivalent metal ion and A is any ligand, may dissociale in aqueous solution in two stages, viz.,

$$
\begin{align*}
& M A_{2} \rightleftharpoons M A+A \quad \cdots \quad \text {... (A) } \\
& \mathbf{M A} \rightleftharpoons \mathbf{M}+\mathbf{A} \tag{B}
\end{align*}
$$

The first and sccond dissociation constants of lead acetate are therefore given by
aud

$$
\begin{align*}
& K_{1}=\frac{a_{u \Lambda} a \cdot \cdot}{a_{m a}}=k_{1} \cdot \frac{f_{x_{1} \cdot f_{2}}}{f_{n_{2}}} \quad \ldots \tag{1}\\
& K_{2}=\frac{a_{k_{1}} a_{A}}{a_{k_{4}}}=k_{2} \cdot \frac{f_{y_{1} \cdot f_{A}}}{f_{m a}} \quad \ldots \tag{2}
\end{align*}
$$

where k_{1} and \underline{k}_{2} are the classical concentration constants given by-

$$
\begin{array}{lll}
k_{1}=\frac{c_{M_{1}} c_{A}^{-}}{c_{M_{\alpha_{2}}}} & \ldots & \ldots \\
k_{2}=\frac{c_{M} \overline{c_{i}}}{c_{M_{1}}} & \ddots \ldots & \ldots \tag{4}
\end{array}
$$

Bjerrum ('Metal Ammiue Furmation in Aqueous Solution'', P. Haase and Sor, 1941) has developed a method of evaluating the successive mass action constants in step equilibria like (A) and (B) ; the method, however, is adrirably suitable in cases where the ligand ' A ' is a neutral molecule like NH_{3}, but not at all accurate in cases where the ligand ' A ' is a charged ion like $\mathrm{CH}_{3} \mathrm{COO}^{-}$or $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{COO}^{-}$.

Bjerrum defnes formation function \boldsymbol{n} in any solution wixture containing MA and a stroug acid as the average number of ligands per M^{2+} ion given by the following expressions,

$$
\begin{align*}
& =\frac{k_{1} c_{A}+2 c_{A}^{2}}{k_{1} k_{2}+k_{1} c_{A}+c_{\Lambda}^{2}} \tag{5}
\end{align*}
$$

Fixperimentally Bjerrum prepared two or more solution mixtures with different amounts of $M A_{1}$ and a strong acid keeping the total volune constant, and then determined for every such solution mixture, using some suitable method, the 'free" ligand concentratiou, ' x ', and n frout the equation,

$$
\begin{equation*}
\pi=\frac{\text { total ligand }- \text { free ligand }}{\text { total metal }}=\frac{2 C-x}{C} \tag{6}
\end{equation*}
$$

' x ' being the concentration of the ligand (not attached to the metal ion) present in the solution in the base form ' A ' and in the acid form 'HA' $\left(x=c_{1}+c_{3}\right)$. Thus obtaining the values of \bar{n} and c_{A} for any two solution mixtures, two simultaneous equations will be obtained from equation (5), the solution of which will give the values of ' k_{1} ' and ' k_{2} '.

In cases where ' A ' is yeutral,

$$
K_{1}=k_{1} \frac{f_{M_{A}}{ }^{2+} \cdot f_{A}}{f_{\mu_{A}}{ }^{2+}}=k_{1}
$$

 Debye-Hückel limiting law.

Similarly,

$$
K_{2}=k_{2} \frac{f_{\mathrm{s}}^{3+} \cdot f_{\mathrm{L}}}{f_{\mathrm{m}_{2}^{2+}}^{2+}}=k_{2}
$$

Evidently in such cases; the classical concentration constants and the ihermodynamic constants are very nearly the same and, hence, the former can be regarded as constants, independent of the ionic strengths. Therefore equation (5), which is essentially a stoichiometric equation involving the classical constants ' k_{1} ' and ' k_{2} ', remains valid for two solutions of different iopic strengths if tile ligand is neulral. Hence, the values of ' k_{1} ' and ' k_{3} ' can be oblained more or less accurately by solution of simultaneous equations, as indicated above.

If, however, the ligand is a charged ion like $\mathrm{CH}_{3} \mathrm{COO}^{-}$and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$, the thermodynamic constants, ' K_{1} ' aud ' K_{2} ', and classical contsants, ' k_{1} ' and ' k_{2} ', have got very different values and; in fact, $!k_{2}$ ' and ' k_{a} ' cannot be regarded as constants for different
solution mixtures of varying ionic strangths. Equation (5) cannot therefore be employed to obtain the values of ' k_{1} ' and ' k_{2} ' even if we know the corresponding values of $\boldsymbol{\pi}$ and c_{h}, if ' A ' is a charged ligand.

There is a further objection to use equation (6) if c_{A} has to be determined from p_{\Perp} measurements, whether or not the ligand is charged. Eiquation (6) is a stoichiometric equation and ' x ' is a stoichiometric concentration term. To evaluate ' x ' we need know c_{n} and c_{1}, given by the expressions :
where K_{a} is the thermodynamic disseciation constant of HA. From the p_{n} measurements, we can find the value of $a_{H}{ }^{+}$and not $c_{B}{ }^{+}$. If ' A ' is neutral, $f_{A}=I$ but $f_{u}{ }^{+}$is unknown. If, however, ' A ' is a monovalent anion, $f_{\pi i}=\mathbf{I}$ since HA is neutral, but f_{A}^{-}remains unknown. In either case, equation (8) cannot be applied to determine c_{A}. Bjerrum, however, has not taken these facts into consideration and has virtually put the activity coefficients equal to r, which is not justifed, even for very dilute solutions.

In the present investigation, the above method of Bjerrum has been modified to overcome the difficulties pointed out, and to make it suitable for the determination of the thermodynamic constants, ' K_{1} ' and ' K_{2} ', where the ligand is a charged ion. Here a new approach has been made to the problem of determiuing the above thermodynamic constants by noting the p_{B} of a set of solution mixtures, each containing in a definite volune of solution, either (a) a definite amount of $\mathbf{M A}_{\mathbf{2}}$ (in this case PbAc_{3} or $\mathrm{Pb} \mathrm{Prop}_{2}$) and varying anounts of a strong acid (in this case nitric acid) or (b) a definite amount of a strong acid and varying amounts of $\mathrm{MA}_{\mathbf{1}}$, after the atlainment of equilibrium. The activity cocfficients of reacting ions have been calculated as follows.

In the following calculations we shall assume that the strong acid added is HNOs, that the ligand is a monovalent aniou A^{-}(the ligand involved in the present case is acctate or propionate inn) and that both HNO_{3} and $\mathrm{M}\left(\mathrm{NO}_{3}\right)_{2}$, forined by reaction between MA_{3} and HNO_{3} in solution, are completely dissociated.

Now, equation (7) can be written as,

$$
c_{\mathrm{EA}}=C_{\mathrm{a}}-c_{\mathrm{B}}{ }^{+}=C_{\mathrm{B}}
$$

$$
\ldots \quad \text {... }(7 a)
$$

since $c_{\mathbf{H}^{+}}$is negligible compared to C_{a} for our solution mixtures. Equation (8) then reduces to the form (8a).

$$
\begin{equation*}
a_{\Delta^{-}}=\frac{K_{\mathrm{a}} C_{\mathrm{a}}}{a_{\mathrm{a}^{*}}} \tag{8a}
\end{equation*}
$$

since $f_{a A}=1$, HA being geutral. An approximate value of \bar{n} can be found out from equation (6) by putting $c_{\Delta} \vec{a}^{=} a_{\Delta}-\left[a_{\Delta}-\right.$ being evaluated by equation (8a) from the

$$
\begin{align*}
& c_{\mathrm{an}}=\mathrm{H}^{+} \text {ions used up for the formation of undissociated HA } \\
& =\text { total } \mathrm{H}^{+} \text {ious initially present (i. e. total acid) }-\mathrm{H}^{2} \text { ions left at equilibrium } \\
& =C_{\mathrm{R}}-c_{\mathrm{ut}^{+}}{ }^{+} \\
& c_{A}=K_{\mathrm{a}} \quad \frac{c_{\mathrm{uA},} f_{\mathrm{as}}}{a_{\mathrm{a}}^{+} \cdot f_{\mathrm{A}}} \tag{8}
\end{align*}
$$

experimental p_{0} value]. This does'not'entail a serious error as long as the ionic strength of the solution is low.

Equation (5) can be reduced to the form,

$$
\begin{equation*}
\frac{\left.c_{\mathrm{A}}^{-2} i_{2}-n\right)}{n}=k_{1} \frac{c_{\mathrm{A}}^{-}(\pi-1)}{n}+k_{1} k_{2} \tag{5a}
\end{equation*}
$$

Putting the value of $\boldsymbol{i t}$ from (6) we have

$$
\begin{equation*}
c_{A^{-2}}^{-2} \cdot \frac{x}{2 C-x}=k_{1} c_{A}^{-} \cdot \frac{C-x}{2 C-x}+k_{1} k_{2} \tag{5b}
\end{equation*}
$$

If we use solution mixtures of low ionic strengths, ' c_{A}-' may be put equal to ' $\alpha_{A}{ }^{\prime}$ ' and ' k_{1} ' and ' k_{2} ' can be regarded as approximately constants. Now $c_{A}{ }^{-2} \cdot x_{1} /\left({ }_{2} C-x\right)$, if plotted on the y-axis, against $c_{\Delta}-(C-x) /(2 C-x)$, on the x-axis, we get a nearly straight line curve, the slope of which is ' k_{1} ' and the intercept on the y-axis is $k_{1} k_{2}$. The resulting plots shown in Figs. I and 3 are not, iu fact, good straight lines, but we can draw a straight line best fitting the points in each case. As is to be expected, sonie of the points (for which the ionic strength is high) fall much beyond this straight line. The values of ' k_{I} ' and ' k_{g} ', obtained from the slope and intercept of the curves, may be ragarded as approximte average values of the two above quantities over the range of low ionic strengths used.

Now, there are two alternative methods for calculating the ionic strength ' μ ' and, hence, the activity coefficients of the different ions present. The first method starts from the value of ' k_{2} ' and the sccond one starts from the value of ' k_{1} '.

Melhod (a).-Since any solution mixture is electrically neutral, we have
or, $\quad 2 c_{\mathbf{x}^{2+}}+c_{\mathrm{nA}^{+}} \approx C_{\mathrm{a}}+a_{A^{-}} \quad \cdots \quad \cdots \quad \cdots$ (ga)
since $c_{\text {mos }}{ }^{-}=$total nitric acid concentration $C_{\mathrm{a}}, c_{\mathbf{4}^{+}}$is negligible compared to other quantities on the left hand side of equation (9), and $c_{A}^{-} \approx a_{A}^{-}$.

Now, solving equation (4) and the electrone utrality equation (ga), we can get the approximate values of Cs^{2+} and CmA^{+}, since the other quantities are known. We can now know the ionic strenglh ' μ ' approximately from the relation (so) by inserting these values therein.

$$
\mu=\frac{1}{2}\left(4 c_{u^{2}}^{2+}+c_{\mathrm{MA}_{4}^{+}}+c_{\mathrm{B}^{+}}+c_{\mathrm{Nu}_{3}^{-}}+c_{A^{-}}^{-}\right) \approx \frac{1}{2}\left(4 c_{\mathrm{M}^{2+}}+c_{\mathrm{Ma}^{+}}+C_{\mathrm{a}}+a_{A}\right) \quad \ldots \text { (10) }
$$

Then, since the solution mixtures used are of low ionic strengths, we can know approxinate values of the activity coefficients of the ions present by application. of the Debye-Hückel liniting law in the following way :
and,

$$
\begin{aligned}
& f_{\mathrm{a}^{+}}=f_{\mathrm{A}^{-}}=f_{\mathrm{ML}}{ }^{+}=f_{1}=\text { antilog }(-0.5 \mathrm{I} \sqrt{\mu})^{-} \quad \ldots \quad \therefore \text { (ria) } \\
& f_{M}{ }^{2+}=f_{z}=f_{1}{ }^{4}=\operatorname{autilog}(-4 \times 0.5 \pm \sqrt{\mu}) \quad \ldots \quad \text {... (1Ib) }
\end{aligned}
$$

(0.5 I being the Debye-Hückel constant at Wtie temperature of the experiment).
Method (b).—By inserting the relation (12),

$$
C=c_{x \lambda_{2}}+c_{x u+}+c_{x_{2}}^{2+} \quad \ldots \quad \ldots \text { (12) }
$$

in the electro-nentrality equation (ga), we get (gb).

$$
2 C \approx 2 c_{x_{12}}+c_{x_{1}+}+C_{2}+a_{1-} \quad \ldots \quad \ldots \text { (gb) }
$$

 relation (I 2). Using these values of $c_{\mathrm{A}^{2}}$. and $\epsilon_{x_{3}+}$, we can calculate the ionic strength ' μ ' from equation (ro) and, hence, ' f_{1} ' and ' f_{2} ' by equations (ria) and (rib).

13y comparing the values for the first twe've solutions (No. I to 12) in the case of lead acetate in Table II, it will be observed that the corresponding values of $c_{w^{+}}$and $c_{y^{++}}$, calculated by two independent methods (a) and (b), fairly agree with each other, differing mostly in the second significant figure. The last two values of r $^{2+}$ for solution nunbers 11 and 12 , caiculated by method (b) in Table II, are, however, inaccurate because as ($c_{\mathrm{w}, 2}+c_{\mathrm{x} 1+}$) approaches C, the difference $c_{y}=+$ (vide equation 1_{2}) would invoive comparativelg large error, the valnes of $r_{x_{4}}$ and $r_{x_{12}}$ being rathet erroneous.

By comparing the corresponding values of $c_{x^{2}}$ and $c_{\mathrm{w}^{+}}$for the last seventen solutions (No. 13 to 29) in Table II, we, however, find that there is no such good agreement as in the case of the first twelve solutions. But in any case we are interester in knowing the values of $c_{\mathbf{x}^{\prime}+}$ and $c_{\mathrm{s} 1}+$ only to calculate ' μ ', ' $f_{\mathbf{1}}$ ' and, ' J_{3} '. In spite of the disagreement, mentioned above, it will be seen that both the methods, (a) and (b), yield quite concordant values of ' μ '. The values of ' f_{1} ' and ' f_{a} ', calculated from these values of ' μ ' by equations (ira) and (irb), will therefore also be concordant. We may add that accurate values of 'ca-', recalculated from equation (8b), are practically identical in both methods (vide Table II) :

$$
\begin{equation*}
c_{\mathrm{n}^{-}}=\frac{K_{\mathrm{n}} C_{\mathrm{n}}}{a_{\mathrm{n}}+f_{\mathrm{I}}} \tag{8b}
\end{equation*}
$$

The values of ' $c_{n}-$ ', ' f_{1} ' and ' f_{z} ' alone are required in the subsequent calculations, and the concordance of these in the two independent methods of calculation is a sufficient guarantee for the accuracy of later evaluations.

It will be seen from Table IV, that the agreenent between the correspouding
 is quite satisfactory in all cases, excepting in a few, where there is a little difference in the second significant figure. Nevertheless, the values of ' μ ', ' f_{1} ' and ' f_{2} ', calculated from the data in both tables, are satisfactorily concordant, and the recalculated value of ' $\boldsymbol{c}_{\mathbf{A}}$ ' ' are alnost identical.

After determining a more accurate value of ' c_{A} ' from (8 b). we can find out more accurate value of ' x ' ($x=c_{A-}+c_{n_{i}}=c_{4}+C_{a}$). Equation (5b) is an accurate relation for every solution mixture, though ' k_{1} ' and ' k_{2} ' may not be constants for diferent solution mixtures. Inserting (1) and (2) in (5b) we have

$$
c_{A}{ }^{2} \frac{x}{2 C-x} \cdot f_{1}^{2} f_{2}=K_{1} c_{A-} \cdot \frac{C-x}{2 C-x} \cdot f_{2}+K_{1} K_{2} .
$$

or $Y=K_{1} \dot{X}+K_{1} K_{2} \because \cdots \cdots \quad \ldots \quad \ldots \quad$....... (5c)
where,

$$
Y=c_{A}-{ }^{2} \cdot \frac{x}{2 C-x} f_{1}^{2} f_{2} \text { and } X=c_{A}-\frac{C-x}{2 C-x} f_{1} .
$$

The terins ' K_{1} ' and ' K_{2} ' in ($5 c$) are real thermodynamic constants, and therefore the plot of ' Y ' on the y-axis and ' X ' on the x-axis, using the more accurate values of ' x ' and ' c_{A} ', should give a straight line curve, the slope of which gives the value of ' K_{1} ' and the intercept of the y-axis that of " $K_{1} K_{2}$ '. .

EXPERIMENTAL

Steck solutions of lead acetate (A.R.), lead propionate (prepared as given below) and nitric acid (A.R.) were prepared, in which lead was determined gravinetrically as lead sulphate and the acid by titration with a standard alkali solution. All solutions and dilutions were made with conductivity water.

Lead propionate was prepared by digesting finely powdered litharge in propionic acid (distilled and collected at 141°) on a water-bath. The resulting syrupy liquid on cooling gave a sticky white solid mass, which changed to white flakes on repeated extraction with anhydrous ether, when the excess propionic acid went in the ether layer. It was dried in vacuuin and analysed. [Found: Pb (as sulpliate), 59-15. Calc . for $\left.\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}\right)_{2}: \mathrm{Pb}, 58.66 \%\right]$.

In preparing solution mixtures in these experinueuts such volumes of parent stock sslutions were accurately measured, which on dilution to so c.c. gave the desired initial molar concentration C for lead acetate or lead propionate and C_{a}^{\prime} for nitric acid. After keeping the mixtures in a closed room for 3 hours, the p_{r} values were determined, using equation (I_{3}) from the E.MI.F. (E) values at room temperature (i°) measured by a Leeds and Northrup K_{2}-type potentiomeler. o. iN Calomel and quinhydtone clectrodes, biidged by saturated KCl solution, were used in all p_{n} determinations of lead acetate solution mixtures.

$$
p_{n}=\frac{0.3625-0.00068(l-2.5)-E}{0.0591+0.0002(l-25)} \quad \cdots \quad \text {... } \quad\left(r_{3} a\right)
$$

Saturated calomel and quinhydrone electrodes bridged by saturated KCi solution were used in all $p_{\boldsymbol{n}}$ determinatious of lead propionate solution mixtures.

$$
p_{B}=\frac{0.4552-0.00009(t-25)-E}{0.0591+0.0002(t-25)}
$$

$$
\ldots \quad \text {... (} 13 \mathrm{~b} \text {) }
$$

(Kobhhof and Laitinen, " $\boldsymbol{p}_{n}^{\prime \prime}$ and Electrotitration'", John Wiley, 2nd ed., p. 9z).

The E.M.F. reading for each solution was repeated in duplicate in all cases, and in many cases in triplicatc, using each tipue a solution mixture independently prepared from the same stock solntions, or sometimes from different stock solutions, and in all cases the readings gave $p_{\text {I }}$ values agreejng within $\pm 0.0 r p_{\text {m }}$ units.

Table I

* ' x ' has been calculated from relation $x=a_{A^{\prime}}+C_{\text {. }}$.
' C ' and ' \mathcal{C}_{B} ' denote respectively the molar cencentation of PbAc_{9} and of HNO_{3}.
5-1970P-5

TTable II

Solntion Method of
 per Table I)

I	(a) (b)	$\begin{aligned} & 3.16 \\ & 3.36 \end{aligned}$	$\begin{aligned} & 6.46 \\ & 6.36 \end{aligned}$	$\begin{aligned} & 0.02254 \\ & 0.02244 \end{aligned}$	$\begin{aligned} & 1.24 \\ & \mathrm{I} .24 \end{aligned}$	$\begin{aligned} & -0.09674 \\ & -x .018 \end{aligned}$	$\begin{aligned} & 0.00213 \\ & 0.0023 \mathrm{I} \end{aligned}$
2	(a) (b)	$\begin{aligned} & 5.23 \\ & 6.19 \end{aligned}$	$\begin{aligned} & 5.86 \\ & 5.39 \end{aligned}$	$\begin{aligned} & 0.0128 \mathrm{r} \\ & 0.02235 \end{aligned}$	$\begin{aligned} & 2.27 \\ & 2.26 \end{aligned}$	$\begin{aligned} & -0.6952 \\ & -0.588 \end{aligned}$	0.00399 0.00397
3	(a) (b)	$\begin{aligned} & 7.48 \\ & 8.09 \end{aligned}$	$\begin{array}{r} .5-3 \mathrm{I} \\ -5.0 \mathrm{I} \end{array}$	$\begin{aligned} & 0.02341 \\ & 0.02312 \end{aligned}$	$\begin{aligned} & 3.6 \mathrm{I} \\ & 3.60 \end{aligned}$	$\begin{array}{r} -0.5556 \\ -0.5564 \end{array}$	0.00724 0.00724
4	(a) (b)	$\begin{aligned} & 10.87 \\ & 1 \mathrm{II} .14 \end{aligned}$	$\begin{aligned} & 4.64 \\ & 4.51 \end{aligned}$	$\begin{aligned} & 0.02479 \\ & 0.02466 \end{aligned}$	$\begin{aligned} & 6.02 \\ & 6.01 \end{aligned}$	$\begin{aligned} & -0.1512 \\ & -0.530 \end{aligned}$	0.01321 0.01321
5	(a) (b)	$\begin{aligned} & 12.39 \\ & 11.77 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 471 \end{aligned}$	$\begin{aligned} & 0.02559 \\ & 0.02590 \end{aligned}$	$\begin{aligned} & 7.26 \\ & 7.26 \end{aligned}$	$\begin{aligned} & -00473 \\ & -0.0408 \end{aligned}$	$\begin{aligned} & 0.01752 \\ & 0.01736 \end{aligned}$
6	$\begin{aligned} & (a) \\ & (b) \end{aligned}$	$\begin{aligned} & 13.97 \\ & 13.09 \end{aligned}$	$\begin{aligned} & 4.18 \\ & 4.63 \end{aligned}$	$\begin{aligned} & 0.02651 \\ & 0.02607 \end{aligned}$	$\begin{aligned} & 8.63 \\ & 8.64 \end{aligned}$	$\begin{array}{r} +0.2130 \\ +0.2060 \end{array}$	$\begin{aligned} & 0.02115 \\ & 0.02105 \end{aligned}$
7	(a) (b)	$\begin{aligned} & 20.83 \\ & 20.3 \mathrm{I} \end{aligned}$	$\begin{aligned} & 3.54 \\ & 3.8 \mathrm{I} \end{aligned}$	$\begin{aligned} & 0.03145 \\ & 0.03173 \end{aligned}$	$\begin{aligned} & 15.48 \\ & 15.48 \end{aligned}$	$\begin{aligned} & +x .582 \\ & +1.576 \end{aligned}$	0.03654 0.03621
8	(a) (b)	$\begin{aligned} & 26.80 \\ & 26.21 \end{aligned}$	$\begin{aligned} & 3.23 \\ & 3.53 \end{aligned}$	$\begin{aligned} & 0.03649 \\ & 0.03679 \end{aligned}$	$\begin{aligned} & 22.21 \\ & 22.23 \end{aligned}$	$\begin{array}{r} +2.750 \\ +2.740 \end{array}$	0.05036 0.05025
9	$\begin{aligned} & \text { (a) } \\ & \text { (b) } \end{aligned}$	$\begin{array}{r} 31.33 \\ 31.45 \end{array}$	$\begin{aligned} & 3.07 \\ & 3.01 \end{aligned}$	004054 004048	$\begin{aligned} & 27.66 \\ & 27.65 \end{aligned}$	$\begin{aligned} & +3.658 \\ & +3.655 \end{aligned}$	$\begin{aligned} & 0.0595 \\ & 0.0592 \end{aligned}$
10	(a) (b)	$\begin{aligned} & 35.49 \\ & 35.7 \mathrm{I} \end{aligned}$	$\begin{aligned} & 2.95 \\ & 2.85 \end{aligned}$	$\begin{aligned} & 0.04434 \\ & 0.04425 \end{aligned}$	$\begin{array}{r} 32.85 \\ 32.85 \end{array}$	$\begin{aligned} & +4.413 \\ & +4.416 \end{aligned}$	$\begin{aligned} & 0.0683 \\ & 0.068 \mathrm{I} \end{aligned}$
II	(a) (b)	$\begin{aligned} & 37.45 \\ & 41.76 \end{aligned}$	$\begin{aligned} & 2.91 \\ & 0.76 \end{aligned}$	$\begin{aligned} & 0.046 \mathrm{r} 8 \\ & 0.04404 \end{aligned}$	$\begin{aligned} & 35 \cdot 38 \\ & 35 \cdot 17 \end{aligned}$	$\begin{aligned} & +4.926 \\ & +5.025 \end{aligned}$	0.0650 0,06612
12	(a) (b)	$\begin{aligned} & 41.05 \\ & 44.97 \end{aligned}$	$\begin{aligned} & 2.84 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 0.04957 \\ & 0.04763 \end{aligned}$	$\begin{aligned} & 40.07 \\ & 39.85 \end{aligned}$	$\begin{aligned} & +5570 \\ & +5598 \end{aligned}$	0.07295 0.07392
13	(a) (b)	$\begin{array}{r} 5.03 \\ 5.73 \end{array}$	$\begin{aligned} & 1.58 \\ & \mathrm{r} .23 \end{aligned}$	$\begin{aligned} & 0.00977 \\ & 0.00942 \end{aligned}$	$\begin{aligned} & 7.63 \\ & 7.61 \end{aligned}$	$\begin{aligned} & +0.502 \\ & +0.513 \end{aligned}$	$\begin{aligned} & 0.0229 \\ & 0.02301 \end{aligned}$
14	(a)	5.66	1.91	0.01139	7.15	-0.0885	. 0.0252
14	(b)	5.29	2.10	0.01159	7-6I	-0.0702	0.0247
15	(a) (b)	$\begin{aligned} & 6.02 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 2.33 \\ & 2.84 \end{aligned}$	$\begin{aligned} & 0.01301 \\ & 0.01352 \end{aligned}$	$\begin{aligned} & 6.31 \\ & 6.33 \end{aligned}$	$\begin{array}{r} -0.536 \\ -0.562 \end{array}$	0.0219 0.0230 B
16	(a) (b)	$\begin{aligned} & 6.02 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.83 \\ & 3.4 I \end{aligned}$	$\begin{aligned} & 0.01451 \\ & 0.01509 \end{aligned}$	$\begin{aligned} & 5.24 \\ & 5.24 \end{aligned}$	$\begin{aligned} & -0.839 \\ & -0.849 \end{aligned}$	$\begin{aligned} & 0.0184 \\ & 0.0182 \end{aligned}$
17	(a) (b)	$\begin{aligned} & 593 \\ & 4.56 \end{aligned}$	$\begin{aligned} & 3.43 \\ & 4.12 \end{aligned}$	0.01622 0.01692	$\begin{aligned} & 4.29 \\ & 4.30 \end{aligned}$	$\begin{aligned} & -1.161 \\ & -1.149 \end{aligned}$	$\begin{aligned} & 0.0149 . \\ & 0.0146 \end{aligned}$
18	(a) (b)	$\begin{aligned} & 6.10 \\ & 3.82 \end{aligned}$	$\begin{aligned} & 4.09 \\ & 5.23 \end{aligned}$	$\begin{aligned} & 0.01837 \\ & 0.01951 \end{aligned}$	$\begin{aligned} & 3.75 \\ & 3.76 \end{aligned}$	$\begin{array}{r} -i .831 \\ -1.772 \end{array}$	$\begin{aligned} & 0.0154 \\ & 0.0 r 49 \end{aligned}$
19	(a) (b)	$\begin{aligned} & 5.12 \\ & 3.56 \end{aligned}$	$\begin{array}{r} 5.05 \\ 5.84 \end{array}$	$\begin{aligned} & 0.02027 \\ & 0.02107 \end{aligned}$	$\begin{aligned} & 2.57 \\ & 2.57 \end{aligned}$	$\begin{aligned} & -1.674 \\ & =-x .634 \end{aligned}$	$\begin{gathered} 0.00858 \\ 0.00835 \end{gathered}$
20	(a) (b)	$\begin{aligned} & 4.56 \\ & 2.66 \end{aligned}$	$\begin{aligned} & 6.05 \\ & 7.00 \end{aligned}$	$\begin{aligned} & 0.02271 \\ & 0.02366 \end{aligned}$	$\begin{aligned} & 1.93 \\ & 1.94 \end{aligned}$	$\begin{aligned} & -2.116 \\ & -2.136 \end{aligned}$	$\begin{aligned} & 0.00702 \\ & 0.00705 \end{aligned}$
2 I	(a) (b)	$\begin{aligned} & 30.48 \\ & 30.48 \end{aligned}$	$\begin{aligned} & 2.3 I \\ & 2.3 I \end{aligned}$	$\begin{aligned} & 0.03741 \\ & 0.03741 \end{aligned}$	$\begin{aligned} & 35.50 \\ & 35.40 \end{aligned}$	$\begin{aligned} & \mathbf{+ 5 . 2 8 3} \\ & \mathbf{+ 5 . 2 7 3} \end{aligned}$	$\begin{aligned} & 0.0845 \\ & 0.0838 \end{aligned}$
32	(a) (b)	$\begin{aligned} & 33.20 \\ & 29.15 \end{aligned}$	$\begin{aligned} & 2.43 \\ & 4.46 \end{aligned}$	$\begin{aligned} & 0.04049 \\ & 0.04252 \end{aligned}$	$\begin{aligned} & 37.00 \\ & 37.24 \end{aligned}$	$\begin{aligned} & +5.103 \\ & +5.001 \end{aligned}$	0.0963 0.0948
23	$\begin{aligned} & \text { (a) } \\ & \text { (b) } \end{aligned}$	$\begin{aligned} & 32.75 \\ & 3 \mathrm{I} .94 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 3.42 \end{aligned}$	0.04045 0.04129	$\begin{aligned} & 34.30 \\ & 34.39 \end{aligned}$	$\begin{aligned} & +4.772 \\ & +4.735 \end{aligned}$	$\begin{aligned} & 0.0812 \\ & 0.0805 \end{aligned}$
34	(a) (b)	$\begin{array}{r} 35-75 \\ 29.32 \end{array}$	$\begin{aligned} & 2.70 \\ & 5.92 \end{aligned}$	0.04385 0.04707	$\begin{aligned} & 36.30 \\ & 36.46 \end{aligned}$	$\begin{aligned} & +4.626 \\ & +4.47 \end{aligned}$	0.0960 0.0931
25	(a) (b)	$\begin{aligned} & 37.25 \\ & 29.18 \end{aligned}$	$\begin{aligned} & 2.83 \\ & 6.87 \end{aligned}$	0.04574 0.04979	$\begin{aligned} & 36.20 \\ & 36.55 \end{aligned}$	$\begin{aligned} & +4.405 \\ & +4.239 \end{aligned}$	$\begin{aligned} & 0.0973 \\ & 0.0938 \end{aligned}$
26	(a) (b)	$\begin{aligned} & 37.44 \\ & 29.66 \end{aligned}$	$\begin{aligned} & 2.9 \mathrm{x} \\ & 6.8 \mathrm{r} \end{aligned}$	0.04617 0.35008	$\begin{aligned} & 35-40 \\ & 35.70 \end{aligned}$	$\begin{aligned} & +4.276 \\ & +4.12 I \end{aligned}$	0,0939 0.0894
27	(a) (b)	$\begin{aligned} & 46.4 \mathrm{x} \\ & 30.66 \end{aligned}$	$\begin{array}{r} 4.13 \\ \text { r2.0I } \end{array}$	$\begin{aligned} & 0.05880 \\ & 0.06669 \end{aligned}$	$\begin{array}{r} 31.90 \\ \text { ran. } 40 \end{array}$	$\begin{aligned} & +2.817 \\ & +2.632 \end{aligned}$	$\begin{aligned} & 0.0896 \\ & 0.0774 \end{aligned}$

Table II (contd.)

Solation No.	Method of calculation.			' $\boldsymbol{\mu}$ '		H $\times 100$.	$\mathbf{Y} \times 10$.
28	$\begin{aligned} & (a) \\ & (b) \end{aligned}$	$\begin{aligned} & 53.12 \\ & 33.67 \end{aligned}$	$\begin{array}{r} 5.88 \\ \mathbf{5 . 6 7} \end{array}$	0.07076 0.08049	$\begin{aligned} & 26-40 \\ & 26.97 \end{aligned}$	$\begin{aligned} & +1.683 \\ & +1.557 \end{aligned}$	$\begin{aligned} & 0.0593 \\ & 0.0553 \end{aligned}$
29	$\begin{aligned} & (a) \\ & (b) \end{aligned}$	$\begin{aligned} & 60.74 \\ & 34.89 \end{aligned}$	$\begin{array}{r} 7.99 \\ 20.92 \end{array}$	0.08471 0.09764	$\begin{aligned} & 22.90 \\ & 23.40 \end{aligned}$	$\begin{aligned} & +0.852 \\ & +0.767 \end{aligned}$	$\begin{aligned} & 0.0478 \\ & 0.0433 \end{aligned}$

${ }^{\bullet} K_{\mathrm{n}}=1.75 \times 10^{-5}$ (Harned and Cwen, "The Physical Chemistry of Electrolytic Solations"; 2nd ed., p. 580).
$f^{\prime} X^{\prime}$ ' represents $c_{A}-\frac{C-x}{2 C-x} f_{4}$ and ' Y ' represents $c_{A}-2 \frac{x}{2 C-x} f_{1} f_{2}$ where, ' f_{1} ' and '/a' are calcuTated from the value of ' μ ' by equations (ina) and (rib) and $x=c_{a}-+C_{a}$.

T'able III

Table IV

The symbols used in the table headings and their evaluations ate same as in Table II.
Soln. No: Method of
 Table.iII)

1	(a) (b)	$\begin{aligned} & 1.05 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 4.83 \\ & 4.76 \end{aligned}$	$\begin{aligned} & 0.91554 \\ & 0.01548 \end{aligned}$	$\begin{aligned} & 0.83 \\ & 0.83 \end{aligned}$	$\begin{aligned} & -x .997 \\ & -r .970 \end{aligned}$	0.00765 0.00265
2	$\begin{aligned} & (a) \\ & (b) \end{aligned}$	$\begin{aligned} & 2.10 \\ & 2.23 \end{aligned}$	$\begin{aligned} & 4.69 \\ & 4.63 \end{aligned}$	$\begin{aligned} & 0.01627 \\ & 0.01612 \end{aligned}$	$\begin{aligned} & 1.70 \\ & x .70 \end{aligned}$	$\begin{aligned} & -\mathrm{T} .9 \mathrm{II} \\ & -\mathbf{I} .909 \end{aligned}$	$\begin{aligned} & 0.00590 \\ & 0.00559 \end{aligned}$
3	$\begin{aligned} & \text { (a) } \\ & \text { (b) } \end{aligned}$	$\begin{aligned} & 2.86 \\ & 3.35 \end{aligned}$	$\begin{aligned} & 4.60 \\ & 4.36 \end{aligned}$	$\begin{aligned} & 0.01656 \\ & 0.01642 \end{aligned}$	$\begin{aligned} & 2.35 \\ & 2.35 \end{aligned}$	$\begin{array}{r} -x .527 \\ -x .533 \end{array}$	$\begin{aligned} & 0.00759 \\ & 000757 \end{aligned}$
4	(a) (b)	$\begin{aligned} & 3.86 \\ & 4.15 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 4.35 \end{aligned}$	$\begin{array}{r} 0.01733 \\ 0.01719 \end{array}$	$\begin{aligned} & 3.26 \\ & 3.26 \end{aligned}$	$\begin{gathered} -1.578 \\ -1.583 \end{gathered}$	$\begin{aligned} & 0.01176 \\ & 0.01180 \end{aligned}$
5	(a) (b)	$\begin{aligned} & 4.99 \\ & 4.73 \end{aligned}$	$\begin{aligned} & 4-3^{8} \\ & 4.52 \end{aligned}$	0.01813 0.01838	$\begin{array}{r} 4.33 \\ 4.34 \end{array}$	$\begin{aligned} & -1.757 \\ & -1.763 \end{aligned}$	0.01835 0.0184
6	(a)	$\begin{aligned} & 8.71 \\ & 8.20 \end{aligned}$	$\begin{aligned} & 4,12 \\ & 4.38 \end{aligned}$	$\begin{aligned} & 0.02107 \\ & 0.02134 \end{aligned}$	$\begin{aligned} & 8.12 \\ & 8.13 \end{aligned}$	$\begin{array}{r} -x .078 \\ -\mathbf{1 . 0 7 9} \end{array}$	0.03617 0.03608
7	(a) (b)	$\begin{aligned} & \text { IX. } 75 \\ & \text { II. } \end{aligned}$	$\begin{array}{r} 3.99 \\ 4.32 \end{array}$	$\begin{aligned} & 0.02379 \\ & 0.02405 \end{aligned}$	$\begin{aligned} & \text { TI-48 } \\ & \text { II. } 50 \end{aligned}$	$\begin{aligned} & -0.445 \\ & -0.449 \end{aligned}$	0.05166 0.05152
8	(a) (b)	$\begin{aligned} & 17.58 \\ & 15.25 \end{aligned}$	$\begin{aligned} & 3.83 \\ & 4.95 \end{aligned}$	0.02902 0.03010	$\begin{aligned} & \mathbf{7 8 . 2 4} \\ & 18.30 \end{aligned}$	$\begin{aligned} & +0.453 \\ & +0.434 \end{aligned}$	0.68904 0.08802
9	$\begin{aligned} & (a) \\ & (b) \end{aligned}$	$\begin{aligned} & 20.75 \\ & 20.35 \end{aligned}$	$\begin{array}{r} 3.75 \\ 3.94 \end{array}$	$\begin{aligned} & 0.03196 \\ & 0.03216 \end{aligned}$	$\begin{aligned} & 22.12 \\ & 22.15 \end{aligned}$	$\begin{aligned} & +1.57 \mathrm{I} \\ & +\mathrm{r} .564 \end{aligned}$	$\begin{aligned} & 0 . c 93 \mathrm{IO} \\ & 0.093 \mathrm{x} \end{aligned}$
10	(a) (b)	$\begin{aligned} & 25.01 \\ & 23-33 \end{aligned}$	$\begin{aligned} & 3.69 \\ & 4.53 \end{aligned}$	$0.036 e 8$ 0.03692	$\begin{aligned} & 27.59 \\ & 27.63 \end{aligned}$	$\begin{aligned} & +2.248 \\ & +2.221 \end{aligned}$	$\begin{aligned} & 0.1202 \\ & 0.1189 \end{aligned}$
IT	(a) (b)	$\begin{aligned} & 26.68 \\ & 25.02 \end{aligned}$	$\begin{aligned} & 3.67 \\ & 4.50 \end{aligned}$	$\begin{aligned} & 0.03769 \\ & 0.03852 \end{aligned}$	$\begin{aligned} & 29.75 \\ & 29.80 \end{aligned}$	$\begin{aligned} & +2.594 \\ & +2.566 \end{aligned}$	0.1275 0.1269
12	$\begin{aligned} & \text { (a) } \\ & \text { (b) } \end{aligned}$	$\begin{aligned} & 27.83 \\ & 27.10 \end{aligned}$	$\begin{aligned} & 3.65 \\ & 4.02 \end{aligned}$	0.03778 0.03916	$\begin{aligned} & 3 \mathrm{I} .22 \\ & 3 \mathrm{I} .24 \end{aligned}$	$\begin{aligned} & +2.95 \mathrm{x} \\ & +2.938 \end{aligned}$	$\begin{aligned} & 0.1273 \\ & 0.1268 \end{aligned}$
13	(a) (b)	$\begin{aligned} & 29.03 \\ & 28.99 \end{aligned}$	$\begin{array}{r} .3 .64 \\ 3.67 \end{array}$	$\begin{aligned} & 0.03995 \\ & 0.03999 \end{aligned}$	$\begin{aligned} & 32.75 \\ & 32.78 \end{aligned}$	$\begin{aligned} & +3.267 \\ & +3.267 \end{aligned}$	0.1285 0.1289
14	(a)	$\begin{aligned} & 29.67 \\ & 3 \mathrm{I} .39 \end{aligned}$	$\begin{aligned} & 3.63 \\ & 2.78 \end{aligned}$	0.04056 0.03972	$\begin{aligned} & 33.67 \\ & 33.54 \end{aligned}$	$\begin{aligned} & +3.576 \\ & +3.608 \end{aligned}$	$\begin{aligned} & 0.1244 \\ & 0.1247 \end{aligned}$
15	(a) (b)	$\begin{aligned} & 31.61 \\ & 32.26 \end{aligned}$	$\begin{aligned} & 3.62 \\ & 3.30 \end{aligned}$	0.04247 0.04215	$\begin{aligned} & 36.23 \\ & 36.16 \end{aligned}$	$\begin{aligned} & +3.814 \\ & +3.829 \end{aligned}$	$\begin{aligned} & 0.1368 \\ & 0.1369 \end{aligned}$
16	(a) (b)	$\begin{aligned} & 32.98 \\ & 33.65 \end{aligned}$	$\begin{aligned} & 3.6 \mathrm{I} \\ & 3.28 \end{aligned}$	$\begin{aligned} & 0.0438 \mathrm{r} \\ & 0.04348 \end{aligned}$	$\begin{aligned} & 38.00 \\ & 38.00 \end{aligned}$	$\begin{aligned} & +4.06 \mathrm{r} \\ & +4.079 \end{aligned}$	0.1416 0.1425
17	(a) (b)	$\begin{aligned} & 33.76 \\ & 35-60 \end{aligned}$	$\begin{aligned} & 3.60 \\ & 2.68 \end{aligned}$	0.04456 0.04364	$\begin{aligned} & 39.11 \\ & 38.39 \end{aligned}$	$\begin{aligned} & +4.307 \\ & +4.350 \end{aligned}$	$\begin{aligned} & 0.1403 \\ & 0.1412 \end{aligned}$
18	$\begin{aligned} & \text { (a) } \\ & \text { (b) } \end{aligned}$	$\begin{aligned} & 3.3 \mathrm{FII} \\ & \mathbf{3 6 . 7 5} \end{aligned}$	$\begin{aligned} & 3.58 \\ & 9.82 \end{aligned}$	0.04595 0.04520	$\begin{aligned} & 4 \mathrm{I} .05 \\ & 40.93 \end{aligned}$	$\begin{aligned} & +4.531 \\ & +4.564 \end{aligned}$	$\begin{aligned} & 0.1472 \\ & 0.1478 \end{aligned}$
19	$\begin{aligned} & \text { (a) } \\ & \text { (b) } \end{aligned}$	$\begin{aligned} & 5.70 \\ & 6.36 \end{aligned}$	$\begin{aligned} & 2.14 \\ & 1.51 \end{aligned}$	0.01152 0.01089	$\begin{aligned} & 8.78 \\ & 8.77 \end{aligned}$	$\begin{aligned} & -0.152 \\ & -0.149 \end{aligned}$	$\begin{aligned} & 0.0383 \\ & 0.0389 \end{aligned}$
20	$\begin{aligned} & \text { (a) } \\ & \text { (b) } \end{aligned}$	$\begin{aligned} & 5.2 x \\ & 6.22 \end{aligned}$	$\begin{aligned} & 2.33 \\ & 1.83 \end{aligned}$	$\begin{aligned} & 0.01220 \\ & 0.01171 \end{aligned}$	$\begin{array}{r} 8.29 \\ \hline .26 \end{array}$	$\begin{aligned} & =0.427 \\ & =0.408 \end{aligned}$	$\begin{aligned} & 0.0369 \\ & 0.0370 \end{aligned}$
2 I	$\begin{aligned} & \text { (a) } \\ & \text { (b) } \end{aligned}$	$\begin{array}{r} 5.39 \\ 5.97 \end{array}$	$\begin{aligned} & 2.55 \\ & 2.26 \end{aligned}$	0.01304 $0.0104=$	$\begin{aligned} & 7.87 \\ & 7.86 \end{aligned}$	$\begin{array}{r} -0.730 \\ -0.727 \end{array}$	0.0365 0.0366
22	(a) (b)	$\begin{aligned} & 4.14 \\ & 7.3 \mathrm{x} \end{aligned}$	$\begin{array}{r} 2.70 \\ -1.12 \end{array}$	$\begin{aligned} & 0.01234 \\ & .0 .01067 \end{aligned}$	$\begin{aligned} & 7.14 \\ & 7=7 \end{aligned}$	$\begin{aligned} & -0.839 \\ & =0.810 \end{aligned}$	0.0325 0.0331

Table IV (contd.)

Soln. No.	Method.		Cu^{9+}.	${ }^{\prime}{ }^{\prime}$.		K $\times 10^{\text {b }}$.	, $\mathbf{Y} \times 10^{3}$.
23	(a)	4.98	2.87	0.01359	6.46	-0.638	0.0246
	(b)	6.25	2.24	0.01296	6.44	-0.634	0.0280
24	(a)	4.86	4.39	0.01803	4.21	-1.628	0.0168
	(b)	4.85	4-40	0.01805	4.2 I	14.628	0.0168
25	(a)	4.75	4.77	0.01906	3.81	- 1.846	0.0157
	(b)	4.47	4-91	0.01920	3.8I	- 1.84 t	c. 0155
25	(a)	4.02	5-25	0,01977	2.93	- J.471	0.00937
	(b)	4-50	5.02	0.01955	2.93	- 2.477	0.00944
37	(a)	4.06	5.65	0.02101	2.77	- 1.913	0.0103
	(b)	3.85	5.76	0.02113	2.76	- 1.894	0.016x
28	(a)	3.68	6.15	0.09213	2.33	-r.998	0.00846
	(b)	3.44	6.27	0.02225	2.33	- 1.994	0.008_{44}
29	(a)	3-13	6.70	0.02323	1.83	- 1.84 LI	0.00585
	(b)	3.06	6.74	0.02328	1.83	-1.925	0.00606
30	(a)	17.62	2.86	0.02620	94.18	+2.74	0.095 I
	(b)	20.80	1.27	0.01461	24.10	+2.81	0.0985
31	(a)	19.03	2.99	0.02800	25.21	+2 44	0.1124
	(b)	19.77	2.62	0.02763	25.16	+2.45	0.1225
32	(a)	19.62	3.11	0.02895	25.09	+2.24	0.1745
	(b)	19.58	3.13	0.02897	25.06	+2.24	0.1139
33	(a)	19.89	3.23	0.92958	24.55	+2.09	0.0905
	(b)	19.69	3.33	0.02963	2454	+1.09	0.7105
34	(a)	20.49	3.35	0.03054	24.37	+1.90	0.7123
	(b)	19.47	3.86	0.03105	24.46	+r. 88	0.1190
35	(a)	20.71	3.48	0.03115	23.85	+1.76	$0.10 \mathrm{Bl}_{4}$
	(b)	19.62	4.03	0.03170	23.88	+1.74	0.1078

* Using $K_{\mathrm{B}}=\mathrm{r} .33 \times 10^{-5}$ (Harned and Owen, "Physical Clemistry of Electrolytic Solations", 2nd ed., p. 580).

Tables I and III show for lead acetate and lead propionate solution mixtures respectively the experimentally determined $p_{\text {I }}$ values of the functions

$$
a_{A}-\frac{C-x}{2 \tilde{C}-x} \times 10^{3} \quad \text { and } \quad a_{A}-2 \cdot \frac{x}{2 C-x} \times 10^{3},
$$

so that equation ($5 b^{\prime}$ can be represented graphically; this has been done in Fig. I for lead acetate solution mistures, in which the circles represent data from Table I for the first 12 solution mixtures (No. I to 12) in which ' C_{s} ' is constant and ' C ' varying, and the triangles represent those for the last seventeen solution mixtures (No. i3 to 29) in which ' C ' is constant and ' C_{a} ' varying. A straight line, best fitting the majority of the points, has been drawn, and the valnes of ' k_{1} ' and ' k_{a} ' have been calculated from the slope and the intercept of this straight litie, as already explained. These values ate $k_{1}=13.20 \times 10^{-3}$ and $k_{2}=2.20 \mathrm{X}^{-3}$. It wif be, seen that some of the triangular points fall much beyond the straight line, drawn in Fig. r. The points which spread themselves over a rather wide region_in tbefefirst graph (Fig. i), will all be observed to fall practically on a singie straight-lime inerFigs, $2 A$ and $2 B$, in which data corrected from a considention of ionic stretigths have been used.

Equation (5b) has been. represented graphically in the case of lead propionate solution mixtures in Fig. 3, using data from Table III. Here the circles represent data for the solution mixtures from No. I to No. 18 (Table III) in which C_{a} is constant and C varying, and triaugles represent those for the mixtures from No. 19 to No. 35 (Table III) where ' C ' is constanit and C_{a} varies. The slopë and intercept on the ordinate of the straight line curve obtained, give the values of k_{1} and k_{2} as $k_{1}=23.6 \times 10^{-8}$ and $k_{2}=3.30 \times 10^{-3}$. These values may be regarded as the average values of these quantities over the range of ionic strengths employed. The first six triangular points have fallen much bejond the best fitting straight line, but it will be seen later that after inaking uecessary corrections from a consideration of the activity coefficients of the ions, even these points come very close to the mean straight line representing equation (5c).

Table II shows the values of ' μ ', ' X ' and ' Y ' for lead acetate solution anixtures calculated by both methods (a) and (b). ' Y ' and ' X ', calculated by method (a), have been plotted in Fig. 2A and those calcalated by method (b) in Fig. 2B. The circles and triangles in Figs. 2A and 2B refer to solation No. 1 to 12 and 13 to 29 respectively (Table I) as in the case of Fig. 1 . It will be seen that in both the plots 2 A and 2 H , the triangles lie in a straight line, almost parallel to another, passing through the circles, the two straight lines being very near to each other. These two straight lines should theoretically coincide, but as the values of ' μ ', ' f_{1} ' and ' f_{2} ' used are not quite accurate, the straight lines are separated a little from each other; it must, however, be pointed out that in the graphs 2 A and 2 B the ordinate has been magnified one handred times as compared to the abscissa, and this also magnifies the separation between the two straight lines. If, however, we draw a mean straight line in between the two sets of points, this will fit in both sets of data better and obviously, the slope

Fig. 2H
Fig. 2A

(The ordinate magrifica reo times of abscisqa).
of this mean straight line more cerrectly, represents ' K_{y}^{\prime} ' y-axis gives $K_{1} K_{2}$ mone accurately than any of the twio individtal strajght lines.

The values of ' K_{1} ' and K_{2} ', "thus oblained froto the mean straight line in Fig. 2A, and those obtained from the mean straight line ${ }^{*}$ in Fig. 2Ba have been found to be identical, viz, $K_{1}=14.6 \times 10^{-3}$ and $K_{2}=\mathrm{I} .55 \times 10^{-1}$, in both cases; these are not, however, the final values (vide Discussion). The values of ' μ ', ' X ' and ' Y ' for lead propionate solution mixtures recorded in Table IV, calculated by melhods (a) and (b), are plotted in Figs. 4 A and 4 B respectively. The circles in the plot refer to solutions No. I to $x 8$ (Table III) and the triangles to solutions No. 19 to 35 (Table LII) as in Fig. 3.

Frg. 4B

Fig. 4A

(The ordinate magnified noo times of abscissa).
It will be seen that the points, which spread themselves over a rather wider region in Fig. . 3 ; all coindense into a very natrow strip on the two sides of the mean straight ling in Figs. 4 A and 4 B , even though the scale of the ordinate has been doubled in the lattery case. The distance of the individual points from the mean straight line in the Figs. 4 A and .4 B will not appear to be unduly large, if we consider that the ordinate is hundrad, time3 magailied colmpared to the abscissa. It will be seen by comparison that the strgight line curves in Figs. 4 A and 4 B are identical in slope, asd both cut the \dot{y}-axis at the same point. So these two straight lines are identical, "and evidently, both the curves will give
identical values of \boldsymbol{K}_{1}, and \boldsymbol{K}_{2}. The values of the thermodynamic dissociation constants obtained froin the graphs are $K_{1}=24.6 \times 10^{-3}$ and $K_{2}=2.20 . \times 10^{-3}$ These are not, however, the final values (vide infra):

Discossion

The values of ' K_{1} ' and ' K_{2} ', obtained in the above way, however, are not independent of ionic strengths, since ' f_{1} ' and ' f_{2} ', calculated from the DebyeHückel limiting law, are erroneous due to the inapplicability of the law itself in the cases of solutions with even moderately low ionic strength. The values of ' K_{1} ' aud ' K_{2} ', obtained graphically taking data from a series of solution mixtares with different ionic strengths, as done here, can be regarded as containing a mean error corresponding to a mean ionic strength taken over the range of ionic strengths used. This can be substantiated in the following way.

The value of ' K_{2} ', obtained here in the case of PbAc^{+}complex, is 1.55×10^{-3} and therefore $p K_{2}=2.8097$. The mean value of ' μ ', obtained from its values calculated by method (b) in Table II, is 0.0352 I and therefore $\sqrt{\bar{\mu}}$ menn $=0.1876$. The plot of $p K_{2}=2.8097$ against $\sqrt{\mu \text { monn }}=0.1876$, is a point on the straight line curve representing $p K / \sqrt{\mu}$ plot in Part I of this paper (this Journal, 1958, 38, 276; Fig. 3). In that figure the point so plotted has been shown by the mark 0 .* If $\mu_{\text {manp }}$ is taken from the values of ' μ ' calculated by method (a) in Table II, then also we get a nearly identical point which has not been shown in the graph.

In the case of PbProp^{+}complex, the value of K_{2} obtained here is 2.20×10^{-3}. $p K_{2}$ being therefore equal to 2.6576 and $\sqrt{\mu \text { menn }}=0$ r617, oblained from the value of ' μ ' recorded in Table IV ; iI this value of $p K_{2}$ is ulotted against the above corresponding value of $\sqrt{\mu} \operatorname{man}_{\text {man }}$ on the $p K_{2} / \sqrt{\mu \operatorname{mean}}$ plot, shuwn in Fig. 2 in Part II of this paper (this Journal, 1958, 38, 282;, the point will be seen 10 full on the straight line curve representing $p K_{2} / \sqrt{\mu}$ oblained from the data in Part II of this series (vide Fig. 2, Part II where the point under reference has been shown by O mark).*

It is quite obvious that the method of deterinining ' K_{z} ' as described in Part I, is theoretically mone sound and gives a more accurate value compared to the methud described in Part.III, since in the former method extrapolation to ' $\sqrt{ } / \bar{\mu}=0$ ' is possible.

The method described in I'art I for lead acetate and in Part Il for Iead propionate is incapable of giving the value of ' K_{1} ', and the value of ' K_{1} ', obtained by the method in Parl III, is somewhat erroneous, as has already been indicated: A more accurate value of ' $K_{\mathbf{1}}$ ' can, however be determined indirectly as follows, Though the individual values of ' K_{1} ' and ' K_{2} ' obtained in Párt III are rather incorrect, it is expected that the ratio K_{1} / K_{3}, calculated from these values, are materially correct, as the same relative error occots in both and comes frop the same source, viz. the inapplicability of the Debje-Htackel limiting law to solutions with finite ionic strenglbs. Now, from this ratio K_{1} / K_{2} and the correct value of ' $K_{\mathbf{2}}$ '" from Part I, in the case of PbAc ${ }^{+}$complex and from Part II in the case of
*As 'the type signifying swlat mark used by the authors is not available, the present sign has been used instead. Rd.

[^0]PbProp" complex, we can find an accurate value of ' K_{1} ' in either case. The values 'of ' K_{1} ', obtained in this way, and those of ' K_{2} ', found in Parts I and $I I$, are given below together with the values obtained by previous workers by other methods, for comparison.

'rable V

Anthors.	$K_{\text {: }}$,	K_{2}.	Reference.
For PbAs_{4}.			
Present	$\begin{aligned} & 31.2 \times 10^{-3} \\ & \text { at } 3 \mathrm{3} . \mathrm{O}^{\circ}-34.5^{\circ} \end{aligned}$	$\begin{aligned} & 3.3 \mathrm{r} \times \mathrm{xo}^{-\mathrm{s}} \\ & \mathrm{at} 3 \mathrm{x} .0-3.5^{0} \end{aligned}$	-*
Aditya and Prasad	30.0×10^{-3}	3.7×10^{-3}	This Johrnal. 1953, 80, 213 .
Purkayasthe and Sen Sarma	...	40.76×10^{-3} at 30°	1rid., 1946, 28, 3x.
Fimond and Birnbanm	...	$9.65 \times 10^{-3} \text { at } 25^{\circ}$ (mean value worked out from several values given)	J. Amer. Chem. Soc., 19 10, 62, 2367.
Shin Saxaki	$K_{1} K_{2}=2.1 \times 10_{2}^{-5} a$ For PbProp		J. Chemr. Soc., Japan, Pure Chem Sec., 1953, 75, 531.
Present	$\begin{aligned} & 51.1 \times 10^{-3} \\ & \text { at room temlp. }\left(21-30^{\circ}\right) \end{aligned}$	$\begin{aligned} & 4.57 \times 10^{-3} \mathrm{at} \text { rooln } \\ & \text { temp. }\left(22-30^{-}\right) \end{aligned}$	
Mohanty and Aditya	3.1×10^{-2} at 35°	2.2×10^{-3} at $35^{\text {a }}$	This Journal. 1955, 32, 234.

The values of ' K_{1} ' and ' K_{2} ' for PbAc_{2}, obtained by the present authors, accord fairly well with those obtained by Aditya and Prasad by an independent and theoretically sound method. The values of ' K_{2} ', obtained by Purkayastha and Sen Sarma and by Edmund and Birubaum, are in our opinion erroneous for reasons already discussed in Part I of this paper. Shin Suzuki has determined the value of the constant for the equilibrium,

$$
\mathrm{Pb}^{2+}+2 \mathrm{HAC} \rightleftharpoons \mathrm{PbAc}_{2}+2 \mathrm{H}^{+}
$$

to be 1.45×10^{-4} at 25°. Dividing this by $K_{a_{,}}^{,}$where K_{a} is the jonisation constant of acetic acid, we can have the value of $K_{1} K_{2}$, the overall constant for the equilibrium $\mathrm{PbAc}_{2} \rightleftharpoons \mathrm{~Pb}^{2+}+2 \mathrm{Ac}^{-}$, which comes out to be 2.1×10^{-6}, shown above as against our value, $K_{1} K_{2}=1.07 \times 10^{-4}$. Shin Suzuki, however, has overlooked the intermediate step $\mathrm{Pb}^{2+}+\mathrm{HAc} \rightleftharpoons \mathrm{PbAc}^{+}+\mathrm{H}^{+}$and, hence, in our opinion his value is not dependable.

Mohanty and Aditya (loc. cit.) bave determined the thermodynamic dissociation constants K_{1} and K_{z} of lead propionate in aqueous solution by the measurement of solubility of lead iodate in sodium propionate solution and, also by the measurement of E.M.F. of concentration cell of the type,

The mean values obtained are $K_{1}=3.1 \times 10^{-2}$ and $K_{2}=2.2 \times 10^{-3}$ at 35°. These values, though of the same order as in the present work, are materially different in magnitude, being about half of those latter. A few experiments on the determination of freezing points of dilute lead propiouate solutions by the present authors indicate that the values of K_{1} and K_{3}, found in this paper, agree betler with the freezing point data as compared to the values obtained by Mohanty and Aditya (loc. cit.). The details of the cryoscopic work will be published later.

The atthors wish to express their sincere thanks to Prof. S. K. Bhattacharyya, D.Sc., F.R.I.C., F.N.I., Head of the Department of Applied Chemistry, Indian Iustitute of Technology, Kharagpur, for his interest and help in this work.

> Arplifd Chimistry Depantment, Indian Ingtitute of Thchnology, Kharagpur.

Received August 17, 1957.
[Jour. Iudian Chen1. Soc., Vol. 35, No. 5, 1958]
SOME AIIPHATIC MONOCARBOXYLA'TE COMPLEXES OF BIVALENT' METALS IN AQUEOUS SOIUTION. PART IV. COBALT MONOACETATO COMPLEX

By S. K. Siddhanta and S. N. Banerjee

The composition of the conjplex formed between Coit and acetate icns has been fonad to be CoAc* from a study of the equilibrium H^{+}ion concentrations in mixtures of equimolecular cobalt nitrate and acetic acid solutions, by "Job's method of continved variation", using a mew index property, viz., the increase of \mathbf{H}^{+}ion concentration.

The thermodynamic dissociation constant, K, for the equilibriam $\mathrm{CoAc}^{+} \rightleftharpoons \mathrm{Co}^{\mathbf{3}+}+\mathrm{Ac}^{-}$has been found out as 37.2×10^{-3} at 29.31^{\prime}, by the direct application of "law of mass action", taking into account the activity ccefficients of the individual ions, calculated from the ionic strength of the mixture of cobalt nitrate and acelic acid solutious employing the "Debye. Hinckel limiting law".

Thermodyuamic dissociation constant, K, for the equilibrium, $(\mathrm{CoAc})^{+\boldsymbol{t}} \rightleftharpoons \mathrm{Co}^{2+}+\mathrm{Ac}^{-}$
has been delermined by following the same procedure as adopted for lead acetato complex described in Part I of this series (this Journal, 1958, 38, 269) from the determination of p_{B} of solution mixtures, containing a volume ' $1-x$ ' of cobalt nitrate and ' x ' of acetic acid, ' x ' varying belween 0.1 and 0.9 ; and both parent solutions being at cencentration C. The composition of the complex formed has been determined as in the case of lead acetato complex (loc. cit.) by the application of "Job's method of continued variation', using the increase, ' Y ', of

[^0]: 6-1970P-5

