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Abstract: Flexible control strategies are required in industrial scenarios to coordinate the actions of
mobile manipulators (e.g., robots and humans). Temporal planning approaches can be used as such
control strategies because they can generate those actions for the agents that must be executed to
reach the goals, from any given state of the world. To deploy such approaches, planning models
must be formulated. Although available in the literature, these models are not generic enough such
that they can be easily transferred to new use cases. In this work, a generic industrial scenario
is derived from real scenarios. For this scenario, a generic planning problem is developed. To
demonstrate their generality, the two constructs are configured for a new scenario, where custom
grippers are assembled. Lastly, a validation methodology is developed for the generic planning
problem. The results show that the generic industrial scenario and the generic planning problem
can be easily instantiated for new use cases, without any new modelling. Further, the proposed
validation methodology guarantees that these planning problems are complete enough to be used in
industrial use cases. The generic scenario, the planning problems, and the validation methodology
are proposed as standards for use when deploying temporal planning in industrial scenarios with
mobile manipulators.

Keywords: automated planning; AI planning; PDDL; modelling; mobile manipulators

1. Introduction

With the increasing complexity of industrial use cases, it becomes necessary that agents
(humans and robots) cooperate in teams to reach more elaborate goals. The complexity of
these goals is given by the actions that must be carried out by the agents in order to achieve
them. Repetitive actions that must be executed in a fixed order and by specific agents are
replaced by flexible processes where more agents cooperate in a shared environment. The
complexity of such scenarios is further increased if the teams of agents are heterogeneous,
consisting of humans and robots. To coordinate the actions of these agents, considering
their capabilities, the status of the world, and the complexity of the goals, automated
task planning approaches (also known as AI planning) can be used as high-level control
strategies. These approaches offer the planning flexibility required by real-world use cases
in which changing initial and goal states are expected. With these approaches, a high
autonomy of the involved robots can be achieved.

In order to deploy AI task planning approaches in such industrial use cases, task
planning models must be formulated and validated. In the related literature, a couple of
such models have already been presented [1–4]. However, for each industrial use case, an
individualized planning model is formulated. This individualized solution complicates
the transfer of planning models among diverse industrial use cases and the development
of a generic validation methodology. Such a methodology is used to guarantee that the
task planning models cover a large number (if not all) possible planning situations. A new
planning situation for an industrial scenario can occur when new orders (e.g., goals) are
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received, and the high-level control module must generate a series of actions from a new
state of the world to a state in which the new goals are reached.

To overcome the shortcoming presented above, in this work, a generic industrial
scenario description is determined based on a set of industrial scenarios surveyed from the
literature. For this generic industrial scenario, a generic planning problem is developed. To
demonstrate the generality of this model, it is configured for a new industrial scenario in
which customized grippers are assembled. All planning models are formulated as temporal
planning problems in the Planning Domain Definition Language (PDDL). Lastly, a generic
validation method is presented that checks a set of criteria (e.g., solvability, makespan)
for many possible variations of the planning problems for a configuration of the generic
planning problem, for a specific industrial scenario.

2. Related Work

Task planning is already used in several competitions and research projects to generate
and orchestrate the actions of the involved actors. In this section, a set of scenarios is
selected where the scenarios have characteristics specific to those of industrial use cases.
These scenarios are analysed with respect to the number and types of the considered actors,
the actions to be executed, and the environments in which the entire setup is built. Further
on, the question of which types of planning strategies and planning models are used is
considered. This is mainly differentiated between more flexible planning approaches such
as automated planning [5], and more rigid approaches such as finite state machines (FSMs)
or behaviour trees (BTs) [6].

2.1. Competitions

The RoboCup is an international initiative for promoting research in robotics and artifi-
cial intelligence. In 2020, more than five leagues were organized, including RoboCup@Work
and the RoboCup Logistics League [7].

2.1.1. RoboCup@Work

The RoboCup@Work competition is oriented towards industrial scenarios with mobile
manipulators and covers a large spectrum of current research topics related to the factory
of the future. One of the main focuses is set on the automation of the reasoning, planning,
and scheduling processes [8,9].

The document that sets the guidelines for the competition is its Rulebook [10]. The 2020
version contains the description of the competing robots and of the environment, as well as
the scenarios with their required actions. Each competing robot must be able to navigate
and has a manipulator with an end-effector that enhances it with the capability of grasping
a limited number of objects from the environment. The most important actions that must be
executed by the robots are “loading and/or unloading of containers with/of objects with
the same or different size; pickup or delivery of parts from/to structured storages and/or
unstructured heaps; operation of machines, including pressing buttons, opening/closing
doors and drawers, and similar operations with underspecified or unknown kinematics;
[. . .] cooperative assembly of non-trivial objects, with other robots and/or humans; [. . .]
cooperative transportation of objects (robots with robots, robots with humans)”. The
environment consists of a building-like structure with walls delimiting rooms and corridors.
In the environment, places are defined as locations, usually correlated to service areas where,
for example, a specific task must be executed. On the service areas different objects can be
found [9].

Complex task planning capabilities are required to organize the actions of the compet-
ing robots only for a small part of the competition’s tests. In most of the tests, the order of
the actions is imposed by the quite strict order in which the sub-goals must be achieved.
Thus, the required actions are usually organized through small optimization approaches
or FSMs [11,12]. In the Basic Transportation Test, in which a set of objects must be moved
from one service area to another and which involves both navigation and manipulation
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activities [9], more complex task planning strategies are required. For example, the b-it-bots
team used the automated planner Mercury [13] in the 2017 competition, with simpler FSMs
in a three-layer architecture [14]. In the 2019 competition, instead of an automated planner,
the robOTTO team used an optimizer integrated into a similar architecture [15].

2.1.2. RoboCup Logistics League

The RoboCup Logistics League (RCLL) focuses on a logistic scenario in a smart factory
environment. The environment is partially surrounded by walls, inside which seven
machines for each team are randomly distributed. The available machines are of four types,
and each is responsible for a specific processing step. The competing robots (three for each
team) have the task of transferring objects between processing stations to assemble a final
product. The robots have a Robotino mobile base [16] on which an extension tower with a
platform is mounted. The tower has a specific height that allows an attached gripper to
reach the conveyor belt inputs and outputs of all machines [7,17].

From the task planning point of view, the most demanding part of the competition
is the production phase. The robots can execute mainly three types of physical actions:
navigating, loading, and unloading, but the challenge is to determine their optimal sequence
to carry out the given orders. For this purpose, different scheduling and task planning
approaches are deployed. The more complex approaches are integrated in a multi-layer
planning–execution architecture, while the more rigid approaches are directly connected
to the lower-level hardware. For example, the GRIPS team [18] used a hierarchical task
network (HTN) approach for the 2020 competition, in which the main goals are decomposed
to basic actions. Then, a scheduler sends the generated sub-tasks according to some priority
rules to the idle robots. The Carologistics team [19] used automated planners in the 2018
competition, integrated into the CLIPS executor [20] to plan the actions required to reach
the sub-goals determined in a previous step from the received orders. Other participants,
such as the robOTTO team [21], have used an optimizer to generate sub-tasks that are
implemented on the lower level with FSMs. The entire planning and execution process
was also implemented only through FSMs, for example, by the ER-Force team [22] and the
Solidus team [23] in the 2018 competition.

An interesting point of view is presented in [24], where it is argued that the most suc-
cessful teams in RCLL competitions in the last few years, Carologistics [19] and GRIPS [18],
used quite simple approaches that focused more on task scheduling, than on task planning.
The authors also suggest a series of measures to foster the planning aspects. One such
measure could be to remove the hard requirements to process a specific piece only at a
specific location. Another option could be to allow the robots of the team to carry more
items at a time or just to scale up the problem by adding more robots, more objects, or
more stations.

Another competition that uses a domain similar to the one used in RCLL competitions
is the Planning and Execution Competition for Logistics Robots in Simulation [25]. In the 2018
edition, only three teams participated, all of them using automated planners for organizing
the actions for the competing robots [26]. Two teams used ASP-based planners [27], while
the third used the temporal planner POPF [28], with the ROSPlan framework [29].

2.2. Research Projects

Apart from the competitions, many other research projects integrate task planning
and scheduling approaches in industrial scenarios. At the competitions, different teams try
to solve the same, more generic problems, but in each research project, only one team is
usually tackling a more specific challenge. Thus, new insights related to task planning and
scheduling can be gathered.

In [30], multi-agent planning is combined with automated task planning. The latter
is used by each agent to determine the optimal order of the actions to be executed such
that the goals originating from the highest-level planning module are reached. The setup
of the scenarios considered in this work is in an industrial environment, where a mobile
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manipulator has the following skills: navigating, picking, and placing objects from and
on pallets.

An industrial collaborative scenario in which a human is supported by a cobot, a
KUKA LBR iiwa, in executing a set of manipulation tasks is used in [31]. The actions
of the two actors are planned dynamically using HTNs. A similar industrial process, an
assembly process, in which a human and one or more serial manipulators are involved,
is considered in [32]. All actors have a set of assembly and manipulation skills and are
able to communicate between themselves. To coordinate their actions, the upper-level task
planning creates sequences of skills for each of the actors. These skills are then implemented
as complex FSMs and directly control the hardware of the robot or give clear commands to
the human.

3. Materials and Methods

Based on the related work, a generic industrial scenario (GIS) with mobile manipula-
tors is firstly introduced. Afterwards, a generic planning problem (GPP) developed for the
GIS and a suitable validation method for it and its instances are presented.

3.1. Modelling a Generic Industrial Scenario (GIS)

A generic industrial scenario (GIS) was derived from the scenarios reviewed in
Section 2. The GIS aimed to bring together all characteristics related to the actors, en-
vironment, and processes that are similar among these scenarios. The GIS should become
a standard model that can be instantiated to any further industrial scenario with mo-
bile manipulators. An instance of the generic scenario (IGIS) is just a specification of all
its properties with respect to those of a specific scenario, with specific actors and pro-
cesses and within a specific environment. The instantiation process does not require any
new modelling.

3.1.1. Actors Modelling

In the scenarios reviewed in Section 2, robots or mixed teams of robots and humans
are involved. Both types of actors share a set of specific capabilities. This motivates their
abstraction as part of the GIS to a generic actor type: a mobile manipulator. A mobile
manipulator is an agent that is able to navigate in the environment, and thus has a mobile
base and is able to execute trajectories with a serial arm. The agent can also grasp and
release items and tools from the environment with the end of that arm.

We differentiate between simulated mobile manipulators and real mobile manipulators (see
Figure 1). Given their capabilities, the mobile manipulators can execute a set of specific
actions and types of actions. The actions considered in this work are:

• navigate: This action allows an actor to navigate between two poses;
• grasp/place: This action allows an actor to grasp/place an item or a tool from/to a

known location from the environment, from itself, or from another actor;
• fetch/discard: This action allows an actor to fetch/discard an item or a tool from the

environment with an unknown location;
• connect: This action allows an actor to connect two items from the environment;
• manipulate: This type of action allows an actor to manipulate and process items from

the environment. Possible manipulation actions are: screw, press_button, etc.;
• collaboration: This type of action allows two actors to collaborate when executing

one action.

Figure 1. Examples of simulated (first two agents) and real (last two agents) mobile manipulators.
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The advantage of abstracting the capabilities of the two kinds of actors to those of a
mobile manipulator is further leveraged in the development of the GPP for the GIS.

3.1.2. Environment Modelling

The generic environment of the GIS is an indoor environment that is composed of
one or more rooms connected by a corridor, into which the agents can travel through
doors. As well as the wall structures, different types of benches are also present in the
environment. They are: itemsbenches, toolbenches, and workbenches. As the names suggest,
items related to the scenario are stored at itemsbenches and tools can be found at toolbenches.
The manipulation and the processing of the items is intended to take place at the workbenches.
Each bench has a set of poses which the agents can travel to, the agentposes, and can have a
set of poses where items can be stored, the itemposes, and a set of poses where tools can be
stored, the toolposes.

While the environment is only the static part of the GIS, moving and changing items
and tools must also be integrated. Items can be manipulated, moved, and modified, but
cannot make changes in the environment by themselves. Tools can be manipulated and
moved. In addition, tools can modify items. For example, a tool can be designed as a hand
drill that is able to modify a gear, which is in this case a specialization of an item.

3.1.3. Processes Modelling

A generic process of the GIS is composed of different process steps that are assigned to
specific items. Each process step describes how the item must be modified, at which location,
with which tool, and by which agent. Furthermore, time dependencies between different
process steps exist. These dependencies are also part of the generic process representation.

The generic process representation is explained for the following example in which a
product A must be assembles from three items. One or more process steps must be carried
out on each of the three items. We assume that two process steps must be executed on
the first item, and on the other two items only one process step must be executed. The
first process step of item1 must be carried out by a human, without a tool, and at the left
workbench. Figure 2 presents an abstract description of these process steps.
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Figure 2. The description of the process steps on the different items of product A.
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Figure 2. A description of the process steps on the different items of product A.

The process steps of the three items can be performed sequentially or in parallel,
depending on the description of the complete assembly process. The dependencies between
the process steps of one item or of different items can be described with activation rules.
Once a process step of an item has successfully finished, one or more process steps of one
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or more items can be activated. Figure 3 depicts the activation rules for the four process
steps of the example presented above. The two process steps on item1 must be executed
sequentially. During the execution of the two process steps on item1, the process step1 on
item2 and the process step1 on item3 can also be carried out. In the final state, the product A
is complete.

Version February 18, 2022 submitted to Appl. Sci. 6 of 26

item1_ps1 item2_ps1

item1_ps2 item3_ps1

parallel execution

sequential
execution

Figure 3. The relations between the process steps on the different items of product A.

The process steps of the three items can be done in a sequential or in a parallel order,216

depending on the description of the complete assembly process. The dependencies217

between the process steps of one item or of different items can be described with218

activation rules. Once a process step of an item has successfully finished, one or more219

process steps of one or more items can be activated. Figure 3 depicts the activation rules220

for the four process steps of the example presented above. The two process steps on221

item1 must be executed sequentially. During the execution of the two process steps on222

item1, the process step1 on item2 and the process step1 on item3 can also be carried out. In223

the final state, the product A is complete.224

3.2. The Generic Planning Problem (GPP) for the GIS and its Instances in PDDL225

To increase the automation degree of industrial processes with robotic mobile226

manipulators, automated planning methods can be used as a high-level control strategy.227

As presented in the related work in Section 2, automated planning approaches offer228

high execution flexibility and autonomy to the system and are already deployed in a229

high number of real-world applications. Different automated planning approaches exist.230

Planning problems can be formulated as classical or temporal planning problems [5] in231

the Planning Domain Definition Language (PDDL) [33], as Hierarchical Task Networks232

(HTN) [34, 229], or as Flexible Timelines [35] and solved with corresponding solver. Each233

planning approach has its advantages and disadvantages. However, their comparison is234

not the topic of this work and is not further discussed here.235

In this work, we focus on the formulation of a Generic Planning Problem (GPP) for236

the Generic Industrial Scenario (GIS). Furthermore, we describe how Instances of the237

Generic Planning Problem (IGPPs) can be derived for IGISs. Both the GPP and the IGPPs238

are formulated as temporal planning problems in PDDL. The following lines briefly239

introduce the theoretical aspects of classical and temporal planning problems, as well240

as the Planning Domain Definition Language that is used for the formulation of these241

planning problems.242

Definition 1. A classical planning problem Π is a 4-tuple Π = 〈S, A, s0, g〉 where S is a finite243

set of states s described with state variables x, A is a finite set of actions where every action a ∈ A244

has some preconditions apre and effects aeff = 〈aadd, adel〉, s0 ∈ S is the initial state, and g is a245

set of goals. A solution to the planning problem is a plan π containing a set of grounded actions246

ai ∈ A that bring the system from s0 to a goal state in which the goals from g hold.247

In PDDL, classical planning problems are described in two different files. The248

domain file contains the definition of objects types, predicates, and actions. PDDL object249

types are classes (e.g. item) for which instances are defined in the problem file (e.g.250

corner, tube); PDDL predicates p correspond to the state variables x from Definition251

1 and have as parameters one or more objects types; PDDL actions correspond to the252

action a ∈ A from Definition 1 and have as parameters zero or more objects types.253

Figure 3. The relations between the process steps on the different items of product A.

3.2. The Generic Planning Problem (GPP) for the GIS and Its Instances in PDDL

To increase the automation degree of industrial processes with robotic mobile ma-
nipulators, automated planning methods can be used as a high-level control strategy. As
presented in the related work in Section 2, automated planning approaches offer high
execution flexibility and autonomy to the system and are already deployed in a large num-
ber of real-world applications. Different automated planning approaches exist. Planning
problems can be formulated as classical or temporal planning problems [5] in the Planning
Domain Definition Language (PDDL) [33], as hierarchical task networks (HTN) [34], or as
flexible timelines [35] and solved with corresponding solver. Each planning approach has
its advantages and disadvantages. However, their comparison is not the topic of this work
and is not discussed further here.

In this work, we focus on the formulation of a generic planning problem (GPP) for the
generic industrial scenario (GIS). Furthermore, we describe how instances of the generic
planning problem (IGPPs) can be derived for IGISs. Both the GPP and the IGPPs are
formulated as temporal planning problems in PDDL. The following lines briefly introduce
the theoretical aspects of classical and temporal planning problems, as well as the Planning
Domain Definition Language that was used for the formulation of these planning problems.

Definition 1. A classical planning problem Π is a 4-tuple Π = 〈S, A, s0, g〉 where S is a finite set
of states s described with state variables x, A is a finite set of actions where every action a ∈ A has
some preconditions apre and effects aeff = 〈aadd, adel〉, s0 ∈ S is the initial state, and g is a set of
goals. A solution to the planning problem is a plan π containing a set of grounded actions ai ∈ A
that bring the system from s0 to a goal state in which the goals from g hold.

In PDDL, classical planning problems are described in two different files. The domain
file contains the definition of object types, predicates, and actions. PDDL object types
are classes (e.g., item) for which instances are defined in the problem file (e.g., corner,
tube); PDDL predicates p correspond to the state variables x from Definition 1 and have as
parameters one or more objects types; PDDL actions correspond to the action a ∈ A from
Definition 1 and have as parameters zero or more object types.

Definition 2. A predicate p or an action a is called grounded if all its parameters are instantiated
to objects (e.g., corner) of the corresponding object type (e.g., item).
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In this context, a state s ∈ S from Definition 1 is described by a list of true grounded
predicates. Grounded predicates that do not hold (e.g., are false) are not part of the descrip-
tion. The initial state s0 and the goals g of the planning problem Π are also formulated as a
list of grounded predicates. The initial state and the goals, together with the instantiated
object types, form the second PDDL file, i.e., the problem file.

A solution to a planning problem Π = 〈S, A, s0, g〉 is the plan π = [a1, . . . , an], contain-
ing grounded actions ai. The actions ai are selected and grounded in the solving process
such that their preconditions apre hold in the state s̃i to which they are applied (e.g., a1 is
applied to s0). Furthermore, each ai applies to the state s̃i add and del effects. The add effects
extend the description of s̃i with new grounded predicates, while the del effects remove
grounded predicates from the description of s̃i.

In the normal case in which more than one actor is part of the GIS, parallel execution
of actions with dependencies at their start time, end time, or for further resources, is
expected. For example, one actor can start travelling to the target pose only when another
actor that is already there starts moving away. Moreover, each of the actions that the
mobile manipulators can execute is characterized by a specific execution time. A move
action in a crowded environment will probably take longer than an attach action, when the
execution of trajectories is not impeded by any obstacle. Considering these two time-related
aspects, the GPP must be formulated in a temporally expressive language and solved with
corresponding temporal planners [36]. PDDL2.1 [37] is such a language. In this context,
planning problems for the GIS are formulated as PDDL temporal planning problems.

Temporal planning problems extend Definition 1 by modifying the description of the
actions to durative actions. Durative actions differ from classical planning actions in the
distribution of the preconditions that can be formulated for the start, the end, or over the
entire duration of the action and in the distribution of the effects that can be formulated for
the start or the end of the action [28]. Temporal planning problems are also formulated in
two PDDL files. In this case, the PDDL domain file contains the definitions of the durative
actions instead of the definitions for classical actions.

Before presenting the PDDL formulation of the GPP for the GIS, the carrier–position–
goods relationship [38] is introduced. This is used to model how the different poses
are linked to the three types of benches of the GIS and how the changing and dynamic
elements (e.g., actors, tools, items) can be stored in and transferred between them. In the
GIS, the benches and the actors are carriers that have one or more specialized positions
(e.g., a itempose), where goods (e.g., items, tools) can be located. While the benches are
static carriers, the actors are mobile carriers by which goods can be moved between the
static carriers.

In the following subsections, the PDDL domains and PDDL problems are presented
for the GPP and for instances of it.

3.2.1. PDDL Domain for the Generic Planning Problem (GPP)

The PDDL domain for the GPP contains the definition of the types, predicates, and
durative actions specific to the GIS. Using the carrier–position–goods relationship, the
PDDL types and the predicate at are introduced.

The four types agent, thing, location, and step are all specializations of the PDDL
standard super-type object. The agent type is further specialized to the two types of mobile
manipulators: robot and human; a tool, an item, and no_thing are specializations of a thing;
and an agentpose and a thingpose are specializations of a location (see Listing 1). To model the
spatial relation between all the types and sub-types, only one predicate is required. This
predicate is the at predicate, and it has two input variables of type object. In this context, if
one thingpose is not occupied, a nothing object is assigned to it. The unoccupied state of an
agentpose is modelled with another predicate called free.

To describe further characteristics of the elements from the GIS, as well as other rela-
tions between these elements, further PDDL predicates must be defined. These predicates
have as parameters the agents, the things, and the configuration of the process steps.
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Listing 1. Excerpt from the PDDL domain file for the GPP with the types used to model the elements
of the GIS.

1 ( : t y p e s
2 agent thing location step - object
3 robot human - agent
4 tool item no_thing - thing
5 agentpose thingpose - location )
6 ( : p r e d i c a t e s
7 ( at ?object1 - object ?object1 - object )
8 ( free ?location - location )

Listing 2 starts with two predicates for the agents that encode ordering rules for the
actions that can be assigned to them. The predicate not_acting is used to serialize the actions
of one actor, while the predicate navigate_allowed is used to enforce at least one other type
of action between two navigation actions in the plan of an agent. The following three
predicates describe properties of things relevant for the GIS. A thing can be moved between
different thingposes, may not be placeable at all thingposes, or may not be grasped by a
specific agent.

Listing 2. Excerpt from the PDDL domain file for the GPP file with the predicates related to the
agents and the things.

1 ( not_acting ?agent - agent )
2 ( navigate_allowed ?agent - agent )
3 ( thing_moveable ?thing - thing )
4 ( thing_placeable ?thing - thing ?agentpose - agentpose )
5 ( thing_for_agent ?thing - thing ?agent - agent )

Further on, Listing 3 presents all PDDL predicates required to describe the process
steps. The predicates from lines 1 and 2 are used to model the status of the process steps,
while those from lines 3–6 describe the configuration of these process steps. The latter are
connected to a subset of all actions from those presented in Section 3.1.1. These are the
actions for which specific configurations are required. A grasp/place action can be executed
by any actor and at any agentpose or thingpose. On the other hand, connect, manipulate, or
collaboration actions can have execution restrictions. These restrictions are modelled with
the predicates introduced in lines 3–6. Lastly, the predicate process_step_precedence_typex
models the activation rules between the process steps on different items, as described in
Section 3.1.3.

The states, relations, and constraints, of and between the elements from the envi-
ronment and the process steps can be modelled with the introduced predicates. These
predicates are the building blocks with which the actions of the PDDL domain for the
GPP are formulated. The actions are PDDL artefacts that describe how the states of the
system evolve. The actions for PDDL2.1 are durative actions with conditions, effects, and
durations. The GPP has 11 durative actions. The first 8 correspond to those defined for the
actors in Section 3.1.3. They are: navigate, grasp, release, fetch, discard, connect, manipulate,
collaborate. A further three actions are defined to model the activation rules for the process
steps. The navigate, load, and manipulate actions, and one action for the activation rules are
presented in the following. The other actions are defined similarly.
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Listing 3. Excerpt from the PDDL domain file for the GPP with the predicates related to the configu-
ration of the process steps.

1 ( process_step_todo ?item - item ?step - step )
2 ( process_step_done ?item - item ?step - step )
3 ( process_step_connect ?item - item ?step - step ?thingpose - ←↩

thingpose )
4 ( process_step_fetch_item ?item - item ?step - step ?agent - agent ←↩

?agentpose - agentpose )
5 ( process_step_manipulate ?item - item ?step - step ?thing - thing ←↩

?agent - agent ?agentpose - agentpose )
6 ( process_step_collaboration ?item - item ?step - step ?agent1 - ←↩

agent ?agent2 - agent ?agentpose1 - agentpose ?agentpose2 - ←↩
agentpose ?thing1 - thing ?thing2 - thing )

7 ( process_step_precedence_type1 ?item1 - item ?step1 - step ?item2 ←↩
- item ?step2 - step ) . . .

Listing 4 contains the PDDL definition of the navigate action, while Figure 4 is a
visual representation of the same action. This action describes what conditions should
hold and how the states of the world should change when an agent navigates between
two agentposes. These conditions and states of the world are described with predicates
that require parameters. The parameters are firstly introduced (line 2). As well as the
parameters, a duration of 10 time units is defined, and the conditions are presented. The
navigate action can be activated when all conditions hold in the actual state of the world.
The agent must be at the from agentpose and not be executing any other action (lines 5–6).
To navigate to the to pose, this agentpose must be free (line 7), and a navigate action should
be allowed (line 8). If all these conditions hold, the action is planned with a duration of
10 time units. In this model, the duration is constant over all possible navigate actions, but
this can be changed to be a function of the travelled distance. Immediately after the action
starts, the at start effects are applied. As anticipated, the agent is no longer at the agentpose
from which it started (line 10). The pose to which the agent is heading is already marked as
not free (line 11), while the pose from which it started is now free (line 12). The agent is not
(not_acting), thus it is executing an action, and this status will change as an effect at the end
of the action (lines 13 and 15). At the end of the action, the state predicate at sets the pose
of the agent to the to agentpose (line 14), and the negated navigate_allowed predicate prevents
the immediate execution of another navigate action (line 16).

Listing 4. Excerpt from the PDDL domain file for the GPP with the definition of the navigate action.

1 ( : d u r a t i v e − a c t i o n navigate
2 :parameters ( ? agent - agent ?from ?to - agentpose )
3 : d u r a t i o n (= ?duration 10)
4 : c o n d i t i o n ( and
5 ( at start ( at ?agent ?from ) )
6 ( at start ( not_acting ?agent ) )
7 ( at start ( free ?to ) )
8 ( at start ( navigate_allowed ?agent ) ) )
9 : e f f e c t ( and

10 ( at start ( not ( at ?agent ?from ) ) )
11 ( at start ( not ( free ?to ) ) )
12 ( at start ( free ?from ) )
13 ( at start ( not ( not_acting ?agent ) ) )
14 ( at end ( at ?agent ?to ) )
15 ( at end ( not_acting ?agent ) )
16 ( at start ( not ( navigate_allowed ?agent ) ) ) ) )
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Figure 4. Three states at the start, during, and at the end of the execution of the navigate action
and the corresponding values of the grounded predicates describing these states.
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3 : d u r a t i o n (= ?duration 1)
4 : c o n d i t i o n ( and
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6 ( at start ( at ?thing ?from_thingpose ) )
7 ( at start ( at ?from_thingpose ?agentpose ) )
8 ( at start ( at ?nothing ?to_thingpose ) )
9 ( at start ( at ?to_thingpose ?agent ) )

10 ( at start ( thing_moveable ?thing ) )
11 ( at start ( thing_for_agent ?thing ?agent ) )
12 ( at start ( not_acting ?agent ) ) )
13 : e f f e c t ( and
14 ( at start ( not ( not_acting ?agent ) ) )
15 ( at start ( not ( at ?nothing ?to_thingpose ) ) )
16 ( at start ( not ( at ?thing ?from_thingpose ) ) )
17 ( at end ( not_acting ?agent ) )
18 ( at end ( at ?nothing ?from_thingpose ) )
19 ( at end ( at ?thing ?to_thingpose ) )
20 ( at end ( navigate_allowed ?agent ) ) ) )

Listing 5: Excerpt from the PDDL domain file for the GPP with the definition of the
grasp action.
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Figure 4. Three states at the beginning of, during, and at the end of the execution of the navigate
action and the corresponding values of the grounded predicates describing these states.

The grasp action is an example of an action from the GPP that does not require any
special restrictions (see its PDDL formulation in Listing 5). It can be executed by any agent
and at any thingpose or agentpose, as long as it makes logical sense. A grasp action is allowed
only when the agent is not executing any other action (line 12), has nothing at its thingpose
(lines 8–9), and is at a location where the thing to be collected is located (lines 5–7). The
thing must also have two properties: it is not fixed and it can be manipulated by the agent
(lines 10–11). If all conditions hold, the grasp action can be planned for the agent. The
specific effects of the action describe the switch between the thing and the nothing at the two
thingposes (lines 15, 16, 18, 19). In addition, not_acting and navigate_allowed effects change
the state of the world, as described above for the navigate action (lines 14, 17, 20).

Listing 5. Excerpt from the PDDL domain file for the GPP with the definition of the grasp action.

1 ( : d u r a t i v e − a c t i o n grasp
2 :parameters ( ? agent - agent ?agentpose - agentpose . . . )
3 : d u r a t i o n (= ?duration 1)
4 : c o n d i t i o n ( and
5 ( at start ( at ?agent ?agentpose ) )
6 ( at start ( at ?thing ?from_thingpose ) )
7 ( at start ( at ?from_thingpose ?agentpose ) )
8 ( at start ( at ?nothing ?to_thingpose ) )
9 ( at start ( at ?to_thingpose ?agent ) )

10 ( at start ( thing_moveable ?thing ) )
11 ( at start ( thing_for_agent ?thing ?agent ) )
12 ( at start ( not_acting ?agent ) ) )
13 : e f f e c t ( and
14 ( at start ( not ( not_acting ?agent ) ) )
15 ( at start ( not ( at ?nothing ?to_thingpose ) ) )
16 ( at start ( not ( at ?thing ?from_thingpose ) ) )
17 ( at end ( not_acting ?agent ) )
18 ( at end ( at ?nothing ?from_thingpose ) )
19 ( at end ( at ?thing ?to_thingpose ) )
20 ( at end ( navigate_allowed ?agent ) ) ) )

Unlike the grasp action, the manipulate action of the GPP has a set of restrictions and
is part of the processes that can be applied to the items (see its PDDL formulation in
Listing 6). These characteristics of the action are encoded in the action’s conditions and
effects. The first conditions are similar to those of the grasp action and encode the spatial
requirements (lines 5–9). The next two conditions from lines 10 and 11 are the special ones.
The first checks whether, in the actual state of the world, a specific process step should
be executed on the given item. The second condition describes under which prerequisite
this process step must be carried out. While the former condition contains a predicate
whose values can change over a planning period, the latter condition encapsulates constant
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properties. Finally, the effects also contain two important commands in lines 16 and 17.
These commands mark the selected step for the given item as done.

Listing 6. Excerpt from the PDDL domain file for the GPP with the definition of the manipulate action.

1 ( : d u r a t i v e − a c t i o n manipulate
2 :parameters ( ? agent - agent ?agentpose - agentpose . . . )
3 : d u r a t i o n (= ?duration 1)
4 : c o n d i t i o n ( and
5 ( at start ( at ?agent ?agentpose ) )
6 ( at start ( at ?item_pose ?agentpose ) )
7 ( at start ( at ?item ?item_pose ) )
8 ( at start ( at ?thing_pose ?agent ) )
9 ( at start ( at ?thing ?thing_pose ) )

10 ( at start ( process_step_todo ?item ?step ) )
11 ( at start ( process_step_manipulate ?item ?step ?thing ?agent ?←↩

agentpose ) )
12 ( at start ( not_acting ?agent ) ) )
13 : e f f e c t ( and
14 ( at start ( not ( not_acting ?agent ) ) )
15 ( at end ( not_acting ?agent ) )
16 ( at start ( not ( process_step_todo ?item ?step ) ) )
17 ( at end ( process_step_done ?item ?step ) )
18 ( at end ( navigate_allowed ?agent ) ) ) )

Lastly, Listing 7 presents a durative action that cannot be carried out in the real world
but that is used to model the activation rules between the process steps on items. It is a
simple action that checks two conditions (lines 5–6). The first condition inquires whether,
in the actual state of the world, a specific process step on an item has already been carried
out. The second condition encodes the fixed ordering of process steps for that item. If both
conditions hold, the activation rule is triggered with the effect described in line 8. The
description of the update_type* actions concludes the formulation of the PDDL domain for
the GPP.

Listing 7. Excerpt from the PDDL domain file for the custom grippers IGPP with the definition of the
update_type1 action.

1 ( : d u r a t i v e − a c t i o n update_type1
2 :parameters ( ? item1 ?item2 - item ?step1 ?step2 - step )
3 : d u r a t i o n (= ?duration 0 . 1 )
4 : c o n d i t i o n ( and
5 ( at start ( process_step_done ?item1 ?step1 ) )
6 ( at start ( process_step_precedence_type1 ?item1 ?step1 ?item2 ?←↩

step2 ) ) )
7 : e f f e c t ( and
8 ( at start ( process_step_todo ?item2 ?step2 ) ) ) )

3.2.2. PDDL Domain for an Instance of the Generic Planning Problem (IGPP)

The PDDL domain presented in the previous subsection is formulated for the generic
planning problem of the generic industrial scenario. However, instances of the generic
industrial scenario may require more specific actions (e.g., a screw action). These actions are
derived from the manipulation and the collaboration actions of the generic planning problem.
In this way, an instance of the generic planning problem is obtained for the considered IGIS.
The PDDL formulation of the IGPP differs from the PDDL formulation of the GPP only in
the naming of the derived actions and in the predicates with which the configurations of
the process steps represented by those actions are defined. All other predicates and actions
(e.g., navigate, grasp) remain unchanged.

In a selected IGIS, screw can be an instance of the manipulation action. For its definition,
only the process_step_manipulate predicate (compare with Listing 6) is replaced by the



Appl. Sci. 2022, 12, 2319 12 of 26

process_step_screw predicate. The conditions and effects, as well as all other parameters
remain unchanged. The newly inserted predicate process_step_screw must also be added to
the list with the definitions of all predicates (see Listing 3). These formulations enable an
easy and intuitive configuration of PDDL planning domains for any IGPP.

3.2.3. PDDL Problem for an Instance of the Generic Planning Problem (IGPP)

Each planning problem formulated for a scenario contains, as well as the planning
domain, the description of an initial state s0 and of a set of goals g. Both the initial state
and the set of goals represent a configuration of the GPP for a specific planning situation.
They do not require any new modelling at the planning level. However, they require pieces
of information specific to that IGIS. In this context, the initial states s0 and sets of goals g
should be described not in the GPP but directly in an IGPP that corresponds to the selected
IGIS. The sets s0 and g are encoded along with the objects of the planning problem in a
second PDDL file, i.e., the PDDL problem file.

The PDDL problem file for any IGPP contains three main sections. First, objects of
types robot, human, tool, item, etc., are created. Afterwards, the initial state s0 from which
the planning problem starts must be described. As part of our modelling approach, we
divide the set of grounded predicates describing an initial state into three subsets:

s0 = s0,const ∪ s0,scene ∪ s0,ps (1)

Sub-set s0,const contains grounded predicates that encode constants related to an IGIS.
Such constants are, for example, the fixed relations between the agentposes and the thingposes,
the properties of the things (e.g., thing_for_agent), or the configurations of the process steps.
The second sub-set s0,scene contains grounded predicates for the description of the scene. A
scene of an IGIS represents one possible distribution of the movable things and agents in the
environment (e.g., at agent1 pose1). Lastly, the sub-set s0,ps contains grounded predicates
describing the status of the process steps (which process steps are already finalized and
which are still to be carried out).

As well as the objects and initial state definition, the problem file of the IGPP also
contains the description of the goals g. In our modelling approach, the set g contains
grounded predicates that define the process steps to be finalized. In the following, the
PDDL problem file for an IGPP is analysed.

As example, this subsection presents the PDDL problem formulation for an IGPP of
a custom grippers scenario. PDDL problems of IGPPs for other IGISs can be formulated
in a similar manner. The selected scenario occurs in an indoor environment, where the
actions of one human and one robot are coordinated for the assembly processes of custom
grippers (see Figure 5). The actors must transport the elements of the grippers from the
storage areas to the workbenches. At these locations, the elements are processed with the
corresponding tools.

Figure 5. The custom grippers instance of the generic industrial scenario.
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Listing 8 presents some of the objects modelled in this PDDL problem file. First,
agents with corresponding thingposes are introduced (lines 1–3). Then, agentposes, also with
corresponding thingposes, are defined in the environment (lines 4–7). Finally, the tools, items,
steps, and nothing elements are set up (lines 8–11).

Listing 8. Excerpt from the PDDL problem file for the custom grippers IGPP with some of the
defined objects.

1 robot1 - robot
2 human1 - human
3 robot1_thingpose1 human1_thingpose1 - thingpose
4 workbench11 workbench12 - agentpose
5 workbench1_thingpose1 workbench1_thingpose2 . . . - thingpose
6 pallet1 . . . - agentpose
7 pallet1_thingpose1 pallet1_thingpose2 . . . - thingpose
8 tool_for_human tool_for_robot - tool
9 base profile_big1 profile_big2 corner1 corner2 . . . - item

10 step1 step2 step3 - step
11 nothing - no_thing

The properties and states of the defined objects, along with their relations, are set in
the initial state s0 of an IGPP, with the available PDDL predicates. A subset of s0,const is
presented in Listing 9 (lines 2–10). The at grounded predicates describe the fixed relations
between the thingposes and the agents or the agentposes (lines 2–3). Further predicates encode
the properties of the things (lines 4–7), while special predicates are used to define the
process step configurations (lines 8–10). As well as the constants, the initial state of the
IGPP also contains the description of a possible scene. The set s0,scene contains mainly at
predicates that are used to describe the location of the agents and things in the environment
(lines 12–14 in Listing 9). Lastly, a possible status of the process steps s0,ps is set up (line 16
in Listing 9).

Listing 9. Excerpt from the PDDL problem file for the custom grippers IGPP with the initial state.

1 ; Constants
2 ( at robot1_thingpose1 robot1 ) . . .
3 ( at workbench1_thingpose1 workbench11 ) . . .
4 ( thing_moveable base ) . . .
5 ( thing_placeable tool_for_human toolsbench1 ) . . .
6 ( thing_for_agent base robot1 )
7 ( thing_for_agent corner1 human1 ) . . .
8 ( process_step_connect base step1 workbench2_thingpose1 )
9 ( process_step_precedence_type1 base step1 profile_big1 step1 )

10 ( process_step_precedence_type1 base step1 profile_big2 step1 ) . . .
11 ; Scene
12 ( at robot1 workbench11 )
13 ( at nothing robot1_thingpose1 )
14 ( at base pallet2_thingpose1 ) . . .
15 ; Process s tep s t a t u s
16 ( process_step_todo base step1 )

While the definition of the initial state s0 is achieved through a long list of grounded
predicates, especially because many static properties and relations must be defined, the
goals g are usually declared only with a few grounded predicates. These predicates
describe which process steps must be finalized. An example of the list of goals for the
custom grippers IGPP is given in Listing 10.
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Listing 10. Excerpt from the PDDL problem file for the custom grippers IGPP with the goals.

1 ( process_step_done profile_big1 step1 )
2 ( process_step_done profile_big2 step1 )
3 ( process_step_done corner1 step1 ) . . .

With a corresponding PDDL domain derived as presented in Section 3.2.2, the PDDL
formulation of an IGPP for the custom grippers IGIS is complete.

This section is concluded with an important remark. Usually, for each IGIS, a main
IGPP is formulated. The main IGPP contains an initial state where no process steps have
yet been executed and a goals set with all process steps that must be completed at the
end. However, during the real execution, new situations occur, when new plans must
be generated from new initial states or for new goals. In these cases, IGPPs are derived
for situations of the considered IGIS. It must be pointed out that the formulations of the
situational IGPPs differ from the formulation of the main IGPP only in the PDDL problem
file. The PDDL domain file remains the same for them all. Due to the fact that a large
number of such situational IGPPs (e.g., planning problems) are possible, a validation
methodology for any main IGPP is introduced.

3.3. Validation Methodology for a Main Instance of the Generic Planning Problem (IGPP)

AI task planning used as a high-level control strategy can deliver the required au-
tonomy and flexibility to an IGIS by generating plans to achieve any set goals. However,
automated task planning approaches must cope in most scenarios with two challenges.
The first is the large number of situational IGPPs that can be derived for an IGIS and for
which a plan may be required to be generated. The second challenge is the IGIS-specific
planning process constraints. Such a constraint is the planning timeout. This defines the
maximal duration during which a planner must generate a plan for a planning problem.

To ensure that automated task planning can be reliably deployed in an IGIS, an
extensive validation of the corresponding main IGPP is required (see Figure 6). The
PDDL formulation of the main IGPP and the IGIS requirements are the inputs of our
validation approach. These inputs are used to generate a representative set of PDDL
planning problems for the situational IGPPs, to plan for them under the given requirements,
and to analyse the results. The analysis delivers values for defined quantities of interest
(QoIs). The QoIs are used to determine the overall characteristics of the main IGPP. One
characteristic is the availability of planning solutions (e.g., a plan) for the selected set of
situational IGPPs.
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In this study, we wished to achieve the availability of planning solutions for at least
90% of the situational IGPPs for the custom grippers IGPP, under the constraint of a
10-s planning timeout. Planning in the presence of, or for, humans comes with hard
requirements on the available planning time, which should not be longer than a couple of
seconds [39].
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To better comprehend which situational IGPPs can be formulated for a main IGPP,
we firstly analysed the task planning degrees of freedom for that IGPP. All possible com-
binations of the values that these degrees of freedom can take give the set of all possible
situational IGPPs. Based on the assessment of these degrees of freedom, we have developed
a task planning validation process for any IGPP.

As presented in Section 3.2.3, the PDDL domain formulation of a main IGPP has a
set of fixed predicates and actions, and therefore no degrees of freedom. Furthermore, the
PDDL problem formulation of a main IGPP has a set of constants s0,const, the description of
the scene s0,scene, and the status of the process steps s0,ps. The constants are the elements
of the main IGPP that also reduce the number of degrees of freedom, as they are fixed.
For example, each thingpose is attached to one or more agentposes with the at predicate and
does not change during the execution of a plan. Other constants are the properties of the
things (e.g., movable or placeable). Another set of fixed configurations are those of the process
steps. These configurations can be defined by the user or derived from a document with
instructions. An example of such a document is the manual that describes the assembly
steps for a product.

In this context, the possible configurations of different agents, items, tools, and process
steps are limited to only one set s0,const, specific for the main IGPP and all its situational
IGPPs. However, other aspects can be varied. These aspects are, for example, the distribu-
tion of the items and tools at the thingposes or the distribution of the agents at the agentposes.
The list of already-executed process steps, as well the list with the process steps to be
carried out (e.g., the goals), can also be varied. Therefore, different sets s0,scene, s0,ps, and g
can be formulated for the main IGPP. The scenes, the statuses of the process steps, and the
goals are the degrees of freedom of the main IGPP that spawn the set of possible situational
IGPPs considered in our validation approach.

3.3.1. Scene Initial States for a Main Instance of the Generic Planning Problem (IGPP)

As mentioned in Section 3.2.3, a scene for an IGIS is a specific distribution of the things
to the thingposes and of the agents to the agentposes. Therefore, more scenes are possible
for an IGIS. To reduce the number of possible distributions and to guarantee that only
distributions that make logical and physical sense are selected, our validation methodology
splits the things, agents, and poses sets into subsets and introduces mappings between these
sets. The splitting procedures and the mappings are also dependent on the selected IGIS.

To better understand the approaches introduced above, an example is given for a
simplified IGIS. The following sets of items and thingposes are given:

I = {connector_i, corner_i|i ∈ {1, . . . , 4}}
T = {itembench_i_thingpose_j|i ∈ {1, 2}, j ∈ {1, . . . , 4}}. (2)

These two sets are split as follows:

I1 = {connector_i|i ∈ {1, . . . , 4}}; I2 = {corner_i|i ∈ {1, . . . , 4}}
T1 = {itembench_1_thingpose_j|j ∈ {1, . . . , 4}}
T2 = {itembench_2_thingpose_j|j ∈ {1, . . . , 4}}.

(3)

The elements of set I1 are mapped to the elements of set T1 and the elements of set
I2 to the elements of set T2. These splitting and mapping procedures guarantee that the
physical and logical constraints of the IGIS are satisfied. In the example, the connectors
can be placed only on itembench_1, and the corners can be placed only on itembench_2 (see
Figure 7).
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Figure 7. Sub-areas of two scenes of the custom gripper IGIS.

In the next step, the mapping functions between all subsets must be defined. One
possibility would be to determine all combinations of allowed assignments of things and
agents to poses. However, the number of these assignments increases exponentially with the
number of things, agents, or poses. For the custom grippers IGIS, the number of possible
configurations is still extremely high. For this reason, the mapping procedures are based
on a random method, in which each thing and agent is randomly allocated to only one pose.
This mapping approach has thus only one degree of freedom: the number of randomly
generated scenes nscene. This number corresponds to the number of scene initial states and
it spawns a subset of all situational IGPPs for the selected main IGPP. Finally, each scene is
translated into PDDL with at grounded predicates, resulting in a set s0,scene, which is part
of an initial state s0.

3.3.2. Process Steps Initial States and Process Steps Goals for a Main Instance of the Generic
Planning Problem (IGPP)

This subsection presents our methodology used to determine allowed process steps
initial states and process steps goals for a given main IGPP. These states are the second type
of degrees of freedom that spawn the set of situational IGPPs.

At the beginning, the subsets s0,const and s0,ps from the PDDL problem formulation
of the main IGPP are identified. From these, three types of information are extracted and
used in the validation method: the configuration of all process steps, the start process steps
of the processing chain stps, and the process steps that must be finished by the end of the
processing chain f ips.

The configuration of the process steps is interpreted from the grounding predicates
from set s0,const of the PDDL formulation of the main IGPP and further encoded in a graph
structure that allows an easy representation of these process steps and their dependencies.

Definition 3. A directed simple graph G = (V, E, φ), where V is the set of vertices, E the set of
edges, and φ : E→ {(x, y)|(x, y) ∈ V2, x 6= y} a function that maps each edge to an ordered pair
of vertices.

Definition 4. A dependency graph DG = (Ṽ, Ẽ, φ̃) for a main IGPP is a directed simple graph.
Each vertex v ∈ Ṽ is generated by parsing the first two parameters of the grounded predicates
process_step_NAME from s0,const in form of itemX_stepNR. Each edge e ∈ Ẽ and the function
φ̃ are defined by parsing the pairs of each two consecutive parameters of the grounded predicates
process_step_precedence_typeX. The first pair corresponds to the parent vertex, while the following
pairs correspond to the child vertices connected to that parent vertex.

Each vertex v ∈ Ṽ can have zero, one, or more output edges e ∈ Ẽ and has at least
one input edge. Vertices with more than one output edge enable the parallel execution of
process steps after their execution, while vertices with more than one input edge transform
the parallel execution to a sequential one.

The configuration of the process steps as presented in Listing 11 is translated in the
DG from Figure 8, while Appendix A shows the dependency graph of the custom gripper
main IGPP.
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Listing 11. Excert from the PDDL problem formulation for a simple IGPP.

1 ( : i n i t
2 ( process_step_connect item1 step1 workbench2_thingpose1 )
3 ( process_step_precedence_type1 item1 step1 item1 step2 )
4 ( process_step_connect item1 step2 workbench2_thingpose1 )
5 ( process_step_precedence_type1 item1 step2 item2 step1 )
6 ( process_step_precedence_type1 item1 step2 item3 step1 )
7 ( process_step_connect item2 step1 workbench2_thingpose1 )
8 ( process_step_connect item3 step2 workbench2_thingpose1 )
9 ( process_step_todo item1 step1 ) . . . )

10 ( : g o a l ( and
11 ( process_step_done item1 step2 )
12 ( process_step_done item2 step1 )
13 ( process_step_done item3 step1 ) . . . ) )
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1 ( : i n i t
2 ( process_step_connect item1 step1 workbench2_thingpose1 )
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5 ( process_step_precedence_type1 item1 step2 item2 step1 )
6 ( process_step_precedence_type1 item1 step2 item3 step1 )
7 ( process_step_connect item2 step1 workbench2_thingpose1 )
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Figure 8. Dependency graph (DG) for a simple IGPP.

Furthermore, the start-process-steps set stps and the finish-process-step set f ips also
contain elements in the form itemX_stepNR. The elements of set stps are obtained by parsing
the first two parameters of the grounded predicates process_step_todo from the initial-state
sub-set s0,ps. The elements of set f ips are obtained by parsing the first two parameters of
the grounded predicates process_step_done from the goals set g. For the example presented
in Listing 11, the two sets have the following elements:

stps = {item1_step1}
f ips = {item1_step1, item1_step2, item2_step1, item3_step1}. (4)

Using the definition of the dependency graph and of the sets stps and f ips, the valida-
tion methodology can be introduced. In a simplified case, a possible validation approach
for the IGPP checks if a plan can be generated only for the main IGPP. The main IGPP has
in its initial state corresponding grounded predicates for all the elements of the set stps, and
in its goals, grounded predicates for all elements of the set f ips. This simplified approach is
not complete enough for the validation of the main IGPP for two reasons. First, the config-
uration and dependencies of all process steps can be so complex that the selected planning
problem cannot be solved within the set deadline. This is the case, for example, when the
set f ips has many elements. The second reason is related to the scenarios considered in this
work. Especially due to the involvement of human actors, it is possible that during the
execution of the process steps, errors occur and new plans must be generated. These plans
must be computed from new initial states that imply new start-process-steps sets s̃tps,i. The
sets s̃tps,i are different from the original set stps, where nothing has yet happened.

Each of the two issues presented above requires a special approach. The first challenge,
which is related to the complexity of a main IGPP, can be tackled by selecting only a sub-set
of all process steps that should be planned for in a planning iteration. Subsets f̃ ips,j with
cardinality nps (where nps ≤ | f ips|) can be determined for the original set f ips. A sub-set
f̃ ips,j with nps process steps to be carried out need not necessarily be determined with
respect to the original start-process-steps set stps. Such a sub-set can also be defined relative
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to other start-process-steps sets s̃tps,i. The sets s̃tps,i are obtained, for example, when an
error occurs during execution and a new plan from a new initial state is required.

Figure 8 presents an example of start-process-steps and finish-process-steps sets. For
the original initial state s0, s̃tps,1 = stps holds, while for the original goals set g, f ips
holds as in Equation (4). We assume that our planner cannot find a plan in the given
timeout period if the corresponding planning problem has more than three process steps
goals. Therefore, nps = 3, and the new set of finish process steps can be defined as
f̃ ips,1 = {item1_step1, item1_step2, item3_step1}. We also assume that during the execution
of item1_step2, an error occurs and a new plan must be generated. The new initial state s0,2
is different from the original initial state s0 because the first step has already been executed.
In this case, s̃tps,2 = {item1_step2} holds. The set of finish process steps f̃ ips,2 = f ips
relative to the new start-process-steps set then contains all process steps, while the first
process step is already executed. The planner should find a plan that does not modify the
status of the first process step and guarantees that the other nps = 3 will also be reached.
This is a simplified example, but it shows that a complete validation method must consider
all possible initial states and sets of goals for the given main IGPP corresponding to further
situational IGPPs. Thus, all start-process-steps sets s̃tps,i and finish-process-steps sets f̃ ips,j,
where the latter sets have nps elements more than the former, must be considered in the
validation method. The technicalities of determining the sets s̃tps,i and f̃ sps,j, and their
formulation in PDDL are presented in the following.

Many initial states can be derived for a main IGPP. However, not all such initial states
are allowed. To determine the set of start-process-steps sets STps = {s̃tps,i} for the allowed
initial states, the information contained in the DG is used. An allowed start-process-steps
set s̃tps,i represents the information encoded in the leaves of a special dependency sub-graph
DsG of the DG.

Definition 5. A dependency sub-graph DsG = (V̄, Ē, φ̄) is a sub-graph of a DG = (Ṽ, Ẽ, φ̃)
that contain all vertices v ∈ Ṽ of all direct paths dp between the start ∈ Ṽ vertex and its leaves.
More formally, V̄ = {x ∈ Ṽ|x ∈ {dp}, dp = (start, . . . , y) for y ∈ V̄ ∧ children(y) = ∅};
Ē = {(x, y)|(x, y) ∈ Ẽ ∧ x, y ∈ V̄}; φ̄ : Ē→ {(x, y)|(x, y) ∈ V̄2, x 6= y}.

This condition ensures that all process steps prior to those from the leaves of a DsG are
already finished. For the example from Figure 8, if item1_step2 should be part of an initial
state, the vertices item1_step1 and item1_step2 must be vertices in the corresponding DsG.

Algorithm 1 presents the steps for computing the DsGs of the DG that correspond to
the given main IGPP. In a first step, the set of dependency sub-graphs is initialized with the
first DsG containing only one element: the start vertex (line 1). In addition, the vertices of
the input DG are ordered according to the breadth-first search (bfs) approach (line 2). The
main for loop (lines 3–16) iterates over all bfs-ordered vertices. For each vertex, its children
are obtained as in the original DG (line 4), and sets with all possible combinations of these
children are determined (line 5). The second for loop iterates over the already-generated
DsGs and determines the vertices for each of them (line 7). Then, it is checked whether the
bsf_vertex from the main for loop is among the vertices of the actual DsG (line 8). If so, new
DsGs are generated by extending the actual DsG with the combinations of the bsf-vertex’s
children (lines 9–13). A bfs was used to order the vertices of the DG, because with this
ordering, the expansion process of the sub-graphs is easier to follow. Indeed, any list with
all vertices of the DG could have been used. The leaves of each of the obtained DsGs are
the elements of a start-process-steps set s̃tps,i ∈ STps.
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Algorithm 1: Algorithm for generating dependency sub-graphs (DsGs) from
a DG.
1 DsGs← {start} ;
2 bs f _vertices← breadth f irst search(DG) ;
3 for bs f _vertex ∈ bs f _vertices do
4 ch← children o f vertex(DG, bs f _vertex) ;
5 ch_cos← generate combinations(ch) ;
6 for DsG ∈ DsGs do
7 vertices_DsG ← vertices o f graph(DsG) ;
8 if bs f _vertex ∈ vertices_DsG then
9 for ch_co ∈ ch_cos do

10 vertices_DsG_new← vertices_DsG ∪ ch_co ;
11 DsG_new← create graph(vertices_DsG_new) ;
12 DsGs← DsGs ∪ DsG_new ;
13 end
14 end
15 end
16 end

The finish-process-steps sets f̃ ips ∈ FIps are computed from the set of start-process-
steps sets STps, as presented in Algorithm 2. A finish-process-steps set f̃ ips is also an
element of STps, because the same conditions related to the dependencies between the
process steps must hold. In this context, the developed algorithm uses each two different
elements of STps (e.g., sets) and checks if the second element can be selected as a finish-
process-steps set for the first one as a start-process-steps set. This condition holds if the
number of elements of s̃tps,j ∈ STps is larger than the number of elements of s̃tps,i ∈ STps
by nps, and all elements of s̃tps,i are also elements of s̃tps,j (line 5). Two remarks are
important at this point. First, for each start-process-steps set s̃tps,i more finish-process-
steps sets f̃ ips,j ∈ FIps,i that fulfil the conditions are possible. Second, the conditions from
line 5 guarantee that the dependencies between the process steps are considered. These
dependencies are fulfilled if, from the process steps of set s̃tps,i only the process steps from
set f̃ ips,j can be reached (second condition). Figure 9 presents four cases of allowed and not
allowed pairs of start-process-steps and finish-process-steps sets for the main IGPP partly
described in Listing 11.

Algorithm 2: Algorithm for generating finish-process-steps sets for a given set
of start-process-steps sets.

1 FIps ← ∅ ;
2 for s̃tps,i ∈ STps do
3 FIps,i ← ∅ ;
4 for s̃tps,j ∈ STps do
5 if |s̃tps,j| − |s̃tps,i| = nps ∧ s̃tps,i − s̃tps,j = ∅ then
6 FIps,i ← FIps,i ∪ s̃tps,j ;
7 end
8 end
9 FIps ← FIps ∪ FIps,i ;

10 end
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Figure 9. The four sub-figures present combinations of start-process-steps sets (blue vertices)
and finish-process-steps sets (red vertices); a. is an allowed combination of a s̃tps,i and a f̃ ips,j,
where nps = 1; b. is a not allowed combination of a s̃tps,i and a f̃ ips,j; c. and d. are two allowed
combinations of a s̃tps,i and a f̃ ips,j, where nps = 2.
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Figure 9. The four sub-figures present combinations of start-process-steps sets (blue vertices) and
finish-process-steps sets (red vertices): (a) is an allowed combination of an s̃tps,i and an f̃ ips,j, where
nps = 1; (b) is a not-allowed combination of an s̃tps,i and an f̃ ips,j; (c,d) are two allowed combinations
of an s̃tps,i and an f̃ ips,j, where nps = 2.

Finally, the determined start-process-steps sets STps and the finish-process-steps sets
FIps are translated into PDDL commands. This translation is the inverse of the process
presented at the beginning of this subsection. The elements s̃tps,i ∈ STps are split into two
parameters: item and step. These parameters are inserted in the process_step_done PDDL
commands and integrated into the subset s0,ps of the initial state s0. The elements of a set
f̃ ips,j ∈ FIps,i that are not elements of the corresponding set s̃tps,i are then translated into
parameters for process_step_todo PDDL commands and integrated into the goals list g.

Putting everything together, we have proposed a validation approach for any main
IGPP. The aim of our methodology is to generate a set of representative situational IGPPs
for the given main IGPP by varying allowed scenes, process steps initial states, and process
steps goals. In the next subsection, plans are computed for the obtained situational IGPPs,
and the results are interpreted.

4. Results

This section presents the results of the analysis carried out on the custom grippers
main IGPP. The inputs of this analysis were the situational IGPPs with their variations with
respect to the scenes and process steps. For each of these situational IGPPs, plans were
computed with a timeout of 10 seconds. Four different automated planners were deployed
for each situational IGPP: popf [40], optic [41], tflap [42], and tfd [43]. For each obtained
plan, three characteristics were derived:

1. solvability: Whether a solution was found in the timeout period of 10 s;
2. makespan: If a solution was found, the makespan (latest end time of the actions from a

plan) of the plan was determined;
3. nr_actions: If a solution was found, the number of actions of that plan was determined.

The three characteristics of each plan were analysed in a context (e.g., over all situa-
tional IGPPs with a specific number of process steps nps) and quantities of interest (QoIs)
were determined. The QoIs for a set of plans were:

• QoI 1: Percentage of solved situational IGPPs;
• QoI 2: The mean of the plans’ makespans;
• QoI 3: The mean of the plans’ numbers of actions.

For the custom grippers main IGPP, nscene = 250 scenes were generated. Correspond-
ing to the DG from Appendix A, 141+ 101+ 55+ 27+ 14 = 338 pairs of start-process-steps
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sets and finish-process-steps sets, for different nps ∈ {4, 6, 8, 10, 12}, were created. By com-
bining all scenes with all process steps configurations, 84,500 situational IGPPs formulated
in PDDL were obtained. Each of the obtained situational IGPPs was solved with the four
planners, resulting in a total of 338,000 runs.

The first computed QoI was the percentage of solved situational IGPPs. The percentage
was computed over all scenes and variations in the initial and goal states, for each nps
value, and for each of the four planners. The results are presented in Table 1.

Table 1. Percentage of solved situational IGPPs for the four different planners and the five different
values of nps.

planner|nps 4 6 8 10 12

popf 84.1% 84.4% 77.6% 66.8% 64.6%
optic 90.2% 95.0% 89.8% 84.7% 88.1%
tflap 97.2% 94.2% 79.2% 44.0% 6.3%
tfd 98.8% 94.3% 93.3% 93.3% 94.3%

The results show that the tfd planner managed to solve more than 90% of the situational
IGPPs corresponding to each different number of goals. The optic planner delivered a
success rate greater than 84% in finding a plan in all sets of situational IGPPs for different
nps values.

The next two QoIs were the mean of the plans’ makespans and the mean of the
plans’ numbers of actions, over a subset of all situational IGPPs. This subset contained all
situational IGPPs for all scenes, for a given nps, and a given planner. The makespan and
nr_actions characteristics of the obtained plans were normalized, to enable a comparison
of the results of the different subsets (e.g., different nps values and planners). For the
normalization of the data, the min-max approach was used:

xnorm =
x− xmin

xmax − xmin
. (5)

Here, xmin and xmax are computed for the makespans and numbers of actions of all
situational IGPP variations corresponding to one nps value but independent of the planner
used to solve them.

Figure 10 depicts the obtained results. The planners popf and optic computed, in most
cases, the plans with the lowest mean makespan. However, the planners tflap and popf
generated the plans with the lowest mean numbers of actions for almost all nps values. The
planner tfd usually generated plans with the highest mean makespans and the highest
mean numbers of actions.
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Figure 10. Normalized mean of plans’ makespans and number of actions for the four planners
and different nps values.
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5. Discussion and Conclusions

The main results of this work were the description of the generic industrial scenario
with its instances IGIS, the formulation of the generic planning problem and of one instance,
the custom grippers IGPP, and the validation results for the selected IGPP.

The results showed that the GIS derived from independent scenarios described in
related works could be easily configured for a new scenario, i.e., the custom grippers
scenario. Furthermore, the generic planning problem originally formulated for the GIS
could also be easily adapted for the custom grippers IGPP. For the PDDL formulation of
the IGPP, only changes in the naming of the PDDL artefacts and in the problem files were
required. No further modelling was necessary.

Using the validation methods presented in Section 3.3, we showed that the PDDL
formulation of the main IGPP could guarantee a success rate of 90% for generating plans for
a high number of situational IGPPs. These results demonstrate that AI planning approaches
(e.g., temporal planning) formulated in PDDL can be used in real-world IGIS. Automated
planning approaches are already deployed as a high-level control strategy in simulated or
real industrial scenarios [1,4,44]; however, no generic planning problems and corresponding
validation methodologies for them have yet been developed.

Automated planners for planning problems formulated in PDDL are usually compared
one to another based on a set of standard planning domains and problems (https://ipc2
018-classical.bitbucket.io/domains.html (accessed on 17 February 2022)). None of these
planning problems is formulated for a generic industrial scenario. Some studies from
the literature present planning problems, but only for specific scenarios [1,45]. Therefore,
no suggestions regarding a suitable temporal planner are available in the literature that
can solve planning problems formulated for such scenarios. Further results of our work
showed that the temporal planners optic and tfd were suitable temporal planners for the

https://ipc2018-classical.bitbucket.io/domains.html
https://ipc2018-classical.bitbucket.io/domains.html
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IGPP formulation of the gripper scenario, when plans must be generated within a deadline
of 10 s and the planning problems have nps ∈ {4, 6, 8} process steps. For planning problems
with nps > 8, no concrete statements can be formulated.

The work conducted so far shows the theoretical advantage of deploying automated
task planning methodologies based on the GIS and the PDDL formulation of the GPP as
high-level control approaches for industrial scenarios with mobile manipulators. In future
work, we wish to transfer these results to simulated and real scenarios, by executing the
plans generated for the different situational IGPPs. A further validation methodology with
corresponding QoIs will be defined. This will focus on the execution times and on the
re-plan rates.

In conclusion, this work introduced a generic industrial scenario, a generic planning
problem formulated in PDDL, and a validation methodology for instances of the GPP.
These models and approaches can be used as a starting point for deploying automated
planning approaches in any further industrial scenario with mobile manipulators.
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Appendix A. Dependency Graph of an IGPP

start

base_step1

profile_big1_step1 profile_big2_step1

corner1_step1 corner2_step1 corner3_step1 corner4_step1

corner1_step2 corner2_step2 corner3_step2 corner4_step2

profile_small1_step1 profile_small2_step1

profile_small1_step2 profile_small2_step2

profile_small1_step3

Figure A1. The dependency graph of the custom grippers IGPP.
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