Bulge formation in MW- and M31-like galaxies :

Origin of low and high-Sérsic bulges and the connection to bulge formation pathways

Gargiulo, Ignacio D.

Monachesi, Antonela; Gómez, Facundo; R. J. J. Grand ; Francesca Fragkoudi ; Rüdiger Pakmor; Dylan Nelson ; Annalisa Pillepich ; Lars Hernquist ; Mark Lovell ; Federico Marinacci, Eric Bell

Motivation

$$I(r) = I_{\rm e} \exp\left\{-b_n \left[(r/r_{\rm eff})^{1/n} - 1 \right] \right\} + I_0 \exp\left[-(r/R_{\rm scale})\right]$$

Motivation

$$I(r) = I_{e} \exp \left\{ -b_{n} \left[(r/r_{eff})^{1/n} - 1 \right] \right\} + I_{0} \exp \left[-(r/R_{scale}) \right]$$

Bulge (I_e, r_{eff}, n)
Disc (I₀, R_{scale})

Motivation

and

bulge-disc

Fisher & Drory (2016)

The simulations

Auriga 4: Gargiulo I.D. et al. (2019, **G19**)

- re-simulated \rightarrow more isolated DM haloes
- 30 MW-mass galaxies at that moment
- mass resolution : $\sim 4 \times 10^4 M_{\odot}$

IllustrisTNG50-1: Gargiulo I.D. et al. (2022, G22)

TNG100

TNG50

- cosmological volume (50 cMpc) - sample of 287 MW/M31-like galaxies
- mass resolution : ~ 8 x 10^4 M_•

Simulated galaxies : Sample selection in TNG50

Selection criteria:

(based on Pillepich+2022, in prep, Engler+2021)

- Stellar mass in the range $[10^{10.5} 10^{11.2}]$ M
- Disc galaxies : ratio s = c/a < 0.45 , minor-to-major axis of the stellar moment of inertia tensor.

TNG50-1 MW/M31-like galaxies

2-Component - 1D decompositions

$$I(r) = I_{\rm e} \exp \left\{ -b_n \left[(r/r_{\rm eff})^{1/n} - 1 \right] \right\} + I_0 \exp \left[-(r/R_{\rm scale}) \right]$$

17.1 % of high Sérsic index photometric bulges

Does bulge type depend on environment?

Does bulge type depend on environment?

Def.: A Significant merger has a merger ratio $m_{sat}/m_{host} > 0.1$, where m_{sat} and m_{host} are the *total* mass of the satellite and the host galaxy.

Lookback time of the last significant merger

Effect of Mergers - Timing

- Galaxies with high Sérsic index bulges have a later last significant merger on average, wrt galaxies with low Sérsic index bulges.
- However there is a significant amount of galaxies with low-Sérsic bulges that experienced a late significan merger

The kinematic bulge

Radial cut Circularity parameter cut, Abadi (2003) ID 117256 ID456326 10 kpc \bigcirc 3.5 $\epsilon = J_z/J(E)$ 3.0 2.5 $n_{\rm sers} = 0.73$ $n_{\rm sers} = 3.55$ (€) f(€) 1.5 1.0 \bigcirc 0.5 0.0 + -1.5 0.5 -0.5 0.0 1.0 -1.0 ϵ

Spherical region, $r < 2 \times r_{eff}$

 $\epsilon_{\rm thresh} = 0.7$

The kinematic bulge

Bear in mind that the kinematic and photometric bulges are different

In-situ/Ex-situ component in the kinematic bulge

Ex-situ component in the kinematic bulge

Influence of bars: bar strength and demography

Fourier mode analysis

$$a_{n}(R_{j}) = \sum_{i=1}^{N_{R}} m_{i} \cos(n \theta_{i}),$$

and
$$B_{n}(R_{j}, t) = \sqrt{a_{n}(R_{j}, t)^{2} + b_{n}(R_{j}, t)^{2}}.$$

$$b_{n}(R_{j}) = \sum_{i=1}^{N_{R}} m_{i} \sin(n \theta_{i}),$$

$$\theta_{2}' = \frac{1}{2} \operatorname{atan2}(b_{2}, a_{2}).$$

Bar face angle
$$A_{2}(t) = \frac{\sum_{j} B_{2}(R_{j}, t)}{\sum_{j} B_{0}(R_{j}, t)}.$$

Bar Strength: Mass weighted mean of the amplitude of the m=2 Fourier mode within the bar region

Influence of bars: bar evolution

Influence of bars: bar evolution

Bars contribute to form low-Sérsic index bulges

- Many known mechanisms (See e.g. Gadotti (2020), Bittner (2020) TIMER survey, \rightarrow bars lead to the formation of inner discs) Concentrated bulges prevent the formation of bars

 stops the feedback in the "Swing amplifier and feedback loop" process. See e.g Kataria & Das (2018), Saha & Elmegreen(2018) for recent numerical experiments.

Influence of bars: integrated effect of bars

$$t_{(>A_{thresh})} = \frac{1}{2} \sum_{i>A_{thresh}} \left([t_{1b}(S_{i-1}) - t_{1b}(S_{i+1})] \right)$$

What does this tell us about the formation and/or evolution of galactic bulges?

Concentrated photometric bulges, (with high Sérsic index in a 2-component 1-dimensional SB decomposition) have, more commonly, *a later significant merger* than low-Sérsic bulges.

Stellar particles in kinematically selected bulges of MW/M31-like galaxies form predominantly *in-situ*

A single merger explain the majority of ex-situ stars in the central regions of most MW/M31-like galaxies. A few of them is enough to explain the total ex-situ component. Galaxies with *high fractions of ex-situ stars* in their kinematically selected bulges have <u>more commonly</u> *high Sérsic bulges*.

Bars, when present, play a significant role in adding mass to the central regions of all bulges and contribute to form *low-Sérsic index photometric bulges*.

The photometric bulge type of a galaxy *does not* depend on the environment where the galaxy resides.

General opinion: There is a huge diversity of bulges in MW/M31-like galaxies. The connection between photometric bulge type and their formation pathways is not straightforward. Fitting all of them in only two categories, from a theoretical point of view, is increasingly difficult.