
Noname manuscript No.
(will be inserted by the editor)

Complex Event Forecasting with Prediction Suffix Trees

Elias Alevizos · Alexander Artikis · Georgios Paliouras

Received: date / Accepted: date

Abstract Complex Event Recognition (CER) systems

have become popular in the past two decades due to

their ability to “instantly” detect patterns on real-time

streams of events. However, there is a lack of methods

for forecasting when a pattern might occur before such

an occurrence is actually detected by a CER engine.

We present a formal framework that attempts to ad-

dress the issue of Complex Event Forecasting (CEF).

Our framework combines two formalisms: a) symbolic

automata which are used to encode complex event pat-

terns; and b) prediction suffix trees which can provide

a succinct probabilistic description of an automaton’s

behavior. We compare our proposed approach against

state-of-the-art methods and show its advantage in terms

of accuracy and efficiency. In particular, prediction suf-

fix trees, being variable-order Markov models, have the
ability to capture long-term dependencies in a stream

by remembering only those past sequences that are in-

formative enough. We also discuss how CEF solutions

should be best evaluated on the quality of their fore-

casts.

Elias Alevizos
Department of Informatics, National and Kapodistrian Uni-
versity of Athens, Greece
Institute of Informatics & Telecommunications, National
Center for Scientific Research “Demokritos”, Greece
E-mail: ilalev@di.uoa.gr,alevizos.elias@iit.demokritos.gr

Alexander Artikis
Department of Maritime Studies, University of Piraeus,
Greece
Institute of Informatics & Telecommunications, National
Center for Scientific Research “Demokritos”, Greece
E-mail: a.artikis@unipi.gr

Georgios Paliouras
Institute of Informatics & Telecommunications, National
Center for Scientific Research “Demokritos”, Greece
E-mail: paliourg@iit.demokritos.gr

Keywords Finite Automata · Regular Expressions ·
Complex Event Recognition · Complex Event Pro-

cessing · Symbolic Automata · Variable-order Markov

Models

1 Introduction

The avalanche of streaming data in the last decade

has sparked an interest in technologies processing high-

velocity data streams. One of these technologies which

have enjoyed increased popularity is Complex Event

Recognition (CER) [15,20]. The main goal of a CER

system is to detect interesting activity patterns occur-

ring within a stream of events, coming from sensors or

other devices. Complex Events must be detected with

minimal latency. As a result, a significant body of work

has been devoted to computational optimization issues.

Less attention has been paid to forecasting event pat-

terns [20], despite the fact that forecasting has attracted

considerable attention in various related research areas,

such as time-series forecasting [28], sequence prediction

[10,37,14,42], temporal mining [40,23,43,12] and pro-

cess mining [27]. The need for Complex Event Forecast-

ing (CEF) has been acknowledged though, as evidenced

by several conceptual proposals [19,13,17].

The field of moving object monitoring (for ships

at sea, aircrafts in the air or vehicles on the ground)

provides an example where CEF could be a crucial

functionality [41]. Collision avoidance is obviously of

paramount importance for this domain. A monitoring

system with the ability to infer that two (or more) mov-

ing objects are on a collision course and forecast that

they will indeed collide if no action is taken would pro-

vide significant help to the relevant authorities. CEF

could play an important role even in in-silico biology,

2 Elias Alevizos et al.

where computationally demanding simulations of bi-

ological systems are often executed to determine the

properties of these systems and their response to treat-

ments [30]. These simulations are typically run on su-

percomputers and are evaluated afterwards to deter-

mine which of them seem promising enough from a

therapeutic point of view. A system that could mon-

itor these simulations as they run, forecast which of

them will turn out to be non-pertinent and decide to

terminate them at an early stage, could thus save valu-

able computational resources and significantly speed-up

the execution of such in-silico experiments. Note that

these are domains with different characteristics. For ex-

ample, some of them have a strong geospatial compo-

nent (monitoring of moving entities), whereas in others

this component is minimal (in-silico biology). Domain-

specific solutions (e.g., trajectory prediction for moving

objects) cannot thus be universally applied. We need a

more general framework.

Towards this direction, we present a formal frame-

work for CEF, along with an implementation and ex-

tensive experimental results on real and synthetic data

from diverse application domains. Our framework al-

lows a user to define a pattern for a complex event,

e.g., a pattern for two moving objects moving in close

proximity and towards each other. It then constructs a

probabilistic model for such a pattern in order to fore-

cast, on the basis of an event stream, if and when a com-

plex event is expected to occur. We use the formalism

of symbolic automata [16] to encode a pattern and that

of prediction suffix trees [37,36] to learn a probabilistic

model for the pattern. We formally show how symbolic

automata can be combined with prediction suffix trees
to perform CEF. Prediction suffix trees fall under the

class of the so-called variable-order Markov models, i.e.,

Markov models whose order (how deep into the past

they can look for dependencies) can be increased be-

yond what is computationally possible with full-order

models. They can do this by avoiding a full enumera-

tion of every possible dependency and focusing only on

“meaningful” dependencies.

Our empirical analysis shows the advantage of be-

ing able to use high-order models over related non-

Markov methods for CEF and methods based on low-

order Markov models (or Hidden Markov Models). The

price we have to pay for this increased accuracy is a de-

crease in throughput, which still however remains high

(typically tens of thousands of events per second). The

training time is also increased, but still remains within

the same order of magnitude. This fact allows us to be

confident that training could also be performed online.

Our contributions may be summarized as follows:

– We present a CEF framework that is both formal

and easy to use, with clear compositional semantics.

– Our framework can uncover deep probabilistic de-

pendencies in a stream by using a variable-order

Markov model. By being able to look deeper into

the past, we achieve higher accuracy scores com-

pared to other state-of-the-art solutions for CEF,

as shown in our extensive empirical analysis.

– We propose a more comprehensive set of metrics

that takes into account the idiosyncrasies of CEF.

Besides accuracy itself, the usefulness of forecasts is

also judged by their “earliness”. We discuss how the

notion of earliness may be quantified.

Due to space limitations, all proofs are presented in an

extended technical report1.

Running Example As an example of a CER system,

consider the scenario of a system receiving an input

stream consisting of events emitted from vessels sail-

ing at sea. These events may contain information re-

garding the status of a vessel, e.g., its location, speed

and heading. This is indeed a real-world scenario and

the emitted messages are called AIS (Automatic Iden-

tification System) messages. Besides information about

a vessel’s kinematic behavior, each such message may

contain additional information about the vessel’s status

(e.g., whether it is fishing), along with a timestamp and

a unique vessel identifier. A maritime expert may be in-

terested to detect several activity patterns for the mon-

itored vessels, such as sudden changes in the kinematic

behavior of a vessel (e.g., sudden accelerations), sail-

ing in protected (e.g., NATURA) areas, etc. The typi-

cal workflow consists of the analyst first writing these

patterns in some declarative language, which are then

used by a computational model applied on the stream

of SDEs to detect CEs.

Structure of the Paper The rest of the paper is struc-

tured as follows. We start by presenting in Section 2

the relevant literature on CEF. Since work on CEF has

been limited thus far, we also briefly mention forecast-

ing ideas from some other related fields that can pro-

vide inspiration to CEF. Subsequently, in Section 3 we

discuss the formalism of symbolic automata and how

it can be adapted to perform recognition on real-time

event streams. Section 4 shows how we can create a

probabilistic model for a symbolic automaton by using

prediction suffix trees, while Section 5 presents a de-

tailed complexity analysis. We then discuss how we can

quantify the quality of forecasts in Section 6. We finally

1 The report may be found here:https://arxiv.org/abs/
2109.00287

https://arxiv.org/abs/2109.00287
https://arxiv.org/abs/2109.00287

Complex Event Forecasting with Prediction Suffix Trees 3

demonstrate the efficacy of our framework in Section

7, by showing experimental results on two application

domains. We conclude with Section 8, discussing some

possible directions for future work.

2 Related Work

Forecasting has not received much attention in the field

of CER, although some conceptual proposals have ac-

knowledged the need for CEF [19,17,13]. However, it

has similarities to forecasting methods developed in other

fields. We first present a brief overview of these related

fields and explain the main differences between them

and CEF. We then discuss previous work focused di-

rectly on CEF.

Time-series forecasting is an area with some similar-

ities to CEF and a significant history of contributions

[28]. However, it is not possible to directly apply tech-

niques from time-series forecasting to CEF. Time-series

forecasting typically focuses on streams of (mostly) real-

valued variables and the goal is to forecast relatively

simple patterns. On the contrary, in CEF we are also

interested in categorical values, related through com-

plex patterns and involving multiple variables. Time-

series forecasting methods do not provide a language

with which we can define complex patterns, but sim-

ply try to forecast the next value(s) from the input

stream/series. In CER, the equivalent task would be

to forecast the next input event(s) (SDEs). This task

in itself is not very useful for CER though, since the

majority of SDE instances should be ignored and do

not contribute to the detection of CEs. CEs are more

like “anomalies” and their number is typically orders of

magnitude lower than the number of SDEs. One could

possibly try to leverage techniques from SDE forecast-

ing to perform CE forecasting. At every timepoint, we

could try to estimate the most probable sequence of

future SDEs, then perform recognition on this future

stream of SDEs and check whether any future CEs are

detected. We have experimentally observed that such

an approach yields sub-optimal results. It almost always

fails to detect any future CEs. This behavior is due to

the fact that CEs are rare. As a result, projecting the

input stream into the future creates a “path” with high

probability but fails to include the rare “paths” that

lead to a CE detection.

Another related field is that of prediction of discrete

sequences over finite alphabets and is closely related to

the field of compression, as any compression algorithm

can be used for prediction and vice versa [10,37,36,

14,42]. The main limitation of these methods is that

they also do not provide a language for patterns and

focus exclusively on next symbol prediction, i.e., they

try to forecast the next symbol(s) in a stream/string

of discrete symbols. As already discussed, this is a seri-

ous limitation for CER. An additional limitation is that

they work on single-variable discrete sequences of sym-

bols, whereas CER systems consume streams of events,

i.e., streams of tuples with multiple variables, both nu-

merical and categorical.

Forecasting methods have also appeared in the field

of temporal pattern mining [40,23,43,12]. From the per-

spective of CER, the disadvantage of these methods is

that they usually target simple patterns, defined either

as strict sequences or as sets of input events. Moreover,

the input stream is composed of symbols from a finite

alphabet, as is the case with the compression methods

mentioned above.

Lately, a significant body of work has focused on

event sequence prediction and point-of-interest recom-

mendations through the use of neural networks (see, for

example, [25,11]). These methods are powerful in pre-

dicting the next input event(s) in a sequence of events,

but they suffer from limitations already mentioned above.

They do not provide a language for defining complex

patterns among events and their focus is thus on SDE

forecasting. An additional motivation for us to first try

a statistical method rather than going directly to neu-

ral networks is that, in other related fields, such as time

series forecasting, statistical methods have often been

proven to be more accurate and less demanding in terms

of computational resources than ML ones [26].

Compared to the previous categories for forecast-

ing, the field of process mining is more closely related

to CER [38]. An important difference between CER

and process mining is that processes are usually given

directly as transition systems, whereas CER patterns

are defined in a declarative manner. The transition sys-

tems defining processes are usually composed of long

sequences of events. On the other hand, CER patterns

are shorter, may involve Kleene-star, iteration opera-

tors (usually not present in processes) and may even be

instantaneous. A CEF system cannot always rely on the

memory implicitly encoded in a transition system and

has to be able to learn the sequences of events that lead

to a (possibly instantaneous) CE. Another important

difference is that process prediction focuses on traces,

which are complete, full matches, whereas CER focuses

on continuously evolving streams which may contain

many irrelevant events. A learning method has to take

into account the presence of these irrelevant events.

We now move on to forecasting methods derived

directly from the field of CER which are thus com-

parable to the one we present here. In what follows,

we present previous work on CEF in order of publica-

tion date. The first concrete attempt at CEF was pre-

4 Elias Alevizos et al.

sented in [29]. A variant of regular expressions was used

to define CE patterns, which were then compiled into

automata. These automata were translated to Markov

chains through a direct mapping, where each automa-

ton state was mapped to a Markov chain state. Fre-

quency counters on the transitions were used to esti-

mate the Markov chain’s transition matrix. This Markov

chain was finally used to estimate if a CE was ex-

pected to occur within some future window. In the

worst case, however, such an approach assumes that

all SDEs are independent (even when the states of the

Markov chain are not independent) and is thus unable

to encode higher-order dependencies. (see Section 4.2).

Another example of event forecasting was presented

in [5]. Using Support Vector Regression, the proposed

method was able to predict the next input event(s)

within some future window. This technique is similar to

time-series forecasting [28], as it mainly targets the pre-

diction of the (numerical) values of the attributes of the

input (SDE) events (specifically, traffic speed and inten-

sity from a traffic monitoring system). Strictly speak-

ing, it cannot therefore be considered a CE forecasting

method, but a SDE forecasting one. Nevertheless, the

authors of [5] proposed the idea that these future SDEs

may be used by a CER engine to detect future CEs.

Namely, at each timepoint, one could estimate the most

probable sequence of future SDEs, then perform recog-

nition on this future stream of SDEs and check whether

any future CEs are detected. We have experimentally

observed that such an approach fails to detect future

CEs. This is due to the fact that CEs are rare. As a

result, projecting the input stream into the future cre-

ates a “path” with high probability but fails to include

the rare “paths” that lead to a CE detection. Because

of this serious under-performance of this method, we

exclude it from our detailed experiments.

In [31], Hidden Markov Models (HMM) are used

to construct a probabilistic model for the behavior of a

transition system describing a CE. The observable vari-

able of the HMM corresponds to the states of the tran-

sition system, i.e., an observation sequence of length l

for the HMM consists of the sequence of states visited

by the system after consuming l SDEs. These l SDEs

are mapped to the hidden variable, i.e., the last l val-

ues of the hidden variable are the last l SDEs. In prin-

ciple, HMMs are more powerful than Markov chains.

In practice, however, HMMs are hard to train ([10,4])

and require elaborate domain modeling, since mapping

a CE pattern to a HMM is not straightforward (see

Section 4.2 for details). In contrast, our approach con-

structs seamlessly a probabilistic model from a given

CE pattern (declaratively defined).

Automata and Markov chains are again used in [6,

7]. The main difference of these methods compared to

[29] is that they can accommodate higher-order depen-

dencies by creating extra states for the automaton of a

pattern. The method presented in [6] has two important

limitations: first, it works only on discrete sequences of

finite alphabets; second, the number of states required

to encode long-term dependencies grows exponentially.

The first issue was addressed in [7], where symbolic

automata are used that can handle infinite alphabets.

However, the problem of the exponential growth of the

number of states still remains, which can be addressed

by using variable-order Markov models.

A different approach is followed in [24], where knowl-

edge graphs are used to encode events and their timing

relationships. Stochastic gradient descent is employed

to learn the weights of the graph’s edges that determine

how important an event is with respect to another tar-

get event. However, this approach falls in the category

of SDE forecasting, as it does not target complex events.

More precisely, it tries to forecast which predicates the

forthcoming SDEs will satisfy, without taking into ac-

count relationships between the events themselves (e.g.,

through simple sequences).

3 Complex Event Recognition with Symbolic

Automata

Our approach for CEF is based on a specific formal

framework for CER, which we are presenting here. There

are various surveys of CER methods, presenting vari-

ous CER systems and languages [15,8,20]. Despite this

fact though, there is still no consensus about which
operators must be supported by a CER language and

what their semantics should be. In this paper, we follow

[20] and [21], which have established some core opera-

tors that are most often used. In a spirit similar to

[21], we use automata as our computational model and

define a CER language whose expressions can readily

be converted to automata. We employ symbolic reg-

ular expressions and automata [16,39]. The rationale

behind our choice is that, contrary to other automata-

based CER models, symbolic regular expressions and

automata have nice closure properties and clear (both

declarative and operational), compositional semantics

(see [21] for a similar line of work, based on symbolic

transducers). In previous automata-based CER systems,

it is unclear which operators may be used and if they

can be arbitrarily combined (see [21,20] for a discus-

sion of this issue). On the contrary, the use of sym-

bolic automata allows us to construct any pattern that

one may desire through an arbitrary use of the pro-

vided operators. In previous methods, there is also a

Complex Event Forecasting with Prediction Suffix Trees 5

lack of understanding with respect to the properties

of the employed computational models, e.g., whether

the proposed automata are determinizable, an impor-

tant feature for our work. Symbolic automata, on the

other hand, have nice closure properties and are well-

studied. Notice that this would also be an important

feature for possible optimizations based on pattern re-

writing, since such re-writing would require us to have

a mechanism determining whether two expressions are

equivalent. Our framework provides such a mechanism.

The main idea behind symbolic automata is that

each transition, instead of being labeled with a symbol

from an alphabet, is equipped with a unary formula

from an effective Boolean algebra [16]. A symbolic au-

tomaton can then read strings of elements and, upon

reading an element while in a given state, can apply

the predicates of this state’s outgoing transitions to

that element. The transitions whose predicates evaluate

to TRUE are said to be “enabled” and the automaton

moves to their target states.

The formal definition of an effective Boolean algebra

is the following:

Definition 1 (Effective Boolean algebra [16]) An

effective Boolean algebra is a tuple (D, Ψ , J K, ⊥, >,

∨, ∧, ¬) where D is a set of domain elements, Ψ a

set of predicates and J K : Ψ → 2D a function map-

ping predicates to the powerset of D. We assume that

⊥,> ∈ Ψ , i.e., ⊥ and > are predicates that are always

available and correspond to FALSE and TRUE respec-

tively. In addition, the predicates in Ψ are closed under

the Boolean connectives, i.e., any predicate that can be

constructed from other predicates in Ψ , using the con-

nectives of conjunction ∧, disjunction ∨ and negation

¬, also belongs to Ψ . Finally, the function J K allows

us to determine which elements from D satisfy which

predicates according to the following rules:

– J⊥K = ∅
– J>K = D
– and ∀φ, ψ ∈ Ψ :

– Jφ ∨ ψK = JφK ∪ JψK
– Jφ ∧ ψK = JφK ∩ JψK
– J¬φK = D \ JφK

It is also required that checking satisfiability of φ, i.e.,

whether JφK 6= ∅, is decidable and that the operations

of ∨, ∧ and ¬ are computable. J

Using our running example, such an algebra could

be one consisting of AIS messages, corresponding to D,

along with two predicates about the speed of a vessel,

e.g., speed < 5 and speed > 20. These two predicates

would make up Ψ . The predicate speed < 5 would be

mapped, via J K, to the set of all AIS messages whose

speed level is below 5 knots. According to the defini-

tion above, ⊥ and > should also belong to Ψ , along

with all the combinations of the original two predi-

cates constructed from the Boolean connectives, e.g.,

¬(speed < 5)∧¬(speed > 20). Elements of D are called

characters and finite sequences of characters are called

strings. A set of strings L constructed from elements

of D (L ⊆ D∗, where ∗ denotes Kleene-star) is called a

language over D.

As with classical regular expressions [22], we can

use symbolic regular expressions to represent a class of

languages over D.

Definition 2 (Symbolic regular expression) A sym-

bolic regular expression (SRE) over an effective Boolean

algebra (D, Ψ , J K, ⊥, >, ∨, ∧, ¬) is recursively defined

as follows:

– The constants ε and ∅ are symbolic regular expres-

sions with L(ε) = {ε} and L(∅) = {∅};
– If ψ ∈ Ψ , then R := ψ is a symbolic regular expres-

sion, with L(ψ) = JψK, i.e., the language of ψ is the

subset of D for which ψ evaluates to TRUE;

– Disjunction / Union: If R1 and R2 are sym-

bolic regular expressions, then R := R1 +R2

is also a symbolic regular expression, with

L(R) = L(R1) ∪ L(R2);

– Concatenation / Sequence: If R1 and R2 are

symbolic regular expressions, then R := R1 ·R2

is also a symbolic regular expression, with

L(R) = L(R1) · L(R2), where · denotes concatena-

tion. L(R) is then the set of all strings constructed

from concatenating each element of L(R1) with each

element of L(R2);

– Iteration / Kleene-star: If R is a symbolic regular

expression, then R′ := R∗ is a symbolic regular ex-

pression, with L(R∗) = (L(R))∗, where L∗ =
⋃
i≥0
Li

and Li is the concatenation of L with itself i times.

J

As an example, if we want to detect instances of

a vessel accelerating suddenly, we could write the ex-

pression R := (speed < 5) · (speed > 20). Note that,

with the help of the above basic operators, it is possi-

ble to define various other operators, like complement

/ negation (symbolic automata are also closed under

complement), quantifiers / bounded iteration, conjunc-

tion (if ⊗ denotes conjunction, then R := R1 ⊗ R2 :=

(R1 ·R2) + (R2 ·R1)), as well as selection policies [20].

Due to space limitations, we do not elaborate further

on these operators here.

Given a Boolean algebra, we can also define sym-

bolic automata. The definition of a symbolic automaton

is the following:

6 Elias Alevizos et al.

0start 1 2 3

>

ε speed < 5 speed > 20

Fig. 1: Streaming SFA for R := (speed < 5) ·
(speed > 20). > is a special predicate that always evalu-

ates to TRUE. > transitions are thus triggered for every

event. ε transitions triggered even in the absence of an

event.

Definition 3 (Symbolic finite automaton [16]) A

symbolic finite automaton (SFA) is a tuple M =(A, Q,

qs, Qf , ∆), where A is an effective Boolean algebra;

Q is a finite set of states; qs ∈ Q is the initial state;

Qf ⊆ Q is the set of final states; ∆ ⊆ Q× ΨA ×Q is a

finite set of transitions. J

A string w = a1a2 · · · ak is accepted by a SFA M

iff, for 1 ≤ i ≤ k, there exist transitions qi−1
ai→ qi such

that q0 = qs and qk ∈ Qf . The set of strings accepted

by M is the language of M , denoted by L(M) [16].

As with classical regular expressions and automata,

we can prove that every symbolic regular expression

can be translated to an equivalent (i.e., with the same

language) symbolic automaton.

Proposition 1 For every symbolic regular expression

R there exists a symbolic finite automaton M such that

L(R) = L(M).

Proof. Proof presented in the technical report.

Our discussion thus far has focused on how SRE

and SFA can be applied to bounded strings that are

known in their totality before recognition. We feed a
string to a SFA and we expect an answer about whether

the whole string belongs to the automaton’s language

or not. However, in CER and CEF we need to handle

continuously updated streams of events and detect in-

stances of SRE satisfaction as soon as they appear in

a stream. In order to accommodate this scenario, slight

modifications are required so that SRE and SFA may

work in a streaming setting. First, we need to make sure

that the automaton can start its recognition after every

new element. In our case, events come in the form of tu-

ples with both numerical and categorical values. Using

database systems terminology we can speak of tuples

from relations of a database schema [21]. These tuples

constitute the set of domain elements D. A stream S

then has the form of an infinite sequence S = t1, t2, · · · ,
where each ti is a tuple (ti ∈ D). Our goal is to report

the indices i at which a CE is detected.

More precisely, if S1..k = · · · , tk−1, tk is the prefix

of S up to the index k, we say that an instance of a

SRE R is detected at k iff there exists a suffix Sm..k of

S1..k such that Sm..k ∈ L(R). In order to detect CEs

of a SRE R on a stream, we use a streaming version of

SRE and SFA. If R is a SRE , then Rs = >∗ · R is the

streaming SRE (sSRE) corresponding to R, and the

automaton for Rs is the streaming SFA (sSFA) of R.

Using Rs we can detect CEs of R on a stream S, since

a stream segment Sm..k belongs to the language of R

iff the prefix S1..k belongs to the language of Rs. The

prefix >∗ lets us skip any number of events from the

stream and start recognition at any index m, 1 ≤ m ≤
k. As an example, if R := (speed < 5) · (speed > 20)

is the pattern for sudden acceleration, then its sSRE

would be Rs := >∗ · (speed < 5) · (speed > 20). Note

that sSRE and sSFA are just special cases of SRE and

SFA respectively. Therefore, every result that holds for

SRE and SFA also holds for sSRE and sSFA. Figure 1

shows an example sSFA.

The streaming behavior of a sSFA as it consumes a

stream S can be formally defined using the notion of

configuration:

Definition 4 (Configuration of sSFA) Assume

S = t1, t2, · · · is a stream of domain elements from an

effective Boolean algebra, R a symbolic regular expres-

sion over the same algebra and MRs
a sSFA correspond-

ing to R. A configuration c of MRs
is a tuple [i, q], where

i is the current position of the stream, i.e., the index

of the next event to be consumed, and q the current

state of MRs
. We say that c′ = [i′, q′] is a successor

configuration of c iff:

– ∃δ ∈MRs .∆ : δ = (q, ψ, q′) ∧ (ti ∈ JψK ∨ ψ = ε);

– i = i′ if δ = ε. Otherwise, i′ = i+ 1.

We denote a succession by [i, q]
δ→ [i′, q′]. J

For the initial configuration cs, before consuming

any events, we have that i = 1 and cs.q = MRs
.qs, i.e.

the state of the first configuration is the initial state of

MRs
. In other words, for every index i, we move from

our current state q to another state q′ if there is an out-

going transition from q to q′ and the predicate on this

transition evaluates to TRUE for ti. We then increase

the reading position by 1. Alternatively, if the transi-

tion is an ε-transition, we move to q′ without increasing

the reading position.

The actual behavior of a sSFA upon reading a stream

is captured by the notion of the run:

Definition 5 (Run of sSFA over stream) A run %

of a sSFA M over a stream S1..k is a sequence of suc-

cessor configurations [1, q1 = M.qs]
δ1→ [2, q2]

δ2→ · · · δk→
[k + 1, qk+1]. % is called accepting iff qk+1 ∈M.Qf . J

A run % of a sSFA MRs over a stream S1..k is ac-

cepting iff S1..k ∈ L(Rs), since MRs
, after reading S1..k,

Complex Event Forecasting with Prediction Suffix Trees 7

must have reached a final state. For a sSFA reading a

stream, the existence of an accepting run with config-

uration index k + 1 implies that a CE for the SRE R

has been detected at the stream index k.

As far as the temporal model is concerned, we as-

sume that all SDEs are instantaneous. They all carry

a timestamp attribute which is single, unique numeri-

cal value. We also assume that the stream of SDEs is

temporally sorted. A sequence/concatenation operator

is thus satisfied if the event of its first operand precedes

in time the event of its second operand. Another gen-

eral assumption is that there is no imposed limit on the

time elapsed between consecutive events in a sequence

operation.

4 Building a Probabilistic Model

The main idea behind our forecasting method is the fol-

lowing: Given a pattern R in the form of a SRE , we first

construct a sSFA as described in the previous section.

For event recognition, this would already be enough,

but in order to perform event forecasting, we translate

the sSFA to an equivalent deterministic SFA (DSFA).

This DSFA can then be used to learn a probabilistic

model, typically a Markov chain, that encodes depen-

dencies among the events in an input stream. Note that

a non-deterministic automaton cannot be directly con-

verted to a Markov chain, since from each state we

might be able to move to multiple other target states

with a given event. Therefore, we first determinize the

automaton. The probabilistic model is learned from a

portion of the input stream which acts as a training

dataset and it is then used to derive forecasts about

the expected occurrence of the CE encoded by the au-

tomaton. The issue that we address in this paper is how

to build a model which retains long-term dependencies

that are useful for forecasting.

4.1 Deterministic Symbolic Automata

The definition of DSFA is similar to that of classical de-

terministic automata. Intuitively, we require that, for

every state and every tuple/character, the SFA can

move to at most one next state upon reading that tu-

ple/character. We note though that it is not enough to

require that all outgoing transitions from a state have

different predicates as guards. Symbolic automata differ

from classical in one important aspect. For the latter,

if we start from a given state and we have two outgoing

transitions with different labels, then it is not possi-

ble for both of these transition to be triggered simul-

taneously (i.e., with the same character). For symbolic

automata, on the other hand, two predicates may be

different but still both evaluate to TRUE for the same

tuple and thus two transitions with different predicates

may both be triggered with the same tuple. Therefore,

the formal definition for DSFA must take this into ac-

count:

Definition 6 (Deterministic SFA [16]) A SFA M is

deterministic if, for all transitions (q, ψ1, q1), (q, ψ2, q2) ∈
M.∆, if q1 6= q2 then Jψ1 ∧ ψ2K = ∅. J

Using this definition for DSFA it can be proven

that SFA are indeed closed under determinization [16].

The determinization process first needs to create the

minterms of the predicates of a SFA M , i.e., the set of

maximal satisfiable Boolean combinations of such pred-

icates, denoted by N = Minterms(Predicates(M)), and

then use these minterms as guards for the DSFA [16].

Before moving to the discussion about how a DSFA

can be converted to a Markov chain, we present a useful

lemma. We will show that a DSFA always has an equiv-

alent (through an isomorphism) deterministic classical

automaton. This result is important because: a) it al-

lows us to use methods developed for classical automata

without having to always prove that they are indeed

applicable to symbolic automata as well, and b) it will

help us in simplifying our notation, since we can use

the standard notation of symbols instead of predicates.

First note that the set of minterms N induces a

finite set of equivalence classes on the (possibly infi-

nite) set of domain elements of M [16]. For example,

if Predicates(M) = {ψ1, ψ2}, then N = {ψ1 ∧ ψ2, ψ1 ∧
¬ψ2,¬ψ1∧ψ2,¬ψ1∧¬ψ2}, and we can map each domain

element (in our case, a tuple) to exactly one of these 4

minterms: the one that evaluates to TRUE when applied

to the element. Similarly, the set of minterms induces

a set of equivalence classes on the set of strings (event

streams in our case). For example, if S=t1, · · · , tk is an

event stream, then it could be mapped to S′=a, · · · , b,
with a corresponding to ψ1 ∧¬ψ2 if ψ1(t1)∧¬ψ2(t1) =

TRUE, b to ψ1 ∧ ψ2, etc.

Definition 7 (Stream induced by the minterms

of a DSFA) Let N = Minterms(Predicates(M)). If S

is a stream from the domain elements of the algebra of

a DSFA M , then the stream S′ induced by applying N

on S is the equivalence class of S induced by N . J

We can now present the lemma:

Lemma 1 For every DSFA Ms there exists a deter-

ministic classical finite automaton (DFA) Mc such that

L(Mc) is the set of strings induced by applying N =

Minterms(Predicates(Ms)) to L(Ms).

Proof. Proof presented in the technical report.

8 Elias Alevizos et al.

0start 1 2 3

b, c

a

a

c

b

c

a

b a

b, c

Fig. 2: A classical automaton for the expression R :=

a · c · c with alphabet Σ = {a, b, c}. State 1 can always

remember the last symbol seen, since it can be reached

only with a. State 0 can be reached with b or c.

Henceforth, we will be using symbols and strings

as in classical theories of automata and strings (sim-

ple lowercase letters to denote symbols), but the reader

should bear in mind that, in our case, each symbol al-

ways corresponds to a predicate and, more precisely, to

a minterm of a DSFA.

4.2 Variable-order Markov Models

Assuming that we have a deterministic automaton, the

next question is how we can build a probabilistic model

that captures the statistical properties of the streams

to be processed by this automaton. With such a model,

we could then make inferences about the automaton’s

expected behavior as it reads event streams. One ap-

proach would be to map each state of the automaton

to a state of a Markov chain, then apply the automaton

on a training stream of symbols, count the number of

transitions from each state to every other target state

and use these counts to calculate the transition prob-

abilities. This is the approach followed in [29]. How-

ever, there is an important issue with the way in which

this approach models transition probabilities. Namely,

a probability is attached to the transition between two

states, say state 1 and state 2, ignoring the way in which

state 1 has been reached, i.e., failing to capture the se-

quence of symbols. For example, in Figure 2, state 0

can be reached after observing symbol b or symbol c.

The outgoing transition probabilities do not distinguish

between the two cases. Instead, they just capture the

probability of a given that the previous symbol was b or

c. This introduces ambiguity and if there are many such

states in the automaton, we may end up with a Markov

chain that is first-order (with respect to its states), but

nevertheless provides no memory of the stream itself. It

may be unable to capture first-order (or higher order)

dependencies in the stream of events. In the worst case

(if every state can be reached with any symbol), such a

Markov chain may essentially assume that the stream

is composed of i.i.d. events.

An alternative approach, followed in [7,6], is to first

set a maximum order m that we need to capture and

then iteratively split each state of the original automa-

ton into as many states as required so that each new

state can remember the past m symbols that have led to

it. The new automaton that results from this splitting

process is equivalent to the original, in the sense that

they recognize the same language, but can always re-

member the last m symbols of the stream. With this ap-

proach, it is indeed possible to guarantee that m-order

dependencies can be captured. As expected though,

higher values of m can quickly lead to an exponential

growth of the number of states and the approach may

be practical only for low values of m.

We propose the use of a variable-order Markov model

(VMM) to mitigate the high cost of increasing the or-

der m [10,37,36,14,42]. This allows us to increase m to

values not possible with the previous approaches and

thus capture longer-term dependencies, which can lead

to a better accuracy. An alternative would be to use

hidden Markov models (HMMs) [34], which are gen-

erally more expressive than bounded-order (either full

or variable) Markov models. However, HMMs often re-

quire large training datasets [10,4]. Another problem

is that it is not always obvious how a domain can be

modeled through HMMs and a deep understanding of

the domain may be required [10]. Consider, for example,

our case of automata-based CER. The relation between

an automaton and the observed state of a HMM is not

straightforward and it is not evident how a HMM would

capture an automaton’s behavior.

Different Markov models of variable order have been

proposed in the literature (see [10] for a nice compar-

ative study). The general approach of such models is

as follows: let Σ denote an alphabet, σ ∈ Σ a symbol

from that alphabet and s ∈ Σm a string of length m of

symbols from that alphabet. The aim is to derive a pre-

dictor P̂ from the training data such that the average

log-loss on a test sequence S1..k is minimized. The loss

is given by l(P̂ , S1..k) = − 1
T

∑k
i=1 logP̂ (ti | t1 · · · ti−1).

Minimizing the log-loss is equivalent to maximizing the

likelihood P̂ (S1..k) =
∏k
i=1 P̂ (ti | t1 . . . ti−1). The aver-

age log-loss may also be viewed as a measure of the aver-

age compression rate achieved on the test sequence [10].

The mean (or expected) log-loss (−EP {logP̂ (S1..k)}) is

minimized if the derived predictor P̂ is indeed the ac-

tual distribution P of the source emitting sequences.

For full-order Markov models, the predictor P̂ is

derived through the estimation of conditional distribu-

tions P̂ (σ | s), with m constant and equal to the as-

sumed order of the Markov model. On the other hand,

variable-order Markov Models (VMMs) relax the as-

sumption of m being fixed. The length of the “con-

Complex Event Forecasting with Prediction Suffix Trees 9

text” s (as is usually called) may vary, up to a maxi-

mum order m, according to the statistics of the training

dataset. By looking deeper into the past only when it is

statistically meaningful, VMMs can capture both short-

and long-term dependencies.

4.3 Prediction Suffix Trees

We use Prediction Suffix Trees (PST), as described in

[37,36], as our VMM of choice. The reason is that, once

a PST has been learned, it can be readily converted

to a probabilistic automaton. More precisely, we learn

a probabilistic suffix automaton (PSA), whose states

correspond to contexts of variable length. The outgo-

ing transitions from each state of the PSA encode the

conditional distribution of seeing a symbol given the

context of that state. As we will show, this probabilis-

tic automaton (or the tree itself) can then be combined

with a symbolic automaton in a way that allows us to

infer when a CE is expected to occur.

The formal definition of a PST is the following:

Definition 8 (Prediction Suffix Tree [37]) Let Σ

be an alphabet. A PST T over Σ is a tree whose edges

are labeled by symbols σ ∈ Σ and each internal node

has exactly one edge for every σ ∈ Σ (hence, the degree

is | Σ |). Each node is labeled by a pair (s, γs), where

s is the string associated with the walk starting from

that node and ending at the root, and γs : Σ → [0, 1]

is the next symbol probability function related with s.

For every string s labeling a node,
∑
σ∈Σ γs(σ) = 1.

The depth of the tree is its order m. J

Figure 3a shows an example of a PST of order m =

2. According to this tree, if the last symbol that we have

encountered in a stream is a and we ignore any other

symbols that may have preceded it, then the probability

of the next input symbol being again a is 0.7. However,

we can obtain a better estimate of the next symbol

probability by extending the context and looking one

more symbol deeper into the past. Thus, if the last two

symbols encountered are b, a, then the probability of

seeing a again is very different (0.1). On the other hand,

if the last symbol encountered is b, the next symbol

probability distribution is (0.5, 0.5) and, since the node

b, (0.5, 0.5) has not been expanded, this implies that its

children would have the same distribution if they had

been created. Therefore, the past does not affect the

prediction and will not be used. A PST whose leaves

are all of equal depth m corresponds to a full-order

Markov model of order m, as its paths from the root

to the leaves correspond to every possible context of

length m.

Our goal is to incrementally learn a PST T̂ by adding

new nodes only when it is necessary and then use T̂ to

construct a PSA M̂ that will approximate the actual

PSA M that has generated the training data. Assum-

ing that we have derived an initial predictor P̂ (as de-

scribed in more detail in Section 4.5), the learning al-

gorithm in [37] starts with a tree having only a single

node, corresponding to the empty string ε. Then, it de-

cides whether to add a new context/node s by checking

two conditions:

– First, there must exist σ ∈ Σ such that P̂ (σ | s) >
θ1 must hold, i.e., σ must appear “often enough”

after the suffix s;

– Second, P̂ (σ|s)
P̂ (σ|suffix(s))

> θ2 (or P̂ (σ|s)
P̂ (σ|suffix(s))

< 1
θ2

)

must hold, i.e., it is “meaningful enough” to expand

to s because there is a significant difference in the

conditional probability of σ given s with respect

to the same probability given the shorter context

suffix (s), where suffix (s) is the longest suffix of s

that is different from s.

The thresholds θ1 and θ2 depend, among others, on pa-

rameters α, n and m, α being an approximation param-

eter, measuring how close we want the estimated PSA

M̂ to be compared to the actual PSA M , n denoting

the maximum number of states that we allow M̂ to have

and m denoting the maximum order/length of the de-

pendencies we want to capture. For example, consider

node a in Figure 3a and assume that we are at a stage

of the learning process where we have not yet added its

children, aa and ba. We now want to check whether it

is meaningful to add ba as a node. Assuming that the

first condition is satisfied, we can then check the ratio
P̂ (σ|s)

P̂ (σ|suffix(s))
= P̂ (a|ba)

P̂ (a|a) = 0.1
0.7 ≈ 0.14. If θ2 = 1.05, then

1
θ2
≈ 0.95 and the condition is satisfied, leading to the

addition of node ba to the tree [37].

Once a PST T̂ has been learned, we can convert it

to a PSA M̂ . The definition for PSA is the following:

Definition 9 (Probabilistic Suffix Automaton [37])

A Probabilistic Suffix Automaton M is a tuple (Q, Σ,

τ , γ, π), where Q is a finite set of states; Σ is a finite

alphabet; τ : Q × Σ → Q is the transition function;

γ : Q×Σ → [0, 1] is the next symbol probability func-

tion; π : Q→ [0, 1] is the initial probability distribution

over the starting states. The following conditions must

hold:

– For every q ∈ Q, it must hold that
∑
σ∈Σ γ(q, σ) = 1

and
∑
q∈Q π(q) = 1;

– Each q ∈ Q is labeled by a string s ∈ Σ∗ and the

set of labels is suffix free, i.e., no label s is a suffix

of another label s′;

10 Elias Alevizos et al.

ε,(0.6,0.4)

a,(0.7,0.3)

aa,(0.75,0.25) ba,(0.1,0.9)

b,(0.5,0.5)

(a) Example PST T for Σ = {a, b} and m = 2. Each node
contains the label and the next symbol probability distribution
for a and b.

aa

bab

a/0.75

b/0.25

b/0.9

a/0.1

a/0.5

b/0.5

(b) Example PSA MS constructed from the
above tree. Each state contains its label.
Each transition is composed of the next sym-
bol to be encountered along with that sym-
bol’s probability.

Fig. 3: Example of a prediction suffix tree and its cor-

responding probabilistic suffix automaton.

– For every two states q1, q2 ∈ Q and for every symbol

σ ∈ Σ, if τ(q1, σ) = q2 and q1 is labeled by s1, then

q2 is labeled by s2, such that s2 is a suffix of s1 · σ;

– For every s labeling some state q, and every symbol

σ for which γ(q, σ) > 0, there exists a label which

is a suffix of s · σ;

– Finally, the graph of M is strongly connected.

J

Note that a PSA is a Markov chain. τ and γ can

be combined into a single function, ignoring the sym-

bols, and this function, together with the first condi-

tion of Definition 9, would define the transition matrix

of a Markov chain. The last condition about M being

strongly connected also ensures that the Markov chain

is composed of a single recurrent class of states. Fig-

ure 3b shows an example of a PSA, the one that we

construct from the PST of Figure 3a, using the leaves

of the tree as automaton states. A full-order PSA for

m = 2 would require a total of 4 states, given that we

have two symbols. If we use the PST of Figure 3a, we

can construct the PSA of Figure 3b which has 3 states.

State b does not need to be expanded to states bb and

ab, since the tree tells us that such an expansion is not

statistically meaningful.

Using a PSA we can process a stream of symbols

and at every point be able to provide an estimate about

the next symbols that will be encountered along with

their probabilities. The state of the PSA at every mo-

ment corresponds to a suffix of the stream. For example,

according to the PSA of Figure 3b, if the last symbol

consumed from the stream is b, then the PSA would be

in state b and the probability of the next symbol being

a would be 0.5. If the last symbol in the stream is a, we

would need to expand this suffix to look at one more

symbol in the past. If the last two symbols are aa, then

the PSA would be in state aa and the probability of

the next symbol being a again would be 0.75.

The above discussion seems to suggest that a PSA

is constructed from the leaves of a PST . Thus, it should

be expected that the number of states of a PSA should

always be smaller than the total number of nodes of

its PST . However, this is not true in the general case.

In fact, in some cases the PST nodes might be signif-

icantly less than the PSA states. The reason is that

a PST , as is produced by the learning algorithm de-

scribed previously, might not be sufficient to construct

a PSA. To remedy this situation, we need to expand the

original PST T̂ by adding more nodes in order to get a

suitable PST T̂ ′ and then construct the PSA from T̂ ′.

The leaves of T̂ ′ (and thus the states of the PSA) could

be significantly more than the leaves of T̂ . This issue is

further discussed in Section 4.4.2.

4.4 Emitting Forecasts

Our ultimate goal is to use the statistical properties of

a stream, as encoded in a PST or a PSA, in order to in-

fer when a Complex Event (CE) with a given Symbolic

Regular Expression (SRE) R will be detected. Equiv-

alently, we are interested in inferring when the SFA of

R will reach one of its final states. To achieve this goal,

we work as follows. We start with a SRE R and a train-

ing stream S. We first use R to construct an equivalent

sSFA and then determinize this sSFA into a DSFA MR.

MR can be used to perform recognition on any given

stream, but cannot be used for probabilistic inference.

Next, we use the minterms of MR (acting as “symbols”,

see Lemma 1) and the training stream S to learn a PST

T and (if required) a PSA MS which encode the sta-

tistical properties of S. These probabilistic models do

not yet have any knowledge of the structure of R (they

only know its minterms), are not acceptors (the PSA

does not have any final states) and cannot be used for

recognition. We therefore need to combine the learned

probabilistic model (T or MS) with the automaton used

for recognition (MR).

At this point, there is a trade-off between mem-

ory and computation efficiency. If the online perfor-

mance of our system is critical and we are not willing

to make significant sacrifices in terms of computation

Complex Event Forecasting with Prediction Suffix Trees 11

efficiency, then we should combine the recognition au-

tomaton MR with the PSA MS . Using the PSA we

can have a very efficient solution with minimal over-

head on throughput. The downside of this approach

is its memory footprint, which may limit the order of

the model. Although we may increase the order beyond

what is possible with full-order models, we may still

not achieve the desired values, due to the significant

memory requirements. Hence, if high accuracy and thus

high order values are necessary, then we should combine

the recognition automaton MR directly with the PST

T , bypassing the construction of the PSA. In practice

prediction suffix trees often turn out to be more com-

pact and memory efficient than probabilistic suffix au-

tomata, but trees need to be constantly traversed from

root to leaves whereas an automaton simply needs to

find the triggered transition and immediately jump to

the next state. In the remainder of this Section, we

present these two alternatives.

4.4.1 Using a Probabilistic Suffix Automaton (PSA)

We can combine a recognition automaton MR and a

PSA MS into a single automaton M that has the power

of both and can be used for recognizing and for forecast-

ing occurrences of CEs of the expression R. We call M

the embedding ofMS inMR. The reason for merging the

two automata is that we need to know at every point in

time the state of MR in order to estimate which future

paths might actually lead to a final state (and thus a

complex event). If only SDE forecasting was required,

this merging would not be necessary. We could use MR

for recognition and then MS for SDE forecasting. In

our case, we need information about the structure of

the pattern automaton and its current state to deter-

mine if and when it might reach a final state. The formal

definition of an embedding is given below, where, in or-

der to simplify notation, we use Lemma 1 and represent

DSFA as classical deterministic automata.

Definition 10 (Embedding of a PSA in a DSFA)

Let MR be a DSFA (actually its mapping to a clas-

sical automaton) and MS a PSA with the same al-

phabet. An embedding of MS in MR is a tuple M =

(Q,Qs, Qf , Σ,∆, Γ, π), where Q is a finite set of states;

Qs ⊆ Q is the set of initial states; Qf ⊆ Q is the set

of final states; Σ is a finite alphabet; ∆ : Q × Σ → Q

is the transition function; Γ : Q × Σ → [0, 1] is the

next symbol probability function; π : Q → [0, 1] is the

initial probability distribution. The language L(M) of

M is defined, as usual, as the set of strings that lead

M to a final state. The following conditions must hold,

in order for M to be an embedding of MS in MR: a)

0start 1 2

b

a

a

b

a

b

(a) DSFA MR for R := a · b and Σ = {a, b}.

(0, aa)

start

(0, ba)

start

(0, b)

start

(1, aa)

(1, ba)

(1, b)

(2, aa)

(2, ba)

(2, b)

a/0.75

b/0.25

a/0.1

b/0.9

a/0.5

b/0.5

a/0.75

b/0.25

a/0.1

b/0.9

a/0.1

b/0.9

a/0.5

b/0.5

a/0.75

b/0.25

a/0.5

b/0.5

(b) Embedding of MS of Figure 3b in MR of Figure 4a.

Fig. 4: Embedding example.

Σ = MR.Σ = MS .Σ; b) L(M) = L(MR); c) For ev-

ery string/stream S1..k, PM (S1..k) = PMS
(S1..k), where

PM denotes the probability of a string calculated by M

(through Γ) and PMS
the probability calculated by MS

(through γ). J

The first condition ensures that all automata have

the same alphabet. The second ensures that M is equiv-

alent to MR by having the same language. The third

ensures that M is also equivalent to MS , since both

automata return the same probability for every string.

It can be shown that such an equivalent embedding

can indeed be constructed for every DSFA and PSA.

Theorem 1 For every DSFA MR and PSA MS con-

structed using the minterms of MR, there exists an em-

bedding of MS in MR.

Proof. Proof presented in the technical report. It is a

constructive proof where we take the Cartesian product

of the states of MR and the states of MS and set the

transition and probability functions accordingly.

As an example, consider the DSFA MR of Figure 4a

for the expression R = a ·b with Σ = {a, b}. We present

it as a classical automaton, but we remind readers that

12 Elias Alevizos et al.

symbols in Σ correspond to minterms. Figure 3a de-

picts a possible PST T that could be learned from a

training stream composed of symbols from Σ. Figure

3b shows the PSA MS constructed from T . Figure 4b

shows the embedding M of MS in MR. Notice, how-

ever, that this embedding has some redundant states

and transitions; namely the states indicated with red

that have no incoming transitions and are thus inacces-

sible. The reason is that some states of MR in Figure

4a have a “memory” imbued to them from the struc-

ture of the automaton itself. For example, state 2 of

MR has only a single incoming transition with b as its

symbol. Therefore, there is no point in merging this

state with all the states of MS , but only with state

b. To avoid the inclusion of red states, we can merge

MR and MS in an incremental fashion. The resulting

automaton would then consist only of the black states

and transitions of Figure 4b. Notice that this automa-

ton has multiple start states. In a streaming setting, we

would thus have to wait at the beginning of the stream

for some input events to arrive before deciding the start

state with which to begin. For example, if b were the

first input event, we would then begin with the bottom

left state (0, b). On the other hand, if a were the first in-

put event, we would have to wait for yet another event.

If another a arrived as the second event, we would be-

gin with the top left state (0, aa). In general, if m is our

maximum order, we would need to wait for at most m

input events before deciding.

After constructing an embedding M from a DSFA

MR and a PSA MS , we can use M to perform forecast-

ing on a test stream. SinceM is equivalent toMR, it can

also consume a stream and detect the same instances

of the expression R as MR would detect. However, our

goal is to use M to forecast the detection of an instance

of R. More precisely, we want to estimate the number of

transitions from any state in which M might be until it

reaches for the first time one of its final states. Towards

this goal, we can use the theory of Markov chains. Let

N denote the set of non-final states of M and F the set

of its final states. We can organize the transition ma-

trix of M in the following way (we use bold symbols to

refer to matrices and vectors and normal ones to refer

to scalars or sets):

Π =

(
N NF

FN F

)
(1)

where N is the sub-matrix containing the probabilities

of transitions from non-final to non-final states, F the

probabilities from final to final states, FN the proba-

bilities from final to non-final states and NF the prob-

abilities from non-final to final states. By partitioning

the states of a Markov chain into two sets, such as N

and F , the following theorem can be used to estimate

the probability of reaching a state in F :

Theorem 2 Let Π be the transition probability ma-

trix of a homogeneous Markov chain Yt in the form of

Equation (1) and ξinit its initial state distribution. The

probability for the time index n when the system first

enters the set of states F , starting from a state in N ,

can be obtained from

P (Yn ∈ F, Yn−1 ∈ N, · · · , Y2 ∈ N,Y1 ∈ N | ξinit) =

ξN
TNn−1(I −N)1

(2)

where ξN is the vector consisting of the elements of ξinit
corresponding to the states of N . When starting from a

state in F , the formula is the following:

P (Yn ∈ F, Yn−1 ∈ N, · · · , Y2 ∈ N,Y1 ∈ F | ξinit) ={
ξF

TF1 if n = 2

ξF
TFNN

n−2(I −N)1 otherwise

(3)

Proof. The proof of Eq. 2 may be found in [18]. The

proof of Eq. 3 is presented in the technical report.

Note that the above formulas do not useNF , as it is

not needed when dealing with probability distributions.

As the sum of the probabilities is equal to 1, we can

deriveNF fromN . This is the role of the term (I−N)1

in the formulas, which is equal toNF when there is only

a single final state and equal to the sum of the columns

of NF when there are multiple final states, i.e., each

element of the matrix corresponds to the probability of

reaching one of the final states from a given non-final

state.

Using Theorem 2, we can calculate the so-called

waiting-time distributions for any state q of the

automaton, i.e., the distribution of the index n,

given by the waiting-time variable Wq = inf{n :

Y0, Y1, ..., Yn, Y0 = q, q ∈ Q\F, Yn ∈ F}. Theorem 2

provides a way to calculate the probability of reaching

a final state, given an initial state distribution ξinit.

In our case, as the automaton is moving through its

various states, ξinit takes a special form. At any point

in time, the automaton is (with certainty) in a specific

state q. In that state, ξinit is a vector of 0, except for

the element corresponding to the current state of the

automaton, which is equal to 1.

Figure 5 shows an automaton along with the waiting-

time distributions for its non-final states. For this ex-

ample, if the automaton is in state 2, the probability of

Complex Event Forecasting with Prediction Suffix Trees 13

0start 1 2 3 4
a b b b

a

a

a

b

b a

(a) DFA.

1 2 3 4 5 6 7 8 9 10 11 12

Number of future events

0

0.2

0.4

0.6

0.8

1

C
o
m

p
le

ti
o
n
 P

ro
b
a
b
ili

ty

state:0
state:1
interval:3,8
state:2
state:3

(b) Waiting-time distributions and shortest
interval, i.e. [3, 8], exceeding a confidence
threshold θfc = 50% for state 1.

Fig. 5: Automaton and waiting-time distributions for

R = a · b · b · b, Σ = {a, b}.

reaching the final state 4 for the first time in 2 transi-

tions is ≈ 50%. However, it is 0% for 3 transitions, as

there is no path of length 3 from state 2 to state 4.

We can use the waiting-time distributions to pro-

duce various kinds of forecasts. In the simplest case,

we can select the future point with the highest proba-

bility and return this point as a forecast. We call this

type of forecasting REGRESSION-ARGMAX. Alterna-

tively, we may want to know how likely it is that a CE
will occur within the next w input events. For this,

we can sum the probabilities of the first w points of a

distribution and if this sum exceeds a given threshold

we emit a “positive” forecast (meaning that a CE is

indeed expected to occur); otherwise a “negative” (no

CE is expected) forecast is emitted. We call this type of

forecasting CLASSIFICATION-NEXTW. These kinds

of forecasts are easy to compute. There is another kind

of useful forecasts, which are however more computa-

tionally demanding. Given that we are in a state q, we

may want to forecast whether the automaton, with con-

fidence at least θfc, will have reached its final state(s)

in n transitions, where n belongs to a future interval

I = [start , end]. The confidence threshold θfc is a pa-

rameter set by the user. The forecasting objective is

to select the shortest possible interval I that satisfies

θfc. Figure 5b shows the forecast interval produced for

state 1 of the automaton of Figure 5a, with θfc = 50%.

We call this third type of forecasting REGRESSION-

INTERVAL. We have implemented all of the above

types of forecasting. Due to space limitations, in this

paper we focus on CLASSIFICATION-NEXTW.

Note that the domain of a waiting-time distribu-

tion is not composed of timepoints and thus a forecast

does not explicitly refer to time. Each value of the in-

dex n on the x axis essentially refers to the number

of transitions that the automaton needs to take before

reaching a final state, or, equivalently, to the number

of future input events to be consumed. If we were re-

quired to output forecasts referring to time, we would

need to convert these basic event-related forecasts to

time-related ones (e.g., by trying to model the time

elapsed between events via a Poisson process). In this

paper we decided to focus on events, instead of time-

points, for two reasons: a) Sometimes it might not be

desirable to give time-related forecasts. Event-related

forecasts might be more suitable, as is the case, for ex-

ample, in the domain of credit card fraud management,

where we need to know whether or not the next trans-

action(s) will be fraudulent, independent of the actual

time it(they) will happen. We examine this use case

in Section 7.2. b) Time-related forecasts might be very

difficult (or almost impossible) to produce if the under-

lying process exhibits a high degree of randomness, as

is the case in the maritime domain, where AIS messages

are produced in a random fashion and depend on many

(even human-related) factors, e.g., the crew of a vessel

simply forgetting to switch on the AIS equipment. In

such cases, it might be preferable to perform some form

of sampling or interpolation on the original stream of

input events in order to derive another stream similar

to the original one but with regular intervals. We fol-

low this approach in our experiments in the maritime

domain (Section 7.3).

4.4.2 Using a Prediction Suffix Tree (PST)

The reason for constructing an embedding of the PSA

MS learned from the data into the automaton MR used

for recognition, as described in the previous section, is

that the embedding is based on a variable-order model

that will consist on average of much fewer states than

a full-order model. There is, however, one specific step

in the process of creating an embedding that may act

as a bottleneck and prevent us from increasing the or-

der to desired values: the step of converting a PST to

a PSA. The number of nodes of a PST is often or-

der of magnitudes smaller than the number of states of

the PSA constructed from that PST . Motivated by this

observation, we devised a way to estimate the required

waiting-time distributions without actually construct-

ing the embedding. Instead, we make direct use of the

PST , which is more memory efficient. Thus, given a

14 Elias Alevizos et al.

DSFA MR and its PST T , we can estimate the proba-

bility for MR to reach for the first time one of its final

states in the following manner.

As the system processes events from the input

stream, besides feeding them to MR, it also stores

them in a buffer that holds the m most recent events,

where m is equal to the maximum order of the PST

T . After updating the buffer with a new event, the

system traverses T according to the contents of the

buffer and arrives at a leaf l of T . The probability of

any future sequence of events can be estimated with

the use of the probability distribution at l. In other

words, if S1..k = · · · , tk−1, tk is the stream seen thus

far, then the next symbol probability for tk+1, i.e.,

P (tk+1 | tk−m+1, · · · , tk), can be directly retrieved from

the distribution of the leaf l. If we want to look further

into the future, e.g., into tk+2, we can repeat the same

process as necessary. Namely, if we fix tk+1, then the

probability for tk+2, P (tk+2 | tk−m+2, · · · , tk+1), can

be retrieved from T , by retrieving the leaf l
′

reached

with tk+1, · · · , tk−m+2. In this manner, we can estimate

the probability of any future sequence of events. Con-

sequently, we can also estimate the probability of any

future sequence of states of the DSFA MR, since we can

simply feed these future event sequences to MR and let

it perform “forward” recognition with these projected

events. In other words, we can let MR “generate” a

sequence of future states, based on the sequence of

projected events, in order to determine when MR will

reach a final state. Finally, since we can estimate the

probability for any future sequence of states of MR,

we can use the definition of the waiting-time variable

(Wq = inf{n : Y0, Y1, ..., Yn, Y0 = q, q ∈ Q\F, Yn ∈ F})
to calculate the waiting-time distributions. Figure 6

shows an example of this process for the automaton

MR of Figure 4a. Figure 6a displays an example PST

T learned with the minterms/symbols of MR.

One remark should be made at this point in order

to showcase how an attempt to convert T to a PSA

could lead to a blow-up in the number of states. The

basic step in such a conversion is to take the leaves

of T and use them as states for the PSA. If this was

sufficient, the resulting PSA would always have fewer

states than the PST . As this example shows, this is

not the case. Imagine that the states of the PSA are

just the leaves of T and that we are in the right-most

state/node, b, (0.5, 0.5). What will happen if an a event

arrives? We would be unable to find a proper next state.

The state aa, (0.75, 0.25) is obviously not the correct

one, whereas states aba, (0.9, 0.1) and bba, (0.1, 0.9) are

both “correct”, in the sense that ba is a suffix of both

aba and bba. In order to overcome this ambiguity re-

garding the correct next state, we would have to first

ε,(0.6,0.4)

a,(0.7,0.3)

aa,(0.75,0.25) ba,(0.8,0.2)

aba,(0.9,0.1) bba,(0.1,0.9)

b,(0.5,0.5)

(a) The PST T for the automaton MR of Figure 4a.

{1,aa}

{1,aa}

{2,b}

{1,aa}

{2,b}

{1,aba}

{0,b}

· · ·

· · ·

a,0.75

b,0.25

a,0.75

b,0.25

a,0.5

b,0.5

a,0.75

b,0.25

a,0.5

b,0.5

a,0.9

b,0.1

a,0.5

b,0.5

(b) Future paths followed by MR and T starting
from state 1 of MR and node aa of T . Purple nodes
correspond to the only path of length k = 2 that
leads to a final state. Pink nodes are pruned. Nodes
with double borders correspond to final states of
MR.

Fig. 6: Example of estimating a waiting-time distribu-

tion without a Markov chain.

expand node b, (0.5, 0.5) of T and then use the children

of this node as states of the PSA. In this simple exam-

ple, this expansion of a single problematic node would

not have serious consequences. But for deep trees and

large alphabets, the number of states generated by such

expansions are far more than the number of the orig-

inal leaves. For this reason, the size of the PSA is far

greater than that of the original, unexpanded PST .

Figure 6b illustrates how we can estimate the proba-

bility for any future sequence of states of the DSFA MR,

using the distributions of the PST T . Let us assume

that, after consuming the last event, MR is in state 1

and T has reached its left-most node, aa, (0.75, 0.25).

This is shown as the left-most node also in Figure 6b.

Each node in this figure has two elements: the first one

Complex Event Forecasting with Prediction Suffix Trees 15

is the state of MR and the second the node of T , start-

ing with {1, aa} as our current “configuration”. Each

node has two outgoing edges, one for a and one for

b, indicating what might happen next and with what

probability. For example, from the left-most node of

Figure 6b, we know that, according to T , we might see

a with probability 0.75 and b with probability 0.25. If

we do encounter b, then MR will move to state 2 and T

will reach leaf b, (0.5, 0.5). This is shown in Figure 6b

as the white node {2, b}. This node has a double border

to indicate that MR has reached a final state.

In a similar manner, we can keep expanding this tree

into the future and use it to estimate the waiting-time

distribution for its node {1, aa}. In order to estimate the

probability of reaching a final state for the first time in k

transitions, we first find all the paths of length k which

start from the original node and end in a final state

without including another final state. In our example

of Figure 6b, if k = 1, then the path from {1, aa} to

{2, b} is such a path and its probability is 0.25. Thus,

P (W{1,aa} = 1) = 0.25. For k = 2, the path with the

purple nodes leads to a final state after 2 transitions. Its

probability is 0.75 ∗ 0.25 = 0.1875, i.e., the product of

the probabilities on the path edges. Thus, P (W{1,aa} =

2) = 0.1875. If there were more such alternative paths,

we would have to add their probabilities.

Note that the tree-like structure of Figure 6b is not

an actual data structure that we need to construct and

maintain. It is only a graphical illustration of the re-

quired computation steps. The actual computation is

performed recursively on demand. At each recursive

call, a new frontier of virtual future nodes at level k is

generated. We thus do not maintain all the nodes of this

tree in memory, but only access the PST T , which is

typically much more compact than a PSA. Despite this

fact though, the size of the frontier after each recursive

call grows exponentially as we try to look deeper into

the future. This cost can be significantly reduced by em-

ploying the following optimizations. First, note in Fig-

ure 6b, that the paths starting from the two {2, b} nodes

are pink. This indicates that these paths do not actually

need to be generated, as they start from a final state.

We are only interested in the first time MR reaches a

final state and not in the second, third, etc. As a result,

paths with more than one final states are not useful.

With this optimization, we can still do an exact esti-

mation of the waiting-time distribution. Another useful

optimization is to prune paths that we know will have

a very low probability, even if they are necessary for an

exact estimation of the distributions. The intuition is

that such paths will not contribute significantly to the

probabilities of our waiting-time distribution, even if we

do expand them. We can prune such paths, accepting

(ε,10)

(a,8)

(a,5) (b,2)

(b,2)

(a,2)

Fig. 7: Example of a Counter Suffix Tree with m = 2

and S = aaabaabaaa.

the risk that we will have an approximate estimation of

the waiting-time distribution. This pruning can be done

without generating the paths in their totality. As soon

as a partial path has a low probability, we can stop

its expansion, since any deeper paths will have even

lower probabilities. We have found this optimization to

be very efficient while having negligible impact on the

distribution for a wide range of cut-off thresholds.

4.5 Estimation of Empirical Probabilities

We have thus far described how an embedding of a PSA

MS in a DSFA MR can be constructed and how we can

estimate the forecasts for this embedding. We have also

presented how this can be done directly via a PST ,

without going through a PSA. However, before learn-

ing the PST , as described in Section 4.3, we first need

to estimate the empirical probabilities for the various

symbols. We describe here this extra initial step.

First, note that the empirical probabilities of the

strings (s) and the expected next symbols (σ) observed

in a stream are given by the following formulas [37]:

P̂ (s) =
1

k −m
k−1∑
j=m

χj(s) (4)

P̂ (σ | s) =

∑k−1
j=m χj+1(s · σ)∑k−1

j=m χj(s)
(5)

where k is the length of the training stream S1..k, m

is the maximum length of the strings (s) that will be

considered and

χj(s) =

{
1 if S(j−|s|+1)···j = s

0 otherwise
(6)

In other words, we need to count the number of occur-

rences of the various candidate strings s in S1..k. The

numerators and denominators in Eq. (4) and (5) are

essentially counters for the various strings.

In order to keep track of these counters, we can use

a tree data structure which allows to scan the train-

ing stream only once. We call this structure a Counter

Suffix Tree (CST). Each node in a CST is a tuple

16 Elias Alevizos et al.

(σ, c) where σ is a symbol from the alphabet (or ε

only for the root node) and c a counter. By follow-

ing a path from the root to a node, we get a string

s = σ0 · σ1 · · ·σn, where σ0 = ε corresponds to the root

node. The property maintained as a CST is built from

a stream S1..k is that the counter of the node σn that is

reached with s gives us the number of occurrences of the

string σn ·σn−1 · · ·σ1 (the reversed version of s) in S1..k.

As an example, see Figure 7, which depicts the CST of

maximum depth 2 for the stream S = aaabaabaaa. If

we want to retrieve the number of occurrences of the

string b ·a in S, we follow the left child (a, 7) of the root

and then the right child of this. We thus reach (b, 2) and

indeed b · a occurs twice in S.

A CST can be incrementally constructed by main-

taining a buffer of size m that always holds the last m

symbols of S. The contents of the buffer are fed into

the CST after the arrival of a new symbol. The update

algorithm follows a path through the CST according to

the whole string provided by the buffer. For every node

that already exists, its counter is incremented by 1. If

a node does not exist, it is created and its counter is

set to 1. At any point, having been updated with the

training stream, the CST can be used to retrieve the

necessary counters and estimate the empirical proba-

bilities of Equations (4) and (5) that are subsequently

used in the PST construction.

5 Complexity Analysis

We now describe the steps required for estimating fore-

casts, along with the input required for each of them

and their complexity. The first step takes as input the

minterms of a DSFA, the maximum order m of depen-

dencies to be captured and a training stream. Its out-

put is a CST of maximum depth m (Section 4.5). In

the second step, the CST is converted to a PST , using

an approximation parameter α and a parameter n for

the maximum number of states for the PSA to be con-

structed subsequently (Section 4.3). For the third step,

we have two options: we can either use the PST to di-

rectly estimate the waiting-time distributions (Section

4.4.2) or we can convert the PST to a PSA, by using the

leaves of the PST as states of the PSA (Section 4.3). If

we follow the first path, we can then move on directly

to the last step of estimating the actual forecasts, using

the confidence threshold θfc provided by the user. If

we follow the alternative path, the PSA is merged with

the initial DSFA to create the embedding of the PSA

in the DSFA (Section 4.4.1). From the embedding we

can calculate the waiting-time distributions, which can

be used to derive the forecasts.

The learning algorithm of step 2, as presented in

[37], is polynomial in m, n, 1
α and the size of the alpha-

bet (number of minterms in our case). Below, we give

complexity results for the remaining steps.

Proposition 2 (Step 1) Let S1..k be a stream and m

the maximum depth of the Counter Suffix Tree T to be

constructed from S1..k. The complexity of constructing

T is O(m(k −m)).

Proposition 3 (Step 3a) Let T be a PST of maxi-

mum depth m, learned with the t minterms of a DSFA

MR. The complexity of constructing a PSA MS from T

is O(tm+1 ·m).

Proposition 4 (Step 3b) Let T be a PST of maxi-

mum depth m, learned with the t minterms of a DSFA

MR. The complexity of estimating the waiting-time dis-

tribution for a state of MR and a horizon of length h

directly from T is O((m+ 3) t−t
h+1

1−t).

Proposition 5 (Step 4) Let MR be a DSFA with t

minterms and MS a PSA learned with the minterms of

MR. The complexity of constructing an embedding M

of MS in MS is O(t · |MR.Q×MS .Q|).

Proposition 6 (Step 5) Let M be the embedding of a

PSA MS in a DSFA MR. The complexity of estimating

the waiting-time distribution for a state of M and a

horizon of length h using Theorem 2 is O((h−1)k2.37),

where k is the dimension of the square matrix N .

Proposition 7 (Step 6) For a waiting-time distribu-

tion with horizon h, the complexity of REGRESSION-

INTERVAL is O(h) and that of CLASSIFICATION-
NEXTW is O(w) for a future window of length w.

Detailed proofs for the complexities of the algorithms

for all the above steps may be found in the extended

technical report.

6 Measuring the Quality of Forecasts

Our system can perform all types of forecasting de-

scribed in Section 4.4.1. In this paper we focus on clas-

sification forecasting, since it can be evaluated in a

straightforward manner. Regression forecasting does not

allow us to test how well a system performs in the ab-

sence of CEs as it always assumes that a CE does indeed

occur in the future. Our system can also perform SDE

forecasting, e.g., by using the next symbol distributions

of a suffix tree’s leaves. On the other hand, as already

mentioned (Section 2), CE forecasting is not a straight-

forward extension of SDE forecasting.

Complex Event Forecasting with Prediction Suffix Trees 17

In order to properly measure the quality of the pro-

duced forecasts, we first need to decide when it makes

sense to emit forecasts, i.e., to establish checkpoints in

the stream. Eagerly emitting forecasts after every new

SDE is feasible, but not very useful and can also pro-

duce results that are misleading. By their very nature,

CEs are relatively rare within a stream of input SDEs.

As a result, if we emit a forecast after every new SDE,

some of these forecasts (possibly even the majority) will

have a significant temporal distance from the CE to

which they refer. As an example, consider a pattern

from the maritime domain which detects the entrance

of a vessel in the port of Tangiers. We can also try to

use this pattern for forecasting when the vessel will ar-

rive at the port of Tangiers. However, the majority of

the vessel’s messages may lie in areas so distant from

the port (e.g., in the Pacific ocean) that it would be

practically useless to emit forecasts when the vessel is

in these areas. Moreover, if we do emit forecasts from

these distant areas, the scores and metrics that we use

to evaluate the quality of the forecasts will be domi-

nated by mostly low-quality, distant forecasts.

Our proposed solution is to emit forecasts only when

the CE is relatively close in the future. This can be

achieved by using a pattern’s automaton to estimate at

every point how close the automaton is to reaching a

final state and thus detecting a CE. We can then es-

tablish checkpoints only at these points in the stream

where the automaton is not very “far” from reaching a

final state. We can use the structure of the automaton

itself to estimate these distances to CEs. We may not

know the actual distance to a CE, but the automaton

can provide us with an “expected” or “possible” dis-

tance, as follows. For an automaton that is already in

a final state, it can be said that the distance to a CE

is 0. More conveniently, we can say that the “process”

that the automaton describes has been completed or,

equivalently, that there remains 0% of the process un-

til completion. For an automaton that is in a non-final

state but separated from a final state by 1 transition, it

can be said that the “expected” distance is 1. We use

the term “expected” because we are not interested in

whether the automaton will actually make the transi-

tion to a final state. We want to establish checkpoints

both for the presence and the absence of CEs. When the

automaton fails to make the transition to a final state,

this “expected” distance remains a “possible” one that

failed to materialize. We also note that there might also

exist other walks from this non-final state to a final one

whose length could be greater than 1 (in fact, there

might exist walks with “infinite length”, in the case of

loops). In order to estimate the “expected” distance

of a non-final state, we only use the shortest walk to

a final state. Note that these distances are completely

independent of any stream to be processed by the au-

tomaton. They are estimated by looking exclusively at

the structure of the automaton.

After estimating the expected distances of all states,

we can then express them as percentages by dividing

them by the greatest among them. A 0% distance will

thus refer to final states, whereas a 100% distance to

the state(s) that are the most distant to a final state,

i.e., the automaton has to take the most transitions to

reach a final state. These are the start states. We can

then determine our checkpoints by specifying the states

in which the automaton is permitted to emit forecasts,

according to their “expected” distance. For example,

we may establish checkpoints by allowing only states

with a distance between 40% and 60% to emit forecasts.

The intuition here is that, by increasing the allowed

distance, we make the forecasting task more difficult.

The evaluation task itself consists of the following

steps. At the arrival of every new input event, we first

check whether the distance of the new automaton state

falls within the range of allowed distances, as explained

above. If the new state is allowed to emit a forecast, we

use its waiting-time distribution to produce the fore-

cast. Two parameters are taken into account: the length

of the future window w within which we want to know

whether a CE will occur and the confidence thresh-

old θfc. If the probability of the first w points of the

distribution exceeds the threshold θfc, we emit a posi-

tive forecast, essentially affirming that a CE will occur

within the next w events; otherwise, we emit a negative

forecast, essentially rejecting the hypothesis that a CE

will occur. We thus obtain a binary classification task.

As a consequence, we can make use of standard clas-

sification measures, like precision and recall. Each fore-

cast is evaluated: a) as a true positive (TP) if the fore-

cast is positive and the CE does indeed occur within the

next w events from the forecast; b) as a false positive

(FP) if the forecast is positive and the CE does not oc-

cur; c) as a true negative (TN) if the forecast is negative

and the CE does not occur and d) as a false negative

(FN) if the forecast is negative and the CE does oc-

cur; Precision is then defined as Precision = TP
TP+FP

and recall (also called sensitivity or true positive rate)

as Recall = TP
TP+FN . As already mentioned, CEs are

relatively rare in a stream. It is thus important for a

forecasting engine to be as specific as possible in identi-

fying the true negatives. For this reason, besides preci-

sion and recall, we also use specificity (also called true

negative rate), defined as Specificity = TN
TN+FP .

A classification experiment is performed as follows.

For various values of the “expected” distance and the

confidence threshold θfc, we estimate precision, recall

18 Elias Alevizos et al.

and specificity on a test dataset. For a given distance,

θfc acts as a cut-off parameter. For each value of θfc,

we estimate the recall (sensitivity) and specificity scores

and we plot these scores as a ROC curve. For each dis-

tance, we then estimate the area under curve (AUC) for

the ROC curves. The higher the AUC value, the better

the model is assumed to be.

The setting described above is the most suitable for

evaluation purposes, but might not be the most appro-

priate when such a system is actually deployed. For de-

ployment purposes, another option would be to simply

set a best, fixed confidence threshold (e.g., by select-

ing, after evaluation, the threshold with the highest F1-

score or Matthews correlation coefficient) and emit only

positive forecasts, regardless of their distance. Forecasts

with low probabilities (i.e., negative forecasts) will thus

be ignored/suppressed. This is justified by the fact that

a user would typically be more interested in positive

forecasts. For evaluation purposes, this would not be

an appropriate experimental setting, but it would suf-

fice for deployment purposes, where we would then be

focused on fine-tuning the confidence threshold. In this

paper, we focus on evaluating our system and thus do

not discuss further any deployment solution.

7 Empirical Evaluation

We now present experimental results on two datasets,

a synthetic one (Section 7.2) and a real-world one (Sec-

tion 7.3). We first briefly discuss the models that we

evaluated and present our software and hardware set-

tings in Section 7.1.

7.1 Models Tested and Settings

In the experiments that we present, we evaluated the

variable-order Markov model that we have presented

in this paper in its two versions: the memory efficient

one that bypasses the construction of a Markov chain

and makes direct use of the PST learned from a stream

(Section 4.4.2) and the computationally efficient one

that constructs a PSA (Section 4.4.1). We compared

these against four other models inspired by the relevant

literature.

The first, described in [6,7], is the most similar in its

general outline to our proposed method. It is a previous

version of our system presented in this paper and is also

based on automata and Markov chains. The main differ-

ence is that it attempts to construct full-order Markov

models of order m and is thus typically restricted to

low values for m. The second model is presented in

[29], where automata and Markov chains are used once

again. However, the automata are directly mapped to

Markov chains and no attempt is made to ensure that

the Markov chain is of a certain order. Thus, in the

worst case, this model essentially makes the assump-

tion that SDEs are i.i.d. and m = 0.

As a third alternative, we evaluated a model that

is based on Hidden Markov Models (HMM), similar to

the work presented in [31]. That work uses the Esper

event processing engine [1] and attempts to model a

business process as a HMM. For our purposes, we use a

HMM to describe the behavior of an automaton, con-

structed from a given symbolic regular expression. The

observation variable of the HMM corresponds to the

states of the automaton. Thus, the set of possible val-

ues of the observation variable is the set of automa-

ton states. An observation sequence of length l for the

HMM consists of the sequence of l states visited by the

automaton after consuming l SDEs. The l SDEs (sym-

bols) are used as values for the hidden variable. The

last l symbols are the last l values of the hidden vari-

able. Therefore, this HMM always has l hidden states,

whose values are taken from the SDEs, connected to l

observations, whose values are taken from the automa-

ton states. We can train such a HMM with the Baum-

Welch algorithm, using the automaton to generate a

training observation sequence from the original training

stream. We can then use this learned HMM to produce

forecasts on a test dataset. We produce forecasts in an

online manner as follows: as the stream is consumed,

we use a buffer to store the last l states visited by the

pattern automaton. After every new event, we “unroll”

the HMM using the contents of the buffer as the ob-

servation sequence and the transition and emission ma-

trices learned during the training phase. We can then

use the forward algorithm to estimate the probability

of all possible future observation sequences (up to some

length), which, in our case, correspond to future states

visited by the automaton. Knowing the probability of

every future sequence of states allows us to estimate the

waiting-time distribution for the current state of the au-

tomaton and thus build a forecast, as already described.

Note that, contrary to the previous approaches, the es-

timation of the waiting-time distribution via a HMM

must be performed online. We cannot pre-compute the

waiting-time distributions and store the forecasts in a

look-up table, due to the possibly large number of en-

tries. For example, assume that l = 5 and the size of

the “alphabet” (SDE symbols) of our automaton is 10.

For each state of the automaton, we would have to pre-

compute 105 entries. In other words, as with Markov

chains, we still have a problem of combinatorial explo-

sion. We try to “avoid” this problem by estimating the

waiting-time distributions online.

Complex Event Forecasting with Prediction Suffix Trees 19

Our last model is inspired by the work presented in

[3]. This method comes from the process mining com-

munity and has not been previously applied to CEF.

However, due to its simplicity, we use it here as a base-

line method. We again use a training dataset to learn

the model. In the training phase, every time the pattern

automaton reaches a certain state q, we simply count

how long (how many transitions) we have to wait until

it reaches a final state. After the training dataset has

been consumed, we end up with a set of such “waiting

times” for every state. The forecast to be produced by

each state is then estimated simply by calculating the

average “waiting time”.

As far as the Markov models are concerned, we try

to increase their order to the highest possible value, in

order to determine if and how high-order values offer an

advantage. We have empirically discovered that our sys-

tem can efficiently handle automata and Markov chains

that have up to about 1200 states. Beyond this point,

it becomes almost prohibitive (with our hardware) to

create and handle transition matrices with more than

12002 elements. We have thus set this number as an

upper bound and increased the order of a model until

this number is reached. This restriction is applied both

to full-order models and variable-order models that use

a PSA and an embedding, since in both of these cases

we need to construct a Markov chain. For the variable-

order models that make direct use of a PST , no Markov

chain is constructed. We thus increase their order until

their performance scores seem to reach a stable num-

ber or a very high number, beyond which it makes little

sense to continue testing.

All experiments were run on a 64-bit Debian 10 ma-

chine with Intel Core i7-8700 CPU @ 3.20GHz X 12

processors and 16 GB of memory. Our framework was

implemented in Scala 2.12.10. We used Java 1.8, with

the default values for the heap size. For the HMM mod-

els, we relied on the Smile machine learning library [2].

All other models were developed by us. No attempt at

parallelization was made.

7.2 Credit Card Fraud Management

The first dataset used in our experiments is a synthetic

one, inspired by the domain of credit card fraud man-

agement [9]. We start with a synthetically generated

dataset in order to investigate how our method per-

forms under conditions that are controlled and produce

results more readily interpretable. The data generator

was developed in collaboration with Feedzai2, our part-

ner in the SPEEDD project3.

In this dataset, each event is supposed to be a credit

card transaction, accompanied by several arguments,

such as the time of the transaction, the card ID, the

amount of money spent, the country where the trans-

action took place, etc. In the real world, a very small

proportion of such transactions are fraudulent and the

goal of a CER system would be to detect, with very low

latency, fraud instances. To do so, a set of fraud pat-

terns must be provided to the engine. For typical cases

of such patterns in a simplified form, see [9]. In our ex-

periments, we use one such pattern, consisting of a se-

quence of consecutive transactions, where the amount

spent at each transaction is greater than that of the

previous transaction. Such a trend of steadily increas-

ing amounts constitutes a typical fraud pattern. The

goal in our forecasting experiments is to predict if and

when such a pattern will be completed, even before it

is detected by the engine (if in fact a fraud instance

occurs), so as to possibly provide a wider margin for

action to an analyst.

We generated a dataset consisting of 1,000,000 trans-

actions in total from 100 different cards. About 20%

of the transactions are fraudulent. Not all of these in-

stances of fraud belong to the pattern of increasing

amounts. We actually inject seven different types of

known fraudulent patterns in the dataset, including,

for instance, a decreasing trend. Each fraudulent se-

quence for the increasing trend consists of eight consec-

utive transactions with increasing amounts, where the

amount is increased each time by 100 monetary units or

more. We additionally inject sequences of transactions

with increasing amounts, which are not fraudulent. In

those cases, we randomly interrupt the sequence before

it reaches the eighth transaction. In the legitimate se-

quences the amount is increased each time by 0 or more

units. With this setting, we want to test the effect of

long-term dependencies on the quality of the forecasts.

For example, a sequence of six transactions with in-

creasing amounts, where all increases are 100 or more

units is very likely to lead to a fraud detection. On the

other hand, a sequence of just two transactions with

the same characteristics, could still possibly lead to a

detection, but with a significantly reduced probability.

We thus expect that models with deeper memories will

perform better. We used 75% of the dataset for train-

ing and the rest for testing. No k-fold cross validation is

performed, since each fold would have exactly the same

statistical properties.

2 https://feedzai.com
3 http://speedd-project.eu

https://feedzai.com
http://speedd-project.eu

20 Elias Alevizos et al.

0 0.2 0.4 0.6 0.8 1

1 - Specificity

0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll m=1

m=2
m=3
m=4
m=5
m=6
m=7

(a) ROC curves for the variable-order model using
the PST for various values of the maximum order m.
distance ∈ [0.4, 0.6].

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8

Distance

0.4

0.6

0.8

1

A
U

C

MEAN

HMM

IID

F1

F2

F3

E1

E2

E3

E4

T1

T2

T3

T4

T5

T6

T7

(b) AUC for ROC curves for all models.

Fig. 8: Results for CEF for credit card fraud manage-

ment. Fx stands for a Full-order Markov Model of or-

der x. Ex stands for a Variable-order Markov Model of

maximum order x that uses a PSA and creates an em-

bedding. Tx stands for a Variable-order Markov Model

of maximum order x that is constructed directly from

a PST . MEAN stands for the method of estimating

the mean of “waiting-times”. HMM stands for Hidden

Markov Model. IID stands for the method assuming (in

the worst case) that SDEs are i.i.d. Ex and Tx models

are the ones proposed in this paper.

Formally, the symbolic regular expression that we

use to capture the pattern of an increasing trend in the

amount spent is the following:

R := (amountDiff > 0) · (amountDiff > 0)·
(amountDiff > 0) · (amountDiff > 0)·
(amountDiff > 0) · (amountDiff > 0)·
(amountDiff > 0)

(7)

amountDiff is an extra attribute (besides the card ID,

the amount spent, the transaction country and the other

standard attributes) with which we enrich each event

and is equal to the difference between the amount spent

by the current transaction and that spent by the imme-

diately previous transaction from the same card. The

expression consists of seven terminal sub-expressions,

in order to capture eight consecutive events. The first

terminal sub-expression captures an increasing amount

between the first two events in a fraudulent pattern.

If we attempted to perform forecasting based

solely on Pattern (7), then the minterms that would

be created would be based only on the predicate

amountDiff > 0: namely, the predicate itself, along

with its negation ¬(amountDiff > 0). As expected,

such an approach does not yield good results, as the

language is not expressive enough to differentiate be-

tween fraudulent and legitimate transaction sequences.

In order to address this lack of informative (for fore-

casting purposes) predicates, we have incorporated a

mechanism in our system that allows us to incorporate

extra predicates when building a probabilistic model,

without affecting the semantics of the initial expression

(exactly the same matches are detected). We do this by

using any such extra predicates during the construction

of the minterms. For example, if country = MA is such

an extra predicate that we would like included, then

we would construct the following minterms for Pattern

(7): a) m1 = (amountDiff > 0) ∧ (country = MA);

b) m2 = (amountDiff > 0) ∧ ¬(country = MA); c)

m3 = ¬(amountDiff > 0) ∧ (country = MA); d) m4 =

¬(amountDiff > 0) ∧ ¬(country = MA)). We can then

use these enhanced minterms as guards on the automa-

ton transitions in a way that does not affect the seman-

tics of the expression. For example, if an initial transi-

tion has the guard amountDiff > 0 , then we can split

it into two derived transitions, one for m1 and one for

m2. The derived transitions would be triggered exactly

when the initial one is triggered, the only difference be-

ing that the derived transitions also have information

about the country. For our experiments and for Pattern

(7), if we include the extra predicate amountDiff > 100,

we expect the forecasting model to be able to differen-

tiate between sequences involving genuine transactions

(where the difference in the amount can by any value

above 0) and fraudulent sequences (where the difference

in the amount is always above 100 units).

Figure 8 shows the ROC curves of the variable-order

model that directly uses a PST . We show results for

the “expected” distance range of distance ∈ [0.4, 0.6]

in Figure 8a. The ideal operating point in the ROC is

the top-left corner and thus, the closer to that point

the curve is, the better. Thus, the first observation is

that by increasing the maximum order we obtain bet-

ter results. Figure 8b displays ROC results for different

distances and all models, in terms of the Area Under

the ROC Curve (AUC), which is a measure of the mod-

els’ classification accuracy. The first observation is that

the MEAN and HMM methods consistently underper-

Complex Event Forecasting with Prediction Suffix Trees 21

form, compared to the Markov models. Focusing on the

Markov models, as expected, the task becomes more

challenging and the ROC scores decrease, as the dis-

tance increases. It is also evident that higher orders lead

to better results. The advantage of increasing the order

becomes less pronounced (or even non-existent) as the

distance increases. The variable-order models that use

an embedding are only able to go as far as m = 4,

due to increasing memory requirements, whereas the

tree-based versions can go up to m = 7 (and possibly

even further, but we did not try to extend the order be-

yond this point). Although the embedding (PSA) can

indeed help achieve better scores than full-order mod-

els by reaching higher orders, this is especially true for

the tree-based models which bypass the embedding. We

can thus conclude that full-order models are doing well

up to the order that they we can achieve with them.

PSA models can reach roughly the same levels, as they

are also practically restricted. The performance of PST

models is similar to that of the other models for the

same order, but the fact that they can use higher orders

allows them to finally obtain superior performance.

We show performance results in Figure 9, in terms

of computation and memory efficiency. Figure 9a dis-

plays throughput results. We can observe the trade-off

between the high forecasting accuracy of the tree-based

high-order models and the performance penalty that

these models incur. The models based on PST have a

throughput figure that is almost half that of the full-

order models and the embedding-based variable-order

ones. In order to emit a forecast, the tree-based mod-

els need to traverse a tree after every new event ar-

rives at the system, as described in Section 4.4.2. The

automata-based full- and variable-order models, on the

contrary, only need to evaluate the minterms on the

outgoing transitions of their current state and simply

jump to the next state. It would be possible to im-

prove the throughput of the tree-based models, by us-

ing caching techniques, so that we can reuse some of the

previously estimated forecasts, but we reserve such op-

timizations for future work. By far the worst through-

put, however, is observed for the HMM models. The

reason is that the waiting-time distributions and fore-

casts are always estimated online, as explained in Sec-

tion 7.1.

Figure 9b shows training times as a stacked, bar

plot. For each model, the total training time is bro-

ken down into 4 different components, each correspond-

ing to a different phase of the forecast building pro-

cess. modelTime is the time required to actually con-

struct the model from the training dataset. wtTime is

the time required to estimate the waiting-time distri-

butions, once the model has been constructed. inTime

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8

Distance

0

1

2

3

4

T
h
ro

u
g
h
p
u
t
(e

v
e
n
ts

/s
e
c
)

×10
5

MEAN

HMM

IID

F1

F2

F3

E1

E2

E3

E4

T1

T2

T3

T4

T5

T6

T7

(a) Throughput.

M
EAN

H
M

M IID F1 F2 F3 E1 E2 E3 E4 T1 T2 T3 T4 T5 T6 T7

Model

0

10

20

30

40

T
ra

in
in

g
 t

im
e

 (
s
e

c
) modelTime

wtTime

inTime

extraTime

(b) Training time.

M
E
A
N

H
M

M II
D F

1
F
2

F
3

E
1

E
2

E
3

E
4

T
1

T
2

T
3

T
4

T
5

T
6

T
7

Model

0

200

400

600

800

1000

1200

S
ta

te
s
/N

o
d
e
s

(c) Number of states/nodes.

Fig. 9: Throughput, training time and number of au-

tomaton states/tree nodes for classification CEF for

credit card fraud management.

measures the time required to estimate the forecast of

each waiting-time distribution. Finally, extraTime mea-

sures the time required to determinize the automaton

of our initial pattern. For the full-order Markov models,

it also includes the time required to convert the deter-

ministic automaton into its equivalent, disambiguated

automaton. We observe that the tree-based models ex-

hibit significantly higher times than the rest, for high

orders. The other models have similar training times, al-

most always below 5 seconds. Thus, if we need high ac-

curacy, we again have to pay a price in terms of training

time. Even in the case of high-order tree-based models

though, the training time is almost half a minute for

a training dataset composed of 750,000 transactions,

22 Elias Alevizos et al.

which allows us to be confident that training could be

performed online.

Figure 9c shows the memory footprint of the mod-

els in terms of the size of their basic data structures.

For automata-based methods, we show the number of

states, whereas for the tree-based methods we show the

number of nodes. We see that variable-order models, es-

pecially the tree-based ones, are significantly more com-

pact than the full-order ones, for the same order. We

also observe that the tree-based methods, for the same

order, are much more compact (fewer nodes) than the

ones based on the embedding (more states). This allows

us to increase the order up to 7 with the tree-based ap-

proach, but only up to 4 with the embedding.

7.3 Maritime Situational Awareness

The second dataset that we used in our experiments is

a real–world dataset coming from the field of maritime

monitoring. It is composed of a set of trajectories from

ships sailing at sea, emitting AIS (Automatic Identifi-

cation System) messages that relay information about

their position, heading, speed, etc., as described in the

running example of Section 1. These trajectories can

be analyzed, using the techniques of Complex Event

Recognition, in order to detect interesting patterns in

the behavior of vessels [32]. The dataset that we used

is publicly available, contains AIS kinematic messages

from vessels sailing in the Atlantic Ocean around the

port of Brest, France, and spans a period from 1 Oc-

tober 2015 to 31 March 2016 [35]. We used a deriva-

tive dataset that contains clean and compressed tra-

jectories, consisting only of critical points [33]. Critical

points are the important points of a trajectory that

indicate a significant change in the behavior of a ves-

sel. Using critical points, one can reconstruct quite ac-

curately the original trajectory [32]. We further pro-

cessed the dataset by interpolating between the critical

points in order to produce trajectories where two con-

secutive points have a temporal distance of exactly 60

seconds. The reason for this pre-processing step is that

AIS messages typically arrive at unspecified time inter-

vals. These intervals can exhibit a very wide variation,

depending on many factors (e.g., human operators may

turn on/off the AIS equipment), without any clear pat-

tern that could be encoded by our probabilistic model.

Consequently, our system performs this interpolation

as a first step.

The pattern that we used in the experiments is a

movement pattern in which a vessel approaches the

main port of Brest. The goal is to forecast when a vessel

will enter the port. This way, port traffic management

may be optimized, in order to reduce the carbon emis-

sions of vessels waiting to enter the port. The symbolic

regular expression for this pattern is the following:

R := (¬InsidePort(Brest))∗ · (¬InsidePort(Brest))·
(¬InsidePort(Brest)) · (InsidePort(Brest))

(8)

The intention is to detect the entrance of a vessel in the

port of Brest. The predicate InsidePort(Brest) evalu-

ates to TRUE whenever a vessel has a distance of less

than 5 km from the port of Brest. In fact, the predi-

cate is generic and takes as arguments the longitude and

latitude of any point, but we show here a simplified ver-

sion, using the port of Brest, for reasons of readability.

The pattern defines the entrance to the port as a se-

quence of at least 3 consecutive events, only the last of

which satisfies the InsidePort(Brest) predicate. In or-

der to detect an entrance, we must first ensure that the

previous event(s) indicated that the vessel was outside

the port. For this reason, we require that, before the

last event, there must have occurred at least 2 events

where the vessel was outside the port. We require 2 or

more such events to have occurred (instead of just one),

in order to avoid detecting “noisy” entrances.

In addition to the InsidePort(Brest) predicate, we

included 5 extra ones providing information about the

distance of a vessel from a port when it is outside the

port. Each of these predicates evaluates to TRUE when

a vessel lies within a specified range of distances from

the port. The first returns TRUE when a vessel has a

distance between 5 and 6 km from the port, the second

when the distance is between 6 and 7 km and the other

three extend similarly 1 km until 10 km. We investi-

gated the sensitivity of our models to the presence of

various extra predicates in the recognition pattern.

For all experimental results that follow, we always

present average values over 4 folds of cross-validation.

We start by analyzing the trajectories of a single ves-

sel and then move to multiple, selected vessels. There

are two issues that we tried to address by separating

our experiments into single-vessel and multiple-vessel

ones. First, we wanted to have enough data for train-

ing. For this reason, we only retained vessels for which

we can detect a significant number of matches for Pat-

tern (8). Second, our system can work in two modes:

a) it can build a separate model for each monitored

object and use this collection of models for personal-

ized forecasting; b) it can build a global model out of

all the monitored objects. We thus wanted to examine

whether building a global model from multiple vessels

could produce equally good results, as these obtained

for a single vessel with sufficient training data.

Complex Event Forecasting with Prediction Suffix Trees 23

0 0.2 0.4 0.6 0.8 1

1 - Specificity

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

m=1
m=2
m=3
m=4
m=5
m=6

(a) ROC curves for the variable-order model using
the PST for various values of the maximum order.
distance ∈ [0.0, 0.5].

0-0.5 0.5-1

Distance

0.4

0.6

0.8

1

A
U

C

MEAN HMM IID F1 F2 E1 E2 E3 T1 T2 T3 T4 T5 T6

(b) AUC for ROC curves for all models.

Fig. 10: Results for CEF in the domain of maritime

situational awareness. Ex and Tx models are the ones

proposed in this paper.

We first used Pattern (8) to perform recognition

on the whole dataset in order to find the number of

matches detected for each vessel. The vessel with the

most matches was then isolated and we retained only

the events emitted from this vessel. In total, we de-

tected 368 matches for this vessel and the number of

SDEs corresponding to it is ≈ 30.000.

Using this vessel, we obtained the results shown in

Figures 10 and 11. Since the original DSFA is smaller

in this case (one start and one final state plus two in-

termediate states), we have fewer distance ranges (e.g.,

there no states in the range [0.4, 0.6]). Thus, we use only

two distance ranges: [0, 0.5] and [0.5, 1]. We observe the

importance of being able to increase the order of our

models for distances smaller than 50%. For distances

greater than 50%, the area under curve is ≈ 0.5 for all

models. This implies that they cannot effectively differ-

entiate between positives and negatives. Notice that the

full-order Markov models can now only go up to m = 2,

since the existence of multiple extra predicates makes

it prohibitive to increase the order any further. Achiev-

ing higher accuracy with higher-order models comes at

a computational cost, as shown in Figure 11. The re-

sults are similar to those in the credit card fraud ex-

0-0.5 0.5-1

Distance

0

5

10

15

T
h

ro
u

g
h

p
u

t
(e

v
e

n
ts

/s
e

c
)

×10
4

MEAN HMM IID F1 F2 E1 E2 E3 T1 T2 T3 T4 T5 T6

(a) Throughput.

M
EAN

H
M

M IID F1 F2 E1 E2 E3 T1 T2 T3 T4 T5 T6
0

2

4

6

8

T
ra

in
in

g
 t

im
e

 (
s
e

c
)

modelTime

wtTime

inTime

extraTime

(b) Training time.

Fig. 11: Throughput and training time results for CEF

for maritime situational awareness.

periments. The training time for variable-order models

tends to increase as we increase the order, but is al-

ways less than 8 seconds. The effect on throughput is

again significant for the tree-based variable-order mod-

els. Throughput figures are also lower here compared to

the credit card fraud experiments, since the predicates

that we need to evaluate for every new input event (like
InsidePort(Brest)) involve more complex calculations

(the amountDiff > 0 predicate is a simple comparison).

As a next step, we wanted to investigate the effect

of the optimization technique mentioned at the end of

Section 4.4.2 on the accuracy and performance of our

system. The optimization prunes future paths whose

probability is below a given cutoff threshold. We re-run

the experiments described above for distances between

0% and 50% for various values of the cutoff threshold,

starting from 0.0001 up to 0.2. Figure 12 shows the rel-

evant results. We observe that the accuracy is affected

only for high values of the cutoff threshold, above 0.1

(Figure 12a). We can also see that the training time is

indeed significantly affected (Figure 12b). As expected,

the result of increasing the value of the cutoff thresh-

old is a reduction of the training time, as fewer paths

are retained. Beyond a certain point though, further

increases of the cutoff threshold affect the accuracy of

the system. Therefore, the cutoff threshold should be

below 0.01 so as not to compromise the accuracy of our

24 Elias Alevizos et al.

0.0001 0.001 0.01 0.1 0.2

Cutoff Threshold

0.4

0.6

0.8

1

A
U

C

m=1 m=2 m=3 m=4 m=5 m=6

(a) AUC-ROC.

0.0001 0.001 0.01 0.1 0.2

Cutoff Threshold

0

5

10

15

20

T
ra

in
in

g
 t

im
e

 (
s
e

c
)

m=1

m=2

m=3

m=4

m=5

m=6

(b) Training time.

Fig. 12: Effect of cutoff threshold on accuracy and train-

ing time.

0-0.5 0.5-1

Distance

0.4

0.6

0.8

1

A
U

C

MEAN HMM IID F1 F2 E1 E2 E3 T1 T2 T3 T4 T5 T6

Fig. 13: AUC for ROC curves. Extra features included:

concentric rings around the port every 1 km. Model

constructed for the 9 vessels that have more than 100

matches.

forecasts. We do not show throughput results, because

throughput remains essentially unaffected. This result

is expected, since the cutoff threshold is only used in the

estimation of the waiting-time distributions. Through-

put reflects the online performance of our system, after

the waiting-time distributions have been estimated, and

is thus not affected by the choice of the cutoff threshold.

Finally, we also tested our method when more than

one vessel need to be monitored. Instead of isolating

the single vessel with the most matches, we isolated

all vessels which had more than 100 matches. There

are in total 9 such vessels in the dataset. The result-

ing dataset has ≈ 222.000 events. Out of the 9 retained

vessels, we constructed a global probabilistic model and

produced forecasts. An alternative option would be to

build a single model for each vessel, but in this sce-

nario we wanted to test the robustness of our aprroach

when a global model is built from multiple entities. Fig-

ure 13 presents the corresponding results. Interestingly,

the scores of the global model remain very close to the

scores of the experiments for the single vessel with the

most matches (Figure 10b). This is an indication of the

ability of the global model to capture the peculiarities

of individual vessels.

8 Summary

We have presented a framework for Complex Event

Forecasting (CEF), based on a variable-order Markov

model. It allows us to delve deeper into the past and

capture long-term dependencies, not feasible with full-

order models. Our comprehensive evaluation on two ap-

plication domains has illustrated the advantages of be-

ing able to use such high-order models. Namely, the use

of higher-order modeling allows us to achieve higher ac-

curacy than what is possible with full-order models or

other state-of-the-art solutions. We have described two

alternative ways in which variable-order models may be

used, depending on the imposed requirements. One op-

tion is to use a highly efficient but less accurate model,

when online performance is a top priority. We also pro-

vide an option that achieves high accuracy scores, but

with a performance cost. Another important feature

of our proposed framework is that it requires mini-

mal intervention by the user. A given Complex Event

pattern is declaratively defined and subsequently au-

tomatically translated to an automaton and then to

a Markov model, without requiring domain knowledge

that should guide the modeling process.

Acknowledgements This work has received funding from
the EU Horizon 2020 research and innovation program IN-
FORE under grant agreement No 825070.

References

1. Esper. http://www.espertech.com/esper

2. Smile - statistical machine intelligence and learning en-
gine. http://haifengl.github.io/

3. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.:
Time prediction based on process mining. Inf. Syst.
36(2), 450–475 (2011)

4. Abe, N., Warmuth, M.K.: On the computational com-
plexity of approximating distributions by probabilistic
automata. Machine Learning 9, 205–260 (1992)

http://www.espertech.com/esper
http://haifengl.github.io/

Complex Event Forecasting with Prediction Suffix Trees 25

5. Akbar, A., Carrez, F., Moessner, K., Zoha, A.: Predicting
complex events for pro-active iot applications. In: WF-
IoT, pp. 327–332. IEEE Computer Society (2015)

6. Alevizos, E., Artikis, A., Paliouras, G.: Event forecasting
with pattern markov chains. In: DEBS, pp. 146–157.
ACM (2017)

7. Alevizos, E., Artikis, A., Paliouras, G.: Wayeb: a tool for
complex event forecasting. In: LPAR, EPiC Series in
Computing, vol. 57, pp. 26–35. EasyChair (2018)

8. Alevizos, E., Skarlatidis, A., Artikis, A., Paliouras, G.:
Probabilistic complex event recognition: A survey. ACM
Comput. Surv. 50(5), 71:1–71:31 (2017)

9. Artikis, A., Katzouris, N., Correia, I., Baber, C., Morar,
N., Skarbovsky, I., Fournier, F., Paliouras, G.: A proto-
type for credit card fraud management: Industry paper.
In: DEBS, pp. 249–260. ACM (2017)

10. Begleiter, R., El-Yaniv, R., Yona, G.: On prediction using
variable order markov models. J. Artif. Intell. Res. 22,
385–421 (2004)

11. Chang, B., Park, Y., Park, D., Kim, S., Kang, J.:
Content-aware hierarchical point-of-interest embedding
model for successive POI recommendation. In: IJCAI,
pp. 3301–3307. ijcai.org (2018)

12. Cho, C., Wu, Y., Yen, S., Zheng, Y., Chen, A.L.P.: On-
line rule matching for event prediction. VLDB J. 20(3),
303–334 (2011)

13. Christ, M., Krumeich, J., Kempa-Liehr, A.W.: Integrat-
ing predictive analytics into complex event processing by
using conditional density estimations. In: EDOC Work-
shops, pp. 1–8. IEEE Computer Society (2016)

14. Cleary, J.G., Witten, I.H.: Data compression using adap-
tive coding and partial string matching. IEEE Trans.
Communications 32(4), 396–402 (1984)

15. Cugola, G., Margara, A.: Processing flows of information:
From data stream to complex event processing. ACM
Comput. Surv. 44(3), 15:1–15:62 (2012)

16. D’Antoni, L., Veanes, M.: The power of symbolic au-
tomata and transducers. In: CAV (1), Lecture Notes in
Computer Science, vol. 10426, pp. 47–67. Springer (2017)

17. Engel, Y., Etzion, O.: Towards proactive event-driven
computing. In: DEBS, pp. 125–136. ACM (2011)

18. Fu, J.C., Lou, W.W.: Distribution theory of runs and pat-
terns and its applications: a finite Markov chain imbed-
ding approach. World Scientific (2003)

19. Fülöp, L.J., Beszédes, Á., Toth, G., Demeter, H., Vidács,
L., Farkas, L.: Predictive complex event processing: a
conceptual framework for combining complex event pro-
cessing and predictive analytics. In: BCI, pp. 26–31.
ACM (2012)

20. Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A.,
Garofalakis, M.N.: Complex event recognition in the big
data era: a survey. VLDB J. 29(1), 313–352 (2020)

21. Grez, A., Riveros, C., Ugarte, M.: A formal framework
for complex event processing. In: ICDT, LIPIcs, vol.
127, pp. 5:1–5:18. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2019)

22. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction
to automata theory, languages, and computation, 3rd
Edition. Pearson international edition. Addison-Wesley
(2007)

23. Laxman, S., Tankasali, V., White, R.W.: Stream predic-
tion using a generative model based on frequent episodes
in event sequences. In: KDD, pp. 453–461. ACM (2008)

24. Li, Y., Ge, T., Chen, C.: Data stream event prediction
based on timing knowledge and state transitions. Pro-
ceedings of the VLDB Endowment 13(10) (2020)

25. Li, Z., Ding, X., Liu, T.: Constructing narrative event
evolutionary graph for script event prediction. In: IJCAI,
pp. 4201–4207. ijcai.org (2018)

26. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: Statis-
tical and machine learning forecasting methods: Concerns
and ways forward. PloS one 13(3), e0194889 (2018)

27. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.:
Predictive monitoring of business processes: A survey.
IEEE Trans. Services Computing 11(6), 962–977 (2018)

28. Montgomery, D.C., Jennings, C.L., Kulahci, M.: Intro-
duction to time series analysis and forecasting. John Wi-
ley & Sons (2015)

29. Muthusamy, V., Liu, H., Jacobsen, H.: Predictive pub-
lish/subscribe matching. In: DEBS, pp. 14–25. ACM
(2010)

30. Ozik, J., Collier, N., Heiland, R., An, G., Macklin, P.:
Learning-accelerated discovery of immune-tumour inter-
actions. Molecular systems design & engineering 4(4),
747–760 (2019)

31. Pandey, S., Nepal, S., Chen, S.: A test-bed for the evalu-
ation of business process prediction techniques. In: Col-
laborateCom, pp. 382–391. ICST / IEEE (2011)

32. Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M.,
Pelekis, N., Theodoridis, Y.: Online event recognition
from moving vessel trajectories. GeoInformatica 21(2),
389–427 (2017)

33. Patroumpas, K., Spirelis, D., Chondrodima, E., Geor-
giou, H., P, P., P, T., S, S., N, P., Y, T.: Final dataset
of Trajectory Synopses over AIS kinematic messages in
Brest area (ver. 0.8) [Data set], 10.5281/zenodo.2563256
(2018). DOI 10.5281/zenodo.2563256. URL http://doi.

org/10.5281/zenodo.2563256
34. Rabiner, L.R.: A tutorial on hidden markov models and

selected applications in speech recognition. Proceedings
of the IEEE 77(2), 257–286 (1989)

35. Ray, C., Dreo, R., Camossi, E., Jousselme, A.: Het-
erogeneous Integrated Dataset for Maritime Intelli-
gence, Surveillance, and Reconnaissance, 10.5281/zen-
odo.1167595 (2018). DOI 10.5281/zenodo.1167595. URL
https://doi.org/10.5281/zenodo.1167595

36. Ron, D., Singer, Y., Tishby, N.: The power of amnesia.
In: NIPS, pp. 176–183. Morgan Kaufmann (1993)

37. Ron, D., Singer, Y., Tishby, N.: The power of amnesia:
Learning probabilistic automata with variable memory
length. Machine Learning 25(2-3), 117–149 (1996)

38. Van Der Aalst, W.: Process mining: discovery, confor-
mance and enhancement of business processes. Springer
(2011)

39. Veanes, M., de Halleux, P., Tillmann, N.: Rex: Symbolic
regular expression explorer. In: ICST, pp. 498–507. IEEE
Computer Society (2010)

40. Vilalta, R., Ma, S.: Predicting rare events in temporal do-
mains. In: ICDM, pp. 474–481. IEEE Computer Society
(2002)

41. Vouros, G.A., Vlachou, A., Santipantakis, G.M., Doulk-
eridis, C., Pelekis, N., Georgiou, H.V., Theodoridis, Y.,
Patroumpas, K., Alevizos, E., Artikis, A., Claramunt,
C., Ray, C., Scarlatti, D., Fuchs, G., Andrienko, G.L.,
Andrienko, N.V., Mock, M., Camossi, E., Jousselme, A.,
Garcia, J.M.C.: Big data analytics for time critical mobil-
ity forecasting: Recent progress and research challenges.
In: EDBT, pp. 612–623. OpenProceedings.org (2018)

42. Willems, F.M.J., Shtarkov, Y.M., Tjalkens, T.J.: The
context-tree weighting method: basic properties. IEEE
Trans. Information Theory 41(3), 653–664 (1995)

43. Zhou, C., Cule, B., Goethals, B.: A pattern based predic-
tor for event streams. Expert Syst. Appl. 42(23), 9294–
9306 (2015)

http://doi.org/10.5281/zenodo.2563256
http://doi.org/10.5281/zenodo.2563256
https://doi.org/10.5281/zenodo.1167595

	Introduction
	Related Work
	Complex Event Recognition with Symbolic Automata
	Building a Probabilistic Model
	Complexity Analysis
	Measuring the Quality of Forecasts
	Empirical Evaluation
	Summary

