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ABSTRACT
Enabled by recent improvements in generation methodologies,
DeepFakes have becomemainstream due to their increasingly better
visual quality, the increase in easy-to-use generation tools and the
rapid dissemination through social media. This fact poses a severe
threat to our societies with the potential to erode social cohesion
and influence our democracies. To mitigate the threat, numerous
DeepFake detection schemes have been introduced in the literature
but very few provide a web service that can be used in the wild. In
this paper, we introduce the MeVer DeepFake detection service, a
web service detecting deep learning manipulations in images and
video. We present the design and implementation of the proposed
processing pipeline that involves a model ensemble scheme, and
we endow the service with a model card for transparency. Experi-
mental results show that our service performs robustly on the three
benchmark datasets while being vulnerable to Adversarial Attacks.
Finally, we outline our experience and lessons learned when de-
ploying a research system into production in the hopes that it will
be useful to other academic and industry teams.

CCS CONCEPTS
• Information systems → Multimedia information systems;
Web services; Data analytics; • Security and privacy → Hu-
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Figure 1: The red line illustrates the number of paperswhere
the term “DeepFake” appears at least once in the text, while
the blue line illustrates the term has to be in the title and
the abstract. Data obtained from https://app.dimensions.ai.

1 INTRODUCTION
In the fight against disinformation, facial manipulation technolo-
gies are one of the most formidable weapons that malicious ac-
tors have in their arsenal in order to deceive the public’s opin-
ion. DeepFakes stand out as perhaps the most prominent of these
technologies due to the photo-realistic results and the effective-
ness in social media dissemination. A DeepFake refers to any fake
image or video, typically containing facial manipulations to the
displayed person(s), created using Deep Learning methods. Further-
more, non-face scenes/imagery can be the subject of DeepFakes
such as satellite images [79].
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Nowadays, DeepFakes have gained popularity owing to vari-
ous free and easy-to-use tools available1 to anyone who wishes
to create fake images and videos. In combination with the drastic
increase in quality fueled by the research in the area of image/video
generation [25, 63, 83], DeepFakes pose a serious threat to society
with far-reaching impacts. Some notable DeepFake examples in-
clude: a DeepFake of the US president Donald Trump in which he
urges Belgian politicians to pull out of the Paris climate agreement2,
a DeepFake of Meta CEO Mark Zuckerberg in which he gives a
sinister speech about the influence of Facebook on its users3, and a
fake video of US president Barack Obama during which he insults
Donald Trump4.

This has attracted the interest of the multimedia community for
the development of methods to tackle this threat, and as a result,
the generated research in the field has skyrocketed in the last recent
years. Figure 1 shows the number of papers published that mention
the term DeepFake since 2016. Furthermore, data availability has
also seen such an increase in activity that in 2021 only, eight new
DeepFake datasets have been released [16, 22, 24, 29, 37, 39, 56, 82].

Despite these facts, the DeepFake problem remains challenging,
especially in the case of novel manipulations that have not been in-
cluded in the training set of DeepFake detection systems. We argue
that it is in part due to two reasons. The first relates to the challenge
of training Neural Networks that are robust to out-of-distribution
samples. In this context, by out-of-distribution samples we refer
to DeepFakes generated with different manipulation methods than
those used for training. The second reason relates to the misalign-
ment between the synthetic datasets, developed by researchers that
exhibit a strong bias towards selecting trimmed videos containing
only a single face, and DeepFakes on the Internet, where videos are
longer and contain many shots with multiple faces of which one or
more may have been manipulated. Thus, it is evident that there is
a growing need for systems that can effectively tackle these issues
and mitigate the threat of DeepFakes. Such systems have to also
be transparent for identifying and addressing potential issues and
evaluated based on their robustness to standard adversarial attacks.

To contribute to the discussion around the problem, in this paper,
we present our DeepFake detection service, its design, implementa-
tion details, and our experience deploying a multi-model system
for image and video DeepFake detection in the wild. Our system
receives the URL address of an image or video as input, and gen-
erates a single DeepFake probability score as output. A new input
to the service triggers a multi-stage processing pipeline, including
dedicated functions for the downloading and pre-processing of the
input for the extraction of the contained faces. The detected faces
are submitted to an ensemble scheme of five DeepFake detection
models. The outputs are aggregated to derive a single probability
score indicating whether the input medium contains DeepFake
faces. To provide a transparent documentation for our service, we
have compiled a model card. We evaluate our service on three well-
known datasets and also assess the service robustness to adversarial
1Examples: https://faceswap.dev, https://zaodownload.com, https://facemagic.ai
2https://www.politico.eu/article/spa-donald-trump-belgium-paris-climate-
agreement-belgian-socialist-party-circulates-deep-fake-trump-video/
3https://www.theguardian.com/technology/2019/jun/11/deepfake-zuckerberg-
instagram-facebook
4https://www.theverge.com/tldr/2018/4/17/17247334/ai-fake-news-video-barack-
obama-jordan-peele-buzzfeed

attacks in the spirit of trustworthy AI. Finally, we document the
practical challenges we faced when pivoting to a robust service API
from the point of view of research code, hoping that our experience
will be helpful to other academic or industry teams in the field.

2 RELATEDWORK
Numerous surveys and literature reviews have been published fol-
lowing the recent explosion in DeepFake research [38, 45, 49, 55].
After reviewing the creation tools and detection approaches of
DeepFakes, the authors of [45] focus on the challenges for robust
DeepFake detection, such as the handling of adversarial attacks.
Also, [49] reviews extensively the technical background of Deep-
Fakes in terms of Generative Adversarial Networks (GANs), Neural
Networks and Loss functions with a particular focus on Facial Reen-
actment techniques, such as [70].

2.1 DeepFake Generation
DeepFakes can be classified in five major categories based on the
type of applied manipulation [46]: (i) FaceSwap: This is a manipula-
tion method where the face region of a target image is replaced with
that of a source image. Most publicly available tools apply this kind
of manipulation to generate DeepFakes. (ii) Face Reenactment
(Puppet Mastery): In these methods, only the facial movements
and expressions are transferred from a source to a target video. A
seminal such method is Face2Face [70]. (iii) Face Attribute Edit-
ing: This manipulation modifies a selected facial attribute (e.g. eyes,
skin tone, hair) while leaving the remaining face unaltered. The
evolution of Generative Adversarial Networks (GANs) in works
such as [21] has significantly improved the realism of this kind of
manipulations. (iv) Face Synthesis is concerned with synthesizing
entirely new images of faces and also belongs to the GAN-related
family of manipulations. Notable works include StyleGAN2 [26],
used for the generation of synthetic faces in popular websites5. (v)
Lip-syncing: In this manipulation, the mouth portion of an input
video is altered to match an unrelated audio clip. Among the most
influential lip-syncing works was one targeting President Barack
Obama [65].

For the development of our DeepFake detection service, we focus
on the detection of the generated media from the first category, i.e.,
FaceSwap, which is the most common.

2.2 DeepFake Detection Approaches
Given the growing threat of tamperedmedia to society, a lot of meth-
ods have been proposed for DeepFake detection. One of the earliest
works in the field is MesoNet [1], where a relatively shallow Con-
volutional Neural Network (CNN) with five layers was proposed.
In their landmark work [61], the researchers benchmarked the per-
formance of several state-of-the-art CNNs on their proposed novel
FaceForensics++ dataset, showing that an XceptionNet network [7]
outperformed the competition.

Research since then has evolved by combining CNNs with other
architectures such as Recurrent Neural Networks (RNNs) [19],
Long Short-Term Memories (LSTMs) [36, 47] or Attention heads
[14, 30, 73, 80, 81, 84]. In [3] the authors propose an ensemble of nu-
merous CNN classifiers, based on the popular EfficientNet network
5https://thispersondoesnotexist.com
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[66] in tandem with attention mechanisms and Siamese training
with the goal of accurately detecting DeepFakes. In contrast, [68]
takes a different approach by using a video-level Convolutional
LSTM-based Residual Network combined with a transfer learning
training strategy to perform detection. Furthermore, the authors
experimented with Merge Learning, i.e., directly train the model
with all manipulations, and Transfer Learning or in other words
using a pre-trained model from a source manipulation domain to
train on a few videos from the target domain. Following the advent
of Transformer-based architectures [74] to the Deep Learning scene,
many authors have incorporated attention mechanisms to solve
the DeepFake Detection problem [28, 64]. Besides these works,
Capsule Networks [62] have also been applied to the DeepFake
problem [27, 47, 51, 52]. Additionally, some methods incorporate
domain specific physiological signals such as head poses [76] or eye
blinking [41] in order to exploit the inconsistencies resulting from
video modification. Furthermore, since new DeepFake manipula-
tion methods are introduced at a very rapid pace, a robust DeepFake
detector should be able to generalize to examples from novel ma-
nipulation/generation models. Works that attempt to tackle the
generalization problem are [31, 32, 40].

Following the trend in the state of the art, we build five models
using the EfficientNet [66, 67] as a backbone, combined with a
Transformer-based architecture, i.e., the DETR network [5].

2.3 DeepFake Detection Services
Seeing the threat that DeepFakes pose on society, several companies
and academics have developed DeepFake detection web services.

DeepWare6 developed an online DeepFake scanner as well as an
Android application for the identification of DeepFake videos. Their
approach uses an EfficientNet-B7 [66] pre-trained on ImageNet [11]
and fine-tuned on the DFDC dataset [12] that operates at frame
level. Since the dataset is imbalanced, containing approximately
20K real and 100K fake videos, they balanced it at training time by
randomly selecting equal number of real or fake videos.

DuckDuckGoose7 has created the DeepDetector, which is a Deep-
Fake detection system, as well as a browser detector plugin named
DeepfakeProof. Additionally, they have created the so-called Repli-
cant DeepFake creation system that can be used to test the reliability
of biometric authentication systems. Unfortunately, they do not
offer more information with regards to their model architecture,
training strategy, or training data.

DeepFake-o-meter8 is an academic non-profit work created by
the University of Buffalo’s Media Forensics Lab. Introduced in [43],
it is a web service where a user can upload a video link or file and
have the DeepFake detection results be sent to the user’s email. It
consists of 12 DeepFake detection algorithms from the literature.

2.4 Trustworthy AI
Autonomous AI systems are embedded into every aspect of daily
life and deployed in high-impact tasks such as driving vehicles
[58] and most currently, controlling a nuclear fusion reactor [10].
Thus it is evident that AI systems need to be reliable, explainable,

6https://deepware.ai/
7https://duckduckgoose.ai/
8http://zinc.cse.buffalo.edu/ubmdfl/deep-o-meter/

and transparent for building trust and preventing harmful deci-
sions. In this paper, we are mostly concerned with the aspects of
transparency and robustness.

Initially proposed by [50], model cards are a form of documenta-
tion meant to accompany trained AI models. The main scope is to
inform and guide end users for the proper use of the underlying
tool, as well as help them interpret the output results. Among oth-
ers, a model card includes details regarding the deployed model, i.e.,
the model’s architecture or the processing pipeline that is applied
given an input. It also comprises details about the data used and the
process followed for the training and evaluation of the models. Ad-
ditionally, model cards usually follow a versioning scheme similar
to the accompanied models, where the changes from prior tool ver-
sions are described. Also, the model card facilitates the developers
of such AI models so as to describe the caveats and relevant factors
that may affect model performance and make recommendations
for the intended use of the tool.

Adversarial attacks are a common practice that malicious actors
can use to affect the performance of similar systems. These attacks
come in various shapes and forms but can be categorised as: Evasion
attacks intentionally perform targeted alterations to an image or
video so as to confuse a machine learning system [75] in making a
wrong prediction. Poisoning attacks [2] attempt to alter the dataset
used to train an AI model. This type of attack occurs prior to the
deployment of the AI system. Extraction attacks [23] operate on
a different dimension than previous attacks. These aim at steal-
ing the underlying parameters of AI models and thus reproducing
the same model at very little cost compared to the one invested
for development. Inference attacks [8] finally consist in identify-
ing the characteristics of specific samples that were used to train
an AI model. This can be particularly problematic when personal
information was used to train a system, which could be breached
and damage individuals’ privacy. A noteworthy publication is [17]
where the authors evaluate the robustness of DeepFake detectors
against multiple DeepFake attacks and subsequently experiment
with defense methodologies against them.

To this end, in the spirit of robust and trustworthy AI, we accom-
pany our DeepFake detection service with proper documentation,
i.e., a model card, as well as evaluate it based on its robustness
against adversarial attackers using evasion attacks.

2.5 Content Authenticity Initiative
Another interesting approach to countering the challenge of digital
media manipulation is the Content Authenticity Initiative (CAI)
[18], which proposes a toolset to track the origin and manipulation
history of media via an embedded Content Record. It tracks, among
other things when a specific media file was produced and by whom,
what editing was performed and with what tools as well as the
original file before any manipulations occurred. CAI’s members
include companies such as Adobe, Twitter and the New York Times.

3 SERVICE DESIGN AND IMPLEMENTATION
In this section, we describe the processing pipeline and implemen-
tation of our DeepFake detection service (Section 3.1). Also, we
elaborate on the deployed networks for DeepFake detection and
their training process (Section 3.2). We go into detail regarding our
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micro-service architecture for the service implementation (Section
3.3). Finally, we present the compilation of a Model Card for the
service (Section 3.4).

3.1 Processing Pipeline
Once the service receives the link of an image or video as input by
the user, the following processing pipeline takes place.

Download Media: The image/video at the URL is identified and
downloaded by our custom download module that supports popular
file sharing services such as Dropbox9 and Google Drive10, as well
as social media platforms like YouTube11 and Twitter12.

Media Type: If the downloaded resource is an image, then only
the Face Detection and Inference steps that are described below are
applied to get the final results. Therefore, the following steps are
described below as if the resource is a video.

Video Segmentation: During this step, a video similarity network
is used in order to segment the video in multiple shots. We follow
the feature extraction and similarity calculation process described
in [35]. For an input video, we extract one frame per second and de-
rive their region-level features from a ResNet50 [20] using R-MAC
pooling [72]. Then, we calculate the distance between consecu-
tive frames by applying Chamfer Similarity [34] on their region
descriptors. Finally, we extract the peaks in the distance plot in
order to determine the shot transitions. The detected shots have to
be at least 1.5 seconds long. Per shot DeepFake probability scores
are also displayed on the front-end, providing the user with useful
information about the final video-level prediction.

Face Detection: We apply a pre-trained MTCNN face detection
network from [15] to selected sample frames of the video (in the
case of images, the face detector is applied once). We sample at most
64 unique frames per shot in order to detect and extract faces. The
face detector provides squared bounding boxes that indicate the
locations of the faces detected in the input image. To ensure that
possible artifacts between the face and background are included, we
use a margin value of 1.3, which practically means that we enlarge
the detected bounding boxes by 30% per dimension.

Face Clustering: At this stage, the Face Clustering methodology
described in [6] is applied to all detected faces of a video shot in
order to reduce the noise that is introduced by the falsely detected
faces. In more detail, facial embeddings and their similarities are
computed per detected face. In that way, we generate a face graph
by connecting the faces with similarity greater than 0.8. We then
form face clusters by extracting the graph’s connected components.
We filter out face clusters with only few faces, i.e., less than 20% of
the video shot’s frames. The remaining faces are further processed.

Inference: Each detected face is resized to 300 × 300, normalized
by the ImageNet [11] mean and standard deviation, and fed to an
ensemble scheme that contains fivemodels operating in parallel. See
Section 3.2 for details regarding the ensemble model. Subsequently,
all fivemodel predictions are averaged to get a DeepFake probability
score per input face that ranges in (0, 1).

9https://dropbox.com
10https://drive.google.com
11https://youtube.com
12https://twitter.com

Video-level Aggregation: The predictions resulting from the above
processing steps are at a frame level. In order to derive an aggre-
gated video-level DeepFake probability score, we use the following
aggregation strategy:

(1) The face predictions of each face cluster are averaged to
generate a cluster prediction.

(2) Shot predictions are derived based on the maximum predic-
tion of their clusters.

(3) The final video-level prediction is the maximum of the shot
predictions.

3.2 DeepFake Detection Model
3.2.1 Architecture. The service consists of an ensemble of the fol-
lowing five models with the final DeepFake probability being the
ensemble’s average probability.

As a backbone network for feature extraction, we used one of
the EfficientNet [66, 67] networks. These are CNNmodels that have
been automatically assembled through neural architecture search,
based on a compound scaling method that uniformly scales the
depth, width, and resolution of the network layers/components.
We employ the EfficientNet-b4 [66] and the EfficientNet-V2-m [67].
Additionally, we use the DETR [5] head on top of a backbone for
some of our models. This is a Transformer Encoder-Decoder [74]
network applied on the region-level activations generated by the
backbone to aggregate them with trainable queries equal to the
number of the detection classes. Since our problem is binary clas-
sification, we use only a single trainable query to derive the final
prediction. Also, transformers are usually combined with positional
embeddings, which can be fixed or learned. We use both for our
models. Overall, we have developed the following models:

(1) Model 1: a vanilla EfficientNet-b4 [66],
(2) Model 2: a Transformer head based on DETR [5] with fixed

positional embeddings on top of an EfficientNet-b4 [66],
(3) Model 3: a Transformer head based onDETR [5]with learned

positional embeddings on top of an EfficientNet-b4 [66],
(4) Model 4: a multi-head Transformer based on DETR [5] on

top of an EfficientNet-b4 [66],
(5) Model 5: a vanilla EfficientNet-V2-m [67].

3.2.2 Training process. Models 1-4 were trained on the Facebook
DeepFake Detection Challenge (DFDC) dataset [12] while Model
5 was trained on the WildDeepFake (WDF) dataset [84]. For the
former models, we used the Adam optimizer [33] with a learning
rate of 10−4 and 32 batch size for 25 epochs respectively. The net-
works are initialized with pre-trained weights on ImageNet-1k [11].
For the latter model, we trained an EfficientV2-M-in21k pre-trained
on ImageNet-21k [60] and fine-tuned using the Adam optimizer
with 10−4 learning rate and 32 batch size for 2 epochs. Furthermore,
during training, we employ the following augmentations using
the Albumentations library [4]: Geometric augmentations (Rotate,
HorizontalFlip), Color augmentations (ColorJitter, ToGray), Blurring
(MotionBlur, GaussianBlur), Image Corruption (ISONoise, Coarse-
Dropout), External Effects (RandomSunFlare, RandomRain). Also,
for Models 1-4, we used dynamic face augmentations [9].

https://dropbox.com
https://drive.google.com
https://youtube.com
https://twitter.com


Figure 2: Service Architecture

3.3 Implementation
We implemented our pipeline as a set of micro-services for better
modularity and scalability. Each block in Figure 2 corresponds to
an independently deployed micro-service.

Our users send requests to the controller, which implements an
asynchronous job API with an additional caching layer. Because
the DeepFake processing can take a long time to complete, which is
especially true for long videos with many segments, each request is
assigned a unique job IDwhich is returned to the client immediately,
while in the background, our system starts processing the request.
The client uses the returned job ID to monitor the status of their
request, and when the processing is complete, they can fetch the
results. To provide low latency for repeated queries and to also
reduce the strain on our system, results are stored in a Redis [59]
cache.We used FastAPI [71] to implement the controller’s RESTAPI,
and Python-RQ [13] to dispatch and monitor jobs asynchronously.

Each job is implemented as a blocking HTTP call to the core
service, which provides a synchronous REST API and orchestrates
the necessary computations. First, it dispatches a request to the
media download service that is implemented on top of Youtube-dlp
[78]. Once the video is successfully downloaded, we use OpenCV
[54] to load it and extract frames. The extracted frames are then fed
to a segmentation model running on a Triton inference server [53].

Triton is an open-source optimized inference server for executing
deep learning models on CPU or GPU. GPU memory management,
batching, and model versioning are seamlessly handled. To load our
models on Triton, we use the torchscript serialization of PyTorch
[57].

After splitting the video into shots, we use the facenet-pytorch
library [15] to run face detection and recognition on the frames of
each segment. The extracted faces are then clustered based on the
calculated face embeddings, and for each cluster component, we

execute the DeepFake ensemble model on Triton. As each shot is
independent, their processing is executed in parallel.

Finally, we aggregate the per shot and per cluster DeepFake
predictions to calculate the final video-level score. We also generate
“gallery plots”, i.e. plots that present all keyframes per shot, with
each keyframe drawn using a border colored based on its DeepFake
score. These plots are fetched from the MinIO object store [48], an
open-source S3 compatible storage framework.

3.4 Model Card
We have documented our DeepFake detection service using less
formal language in a Model Card format13. The model card in-
cludes a description of our service’s intended use, an account of
caveats and recommendations that potential novice users should
take into consideration when interpreting the service results, as
well as a performance evaluation over three datasets accompanied
with a clear explanation of the reported metrics. The compiled
model card has been reviewed by AI experts from different disci-
plines. Based on these reviews, the current version is intended for
experts having technical experience, i.e., other researchers work-
ing on the problem of DeepFake detection or media verification
companies/organizations/groups. Yet, there is room for improve-
ment for other non-technical audiences. The compiled model card
is provided in the supplementary materials.

4 EVALUATION
We have evaluated the performance of the presented service across
three well-known DeepFake detection datasets as well as using
adversarial attacks.

4.1 Evaluation settings
4.1.1 Datasets. We employ three evaluation datasets to assess the
performance of our DeepFake Detection service:

• FaceForensics++ (FF++) [61] This is organized in two ma-
nipulation categories, Identity Swap, implemented based on
FaceSwap and DeepFakes, and Expression Swap, implemented
using NeuralTextures and Face2Face. FF++ contains 1000 real
videos and 4000 fake videos derived by applying the four
models on each real video. Evaluation on FF++ provides a per-
formance indicator on different manipulation categories and
methods. Compared to more recent datasets (e.g. CelebDF,
DFDC) the DeepFake quality in FF++ is visibly worse.

• CelebDF-V2 (CelebDF) [42] This comprises videos from
celebrity interviews that have been manipulated using im-
proved versions of the DeepFake manipulation methods used
in FF++. It consists of 590 real and 5639 fake videos.

• WildDeepFake (WDF) [84] In contrast to the above datasets
where manipulations were generated by the dataset creators,
this contains real-world DeepFakes sourced from various
video-sharing websites and their corresponding real ver-
sions. It consists of 3800 real and 3500 fake videos. Due to
its real-world nature, it is considered a challenging dataset.

4.1.2 Evaluation metrics. Given that the evaluation datasets are
imbalanced, we want to avoid skewed metrics that might favor

13https://mever.iti.gr/deepfake/model_card.pdf
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Dataset MeVer DeepWare
BA AUC BA AUC

FaceForensics++ 70.31% 0.7705 68.77% 0.7681
CelebDF 82.75% 0.9259 77.54% 0.9493
WildDeepFake 84.94% 0.9373 66.96% 0.8646

Table 1: BA and AUC for the MeVer service (ours) and Deep-
Ware on three datasets.

one class or alter the datasets via sampling. Hence, we choose to
report the Balanced Accuracy (BA) rather than raw Accuracy. BA is
defined as themean of the recall computed on each class. Its possible
values are in the range 0%-100% (higher is better). Moreover, we
report the Area Under the Curve (AUC) as it is the most often used
metric in the literature. It is defined as the area under the Receiver
Operating Characteristic (ROC) curve with possible values ranging
from 0 to 1 (higher is better).

4.1.3 Adversarial robustness. To set up the adversarial robustness
evaluation, we used IBM’s Adversarial Robustness Toolbox14 (ART).
More specifically, we used ART’s PyTorchClassifier class to wrap
our model ensemble and subsequently used the Projected Gradient
Descent adversarial attack [44] attack class. Regarding its hyper-
parameters, we use 𝜖 = 0.2 and𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 5, due to com-
putational constraints. To benchmark our model, for each video in
each dataset, (i) we feed it to the PyTorchClassifier unaltered, (ii)
we generate an adversarial example on a frame-by-frame basis, and
(iii) feed it through our classifier again.

4.2 Experimental results
4.2.1 Evaluation on different datasets. Table 1 presents our eval-
uation results on the three aforementioned datasets. Our system
performs much better on the CelebDF and WDF datasets rather
than the FF++, in which we observe an average 13% performance
drop in terms of BA. Specifically, on the WDF dataset, we achieve
an 84.94% BA which is close to other state-of-the-art methods [84]
and is expected since our ensemble’s fifth model was trained on this
dataset (see Section 3.2). In the case of the CelebDF dataset, even
though none of our models have been trained with this dataset,
we achieve an 82.75% BA. Additionally, we compare our system
with the publicly available model by DeepWare15. We follow the
same settings as used for our models for pre-processing, which are
slightly different from those used by the original authors. The two
systems perform comparably in FF++ and CelebDF, with our service
having a small but clear edge. Our system significantly outperforms
its competitor in WDF, which is expected since it has been used for
training.

4.2.2 Evaluation on different manipulations. To delve into the per-
formance discrepancy between FF++ and the other two datasets,
we performed a more extensive evaluation on the FF++ dataset
in terms of manipulation type; this is presented in Table 2. Our
models are considerably better at detecting FaceSwap and DeepFake
manipulations than NeuralTextures and Face2Face manipulations.

14https://adversarial-robustness-toolbox.readthedocs.io/en/latest/
15https://github.com/deepware/deepfake-scanner

Manipulation BA AUC
FaceSwap 78.40% 0.8674
DeepFakes 86.20% 0.9468
NeuralTextures 57.65% 0.6276
Face2Face 59.02% 0.6402

Table 2: BA and AUC for each manipulation in FF++.

Dataset norm-1 norm-2 norm-inf
FaceForensics++ 70.31% 64.04% 50.53%
CelebDF 82.75% 76.01% 50.00%
WildDeepFake 84.94% 63.04% 50.00%

Table 3: BA on three datasets attacked with the PGD adver-
sarial attack with three output normalization setting.

The former two belong to the Identity Swap manipulation category
while the latter two are examples of Expression Swapping [46]. It
can be argued that this is due to our training data lacking Expression
Swapping examples; therefore, we expect our service to perform
better on Identity Swap manipulations.

4.2.3 Adversarial robustness. Table 3 illustrates the service per-
formance in terms of its robustness to adversarial attacks with
the PGD attack with three different output normalization settings.
Even though PGD is a white-box attack, meaning that the attacker
would need access to the weights of all the ensemble models, we
maintain that in the spirit of Reliable AI, it is preferable to consider
such a worst-case scenario. All attacks try to fool the detector into
assessing that the input media are real. The norm-1 attack does
not have any noticeable effect on the performance in comparison
to the original performance from Table 1. However, the norm-2
attack considerably affects the detection accuracy, even though
the models still retain decent performance. The strongest norm-inf
attack highlights the susceptibility of our model to such attacks
as it can no longer distinguish between real and DeepFake videos.
Yet, traces of an adversarial attack are visible with the naked eye in
images attacked with the norm-inf.

5 DEPLOYING IN THEWILD
Transferring our code from research to production proved to be
challenging for multiple reasons. We go through the challenges we
faced hoping that our experience will be of use to other academics
deploying their research to more real-world settings (Section 5.1).
Also, we have built a User Interface for demonstration purposes
(Section 5.2). We finally discuss our versioning process (Section 5.3)
and some considerations regarding access and availability of the
tool (Section 5.4)

5.1 Practical Challenges
During our research, we paid little attention to error handling, and
as expected, that was not enough to implement a robust API with
helpful explanations when things go wrong. Our micro-service
design, however, helped enforce modularity with clear error bound-
aries. For example, Triton was responsible for GPU-related issues,

https://adversarial-robustness-toolbox.readthedocs.io/en/latest/
https://github.com/deepware/deepfake-scanner


Figure 3: Image Analysis User Interface for the DeepFake
detection service

separate micro-services were dedicated to downloading, face detec-
tion and recognition pipelines, while MinIO [48] offered a storage
abstraction. Internally in our APIs, we consistently checked for ex-
pected errors and made use of the standard application/problem +
JSON content type16 to propagate them externally when necessary.

We also faced a number of difficulties with the video download-
ing process. We tried to support as many video sources as we could,
the most popular being YouTube, Twitter, and Facebook. Initially,
our download back-end depended on Youtube-dl [77]; however,
we experienced very slow download speeds. We averaged around
50KB/s, which for a 10MB video would translate to about three and
a half minutes of download time, adding significantly to the total
latency. Favoring high-definition video versions - since video qual-
ity is one of the most important factors for getting higher accuracy
results - would further exacerbate the issue. Fortunately, Youtube-
dlp [78], a fork of Youtube-dl, allowed us to consistently achieve
much higher download speeds, averaging around 700KB/s. Another
complication was that downloading using our public IP could result
in additional throttling or even denial of service. For this reason,
we chose to run our downloader behind a TOR17 proxy to provide
us with anonymity. Finally, an issue that we faced and still have not
resolved is that Facebook downloads are rarely successful without
Facebook user authentication.

5.2 User Interface
In terms of User Interface (UI), our service provides two modes:
Image and Video analysis. In Image analysis, a DeepFake probability
score is presented for each detected face and displayed on top of
the face’s bounding box as shown in Figure 3. An example of video
analysis can be seen in Figure 4. First, an embedded player allows
users to playback the video, and second, the UI displays a shot
selector as well as a shot interval that the user may choose to
inspect the DeepFake probabilities for a specific shot. By default,
the initially selected shot is the one with the highest DeepFake
probability. Once a shot is selected, the UI displays a window for
each detected face accompanied with its corresponding DeepFake
probability. The window provides the “Keyframe” (Figure 5) and
“Shot” (default) views which show a selected frame and a collage
16https://datatracker.ietf.org/doc/rfc7807
17https://torproject.org

Figure 4: Video Analysis User Interface for the DeepFake de-
tection service

of frames from the shot, respectively. Furthermore, the window
allows the user to use the “Hover-to-Zoom” functionality for closer
inspection of each view, as seen in Figure 6. Last, the “Overall”
DeepFake score is displayed at the bottom of the page, which results
from applying the aggregation strategy described in Section 3.1.

5.3 Versioning
As with every software project, it is important to have a clear
versioning scheme. For the presented service, we have decided
to use an adaptation of the Semantic Versioning 2 scheme18. In
particular, we follow the 𝑥 .𝑦.𝑧 scheme where:

• 𝑥 : is used for backward-incompatible changes, i.e., change
of the output of the service.

• 𝑦: refers to changes in the processing pipeline such as the
video segmentation methodology, the deployed models used,
and others as described in Section 3.1,

• 𝑧: is reserved for minor changes such as the aggregation
strategy or changes in the model’s input dimensions and
minor bug fixes.

5.4 Availability
We have chosen to keep the code and the model’s weights private
and to require user credentials for granting access to our UI. This is
due to two main reasons. First, we argue that since our models are
vulnerable to adversarial attacks - as shown in Section 4.2.3 - it is
essential to protect the service from white-box attacks that would
be very easy if the internals were public. We believe that this action

18https://semver.org/
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Figure 5: Frame collage view from the selected shot during
Video analysis

will deter the large majority of malicious actors from performing
white-box adversarial attacks. Second, given the scarcity of publicly
accessible DeepFake detection services, we lack the computational
resources to handle the potentially high traffic from end users, and
other complications including Denial of Service (DoS) attacks. For
the above reasons, we grant access to the service and UI only to
trusted partners upon request. Finally, our service has been inte-
grated and is accessible through the InViD-WeVerify Verification
plugin [69] (for approved users) and the Truly Media19 application.

6 CONCLUSION
In this work, we introduced the MeVer DeepFake detection service,
a complex multi-model system that detects DeepFake videos and
images. We discussed the overall processing pipeline, including a
number of pre-processing steps. Also, we presented the model ar-
chitectures and training processes for the deployed models as well
as implementation details for the service. The service has been eval-
uated on three well-known datasets: FaceForensics++, Celeb-DF,
and WildDeepFake. For Celeb-DF and WildDeepFake, our service
performed robustly and better compared to the publicly available
DeepWare model. For FF++, evaluation by manipulation type re-
vealed that our service performed robustly only in Identity Swap
manipulations. In the spirit of Trustworthy AI, we also performed
an Adversarial Robustness evaluation, and we provided a model
card for the service. From the results of the adversarial evaluation,
we observe a vulnerability to the Projected Gradient Descent attack,
which opens new directions for future research. Last but not least,
we discuss at length the practical challenges we faced moving from
a research codebase to a real-world system that would need to be
robust to arbitrary media content from the Internet.

In the future, we plan to improve the detection accuracy by con-
tinuously employing the most recent advancements in the field,
i.e., by using better datasets for training and evaluation and using
state-of-the-art model architectures. In addition, we plan to exper-
iment with various promising Deep Learning architectures and
training techniques in order to keep up with the ever-increasing
visual quality of DeepFakes. Also, we plan to enhance our service

19https://www.truly.media/

Figure 6: Hover-to-Zoom functionality in Image and Video
analysis

with methods for the detection of fully synthetically generated
faces (e.g. based on StyleGAN3 [25]), which is not supported in the
current version. Furthermore, we plan to compile more versions of
model cards targeted at wider non-technical audiences, e.g., jour-
nalists or business managers. Last but not least, we are committed
to maintaining our service as well as improving on the underlying
API and User Interface.
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