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Doubt thou the stars are fire,
Doubt that the sun doth move,
Doubt truth to be a liar,
But never doubt I lave...

Text

Modern

deep learning toolbox
IS designed for
seguences & grids

Audio signals




How can we develop neural
networks that are much more
broadly applicable?

New frontiers beyond classic neural

N

etworks that learn on images and
Sequences

Geodesics &
Gauges
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Graph ML is on Fire

ICLR Keyword Growth 2018-2020

graph neural network

adversarial robustness
robustness
meta-learning
transformer

neural architecture search

self-supervised learning
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Graph Neural Network

ARGET NODE = 4‘:‘

| = @
e oS
« @ > .
® 5 ® v. . E
INPUT GRAPH ;\4 -------------- ‘
550

—ach node defines a computation graph
= Each edge in this graph is a MsaG function
= @ Is a message aggregation function

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks.
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http://ieeexplore.ieee.org/document/4700287/

Inductive Capability

Train the model on a
subset of nodes

Make predictions for nodes
we never trained on!

INPUT GRAPH
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Nodes have different computation graphs
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Two Views of GNNS

The GNN does two things:

= 1) Powerful feature
transformer/smoother

= Node features get passed
and transformed around
node’s L-hop neighlborhood

= 2) Each node can have a different

computation graph and the network is
also able to capture/learn its structure

A _l
o
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Key Benefits of GNNSs

= GNNs adapt to the shape of data

= Other Deep Learning architectures
assume fixed input (matrix, sequence)

= GNNs can integrate multimodal data
of various cardinalities and shapes



Key Benefits of GNNSs

= GNNs subsume CNNs and
Transformers as special cases

But scalability remains

a challenge!

Image Graph
() hy 0
GNN formulation: hy, "™ = a(W; Xyengw) NG| + B;h,,”),vI€{0,...,L — 1}

CNN formulation: hf,”l) = 0(Qyenw W,“hg) + Blh,(,l)), vl e{0,..,L—1}
Jure Leskovec (@jureg, %tanford University



Scalable & Deep GNNs

Deep GNNs on large-scale graphs result
IN neighbor explosions

= Exponentially increasing
dependency graph of nodes over
layers
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Our Work: GNNAutoScale

Mini-batch B
@ 1-hop neighborhood |J N(v)\ B
veEB
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= Pull histories for out-of-minibatch nodes
- estimated embeddings to histories
= Theory:

= (1) Bounded approximation error

= (2) Provably as expressive as the WL-test

GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings. ICML 2021.
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https://cs.stanford.edu/people/jure/pubs/gnnautoscale-icml21.pdf

GNNAutoScale

s Serial Access === (Concurrent Access
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Fast history access
via asynchronous
device transfers to
and from the GPU
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(a) Serial execution (b) Concurrent execution
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Experimental Results

— #nod 717K 169K 2.4M
Dataset G’ll}TuI? time (GSL S gfrlreTnIl:ory (l\éi) S #:((l)g:ss 7.9M 1.2M 61.9M
Method YELP egln. og(]ion—t
CoORrRA 0.077 0.006 18.01 2.13 arxiv products
PUBMED 0.071 0.006 28.79 2.19 . Full-batch 6.64GB/100% 1.44GB/100% 21.96GB/100%
PPI 0.976 0.007 134.86 12.37 % GRAPHSAGE 0.76GB/ 9% 0.40GB/ 27% 0.92GB/ 2%

= CLUSTER-GCN 0.17GB/ 13% 0.15GB/ 40% 0.16GB/ 16%
FLICKR 1.178  0.007 32597  16.32 GAS 0.51GB/100% 0.22GB/100% 0.36GB/100%

= 10-100x speedup over GTTF [ICLR ‘21]
= GTTF 10x better than naive implementation

= 10-20x less memory over GTTF [ICLR “21]
= GTTF 4x better than naive implementation

= GNNAutoScale can be applied with any
GNN architecture (GCN, SAGE, GAT)
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& PyG: GNN Library

& PyG bundles the state-of-the-art in
Graph Representation Learning

50+ GNN architectures

200+ benchmark datasets

Extendable via a message passing interface
Dedicated sparsity-aware CUDA kernels
Support for various scalability techniques
Heterogeneous Graph Support

GNN Design Space Exploration

Jure Leskovec (@jure), Stanford University
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& PyG: GNN Library

& PyGis OPyTorch-on-the-rocks

Keeps design principles close to vanilla PyTorch

Fits nicely into the Py Torch ecosystem

from torch.nn import Conv2d

class CNN(torch.nn.Module):
def __init__(self):
self.convl = Conv2d(3, 64)

self.conv2 = Conv2d(64, 64)

def forward(self, input):
self.convi(input)
h.relu()
self.conv2(h)
return h

from torch_geometric.nn import GCNConv

class GNN(torch.nn.Module):
def __init__(self):
self.convl = GCNConv(3, 64)
self.conv2 = GCNConv(64, 64)

def forward(self, input, edge_index):
h self.convi(input, edge_index)

h.relu()

self.conv2(h, edge_index)

return h

h

h

Jure Leskovec (@jure), Stanford University
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& PyG: GNN Library

& PyG provides the state-of-the-art in
Graph Representation Learning

Models
User-Defined Models Pre-Defined Models and Examples
1 == 1
Operators Storage
Message Passing Data Loaders
S e & Pooling Mini-Batching Neighbor Sampling  Subgraph Sampling
*
Normalization Data : Transforms
*
Readout Datasets
z b 1
Engine
O PyTorch > torch_scatter > torch_sparse

Jure Leskovec (@jure), Stanford University
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& PyG: GNN Library

PYG.ORG:
= ~800 research papers written using & PyG

= ~40K monthly downloads EESRSIES
= ~250 external contributors
= ~1800 members on Slack

-tU dortmund ( @ Stanford

university !iJ University

Cite this repository ~
14.5k stars

241 watching

< O O 24

2.6k forks

>

eSPOtIfY @ Pinterest AMAZ0N nvipia.
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P PayPal

Uber
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http://www.pyg.org/

What are some
applications of PyG?



Graphs are Everywhere

2 z: 1‘_' Z- 2, ::" :, (_while ] [ return ]
Molecular graphs . ) :
Social networks Knowledge graph &3 G
[b ][0 ]
(> ) (Lassign ] (Cassign )

AST

Biological networks  Citation networks 3D meshes

Real-world data is full of relations.
Graphs model how “stuff” is connected.
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(1): Recommender Engin

Task: Recommend related pins

Task: Learn node
e T embeddings z; s.t.
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= Challenges: U
o

= Massive size: 3 billion nodes, 20 billion edges
= Heterogeneous data: Rich image and text features

Graph Convolutional Neural Networks for Web-Scale Recomme

nder Systems. R. Ying, et al. KDD, 2018. |


https://cs.stanford.edu/people/jure/pubs/pinsage-kdd18.pdf

(2) Fraud & Intrusion Detection

Fraud and intrusion detection in
dynamic transaction graphs

Financial networks
Communication networks L 1
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(3) Text + Graph Reasoning

Question

If it is not used for hair, a round brush is an example of what?

A. hair brush B. bathroom C. art supplies* D.shower

Knowledge sources Pod Concepenet
Pre-trained language model (LM) Knowledge Graph (KG) =~ ..

~ LI
Complete
11,038 books
| AtLocation
U . . of
LI nainting it
[Devlin+19; Liu+19;
—— Brown+20; ...] [Bollacker+08; Speer+16]

Jure Leskovec, Stanford University 23



Interpretabllity

(a) Attention visualization direction: BFS from Q

Where would you find a basement that can be accessed with an

elevator?

A. closet B. church C. office building*

AtLocation

elevator

- l ‘

building office

e

4%» building

o

house ‘

%
basement O church

cargo

Jure Leskovec (@jure), Stanford University
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Structured Reasoning

Original Question

(a) Negation Flipped

If it is not used for hair, a round brush is an example of what?
A. hair brush B. art supply*

If it is used for hair, a round brush is an example

of what? A. hair brush B. art supply

, , A. hair brush (0.38)
hair hair hair, hair
brush brush
‘ ‘\ B. art supply (0.64)
round W art round ‘/g
brush supply brush supply
painting painting

GNN 1st Layer GNN Final Layer Model Prediction

A. hair brush (0.81)
B. artsupply (0.19)

hair hair
brush

art
supply

round
brush

painting

GNN Final Layer Model Prediction

Jure Leskovec (@jure), Stanford University 25



(4) Data in Biomedicine

@® Drug

® Disease
& Adverse event

Protein
A Pathways




TrialNet Knowledge Graph

ABCB1
¢ ;f3 gressic -
4o oree_surviva NCTO00722
Breast \ Nausea /SC€S 137_arm1
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by sit S ‘ transplantations
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¢ .
neoplasms ransplantation
sion y —N
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ESR2 \ / / \
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GO:00
700 GO0:0008
209
@ Trial Arm Disease @ Primary outcome @ Drug class Protein
Drug Population @ Adverse event @ Function

Covers 70k interventional
clinical trials

300k nodes (clinical trials
protocol entities, biological
and chemical entities)

10.8 millions edges across
18 relation types
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Learning Embeddings

How can we leverage TrialNet and
build predictive models?

Key idea: Learn to
embed trials, drugs,

diseases, population,
proteins...




Predicting Drug Efficacy

+16%

improvement

BERT

TrialNet-GCN

0.75

0.7

0.65

0.6

0.55

0.5

Further improvements
can be expected with
larger training set

50 100 200 300 520

Number of training examples (Al



Generalization to New Drugs

AUROC

1.0

0.8

0.6

0.4

0.2

0.0

Never-before-
seen drugs

V

40 80

Drug frequency in train set

Melanoma Arm 1 Tasisulam-sodium
Overall survival Arm 2 Paclitaxel
. Unseen
drug

Which arm has better outcome??

Model prediction\/ Ground truth

Tasisulam: 0.25 Tasisulam: 6.8 months
Paclitaxel: 0.75 Paclitaxel: 9.4 months

Safety terminated study
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9) ML on Business data

Production ML

An on-call engineer’s biggest nightmare
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Figure 1: High-level architecture of a generic end-to-end machine leaming pipeline. Logos represent a sample of tools used to construct
components of the pipeline, illustrating heterogeneity in the tool stack. Shankar et al. 2021

Jure Leskovec (@jure), Stanford University
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Example: Predict Credit Risk

Data scientists writes workflows to join

tables, generate features: "
account age =
avg. balance
total # transactions ey = =
H car d S amount_[int account_o[ T
# bad transactions

o
Q
=]
c
3
=1
S|s|s
[¢]
T =
QO [V R
2 28
glala
28| S
5 2|3
2
-

district_id |int

Every feature needs to be recomputed =
for the time the loan was issued :
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Representation Learning

Feature

detector CAR

Classical computer vision: hand-crafted features (e.g. SIFT)
+ simple classifier (e.g. SVM)

=y

Modern computer vision: data-driven end-to-end systems

Jure Leskovec (@jure), Stanford University
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loan

loan_id int

account_id|int

date date

amount |int

duration  [int

|
Status__[vrchar|

card
card_id|int
disp_id|int
type varchar
issued |date
trans
trans_id [int
order account_id|int v
order_id [int date date disp
account_id|int type varchar disp_id int
bank_to |varchar operation |varchar client_id [int
account_to|int amount  [int account_id|int
amount |decima balance |int type varchar
k_symbol |varchar k_symbol |varchar
bank varchar
account  [int
account client
account_id|int client_id |int
district_id |int gender |varchar
frequency |varchar birth_date|date
date date district_id |int
district
district_id|int
A2 varchar
A3 varchar
v int
A5 int
A6 int
A7 int
A8 int
A fint Jure Leskovec (@jure), Stanford University

mmo: Example

Loan status

Account

Transaction
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mmo: State of the Art Results

Method AUC
Naive Neural Net baseline |0.65
Loan status Stanford PhD (XGBoost)  |0.88
Best research paper 0.92

Account
KUMO 0.97

Transaction

~ 0.9 ' '

2
~ 0.8-
© 0.7-

{1

| | ' 1 |

0O 1 2 3 4

Depth of exploration
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mm() . Benefits

Learned representation (features) is
optimal for a given task

State of the art model performance
Drastic simplification of the ML stack

No feature store, no backfills, no
aggregations, no feature crosses

Easy productionisation
Faster time to value

Amplifies data scientists to be more
productive

kovec (@jure), Stanford University



Conclusion

GNNs allow for representation on
complex relational data
= Fuse node features & relations

= State-of-the-art accuracy graph machine
learning tasks

= Model size independent of graph size;
can scale to billions of nodes
= |[argest embedding to date (5B nodes, 20B edges)

= | eads to significant performance gains

kovec (@jure), Stanford University



Conclusion

= GNNs are a very general type of NNs

= (GNNs subsumes CNNs and
Transformers as special cases

= GNNs have a huge range of
applications
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