Deep Learning with Knowledge Graphs

Jure Leskovec

Includes joint work with M. Fey, J. You, S. Jegelka, K. Xu, R. Ying, W. Hu, M. Zitnik, P. Battaglia, K. Subbian, N. Rao, P. Li, A. Wang

Doubt thou the stars are fire, Doubt that the sun doth move, Doubt truth to be a liar, But never doubt I love...

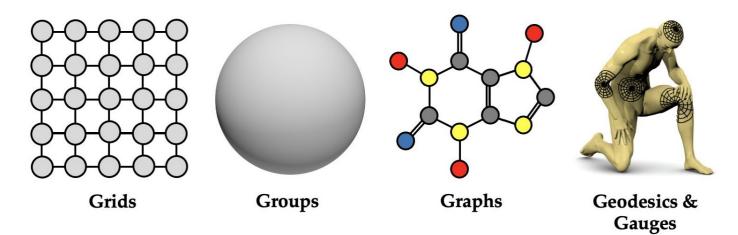
Text

Audio signals

Images

Modern deep learning toolbox is designed for sequences & grids How can we develop neural networks that are much more broadly applicable?

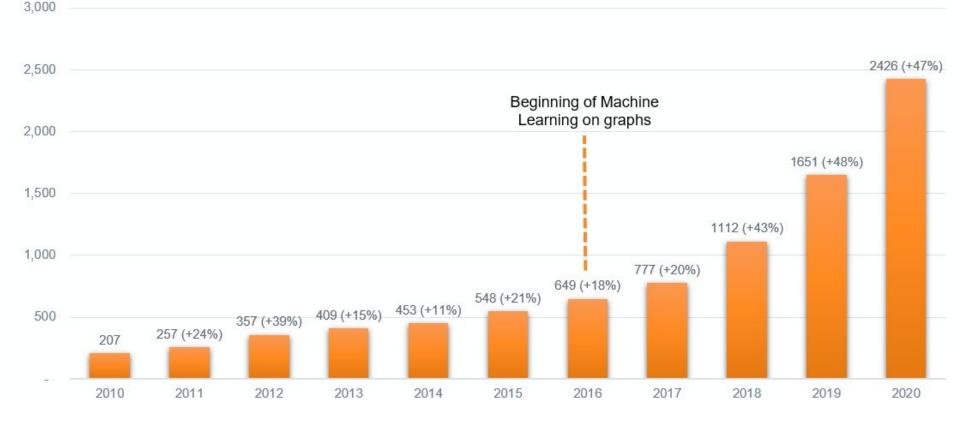
New frontiers beyond classic neural networks that learn on images and sequences



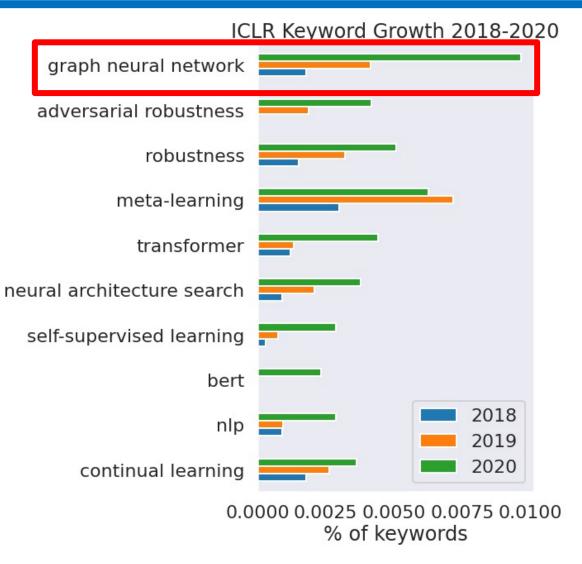
Jure Leskovec (@jure), Stanford University

Graph ML is on Fire

Number of papers with 'graph' in title (ArXiv).

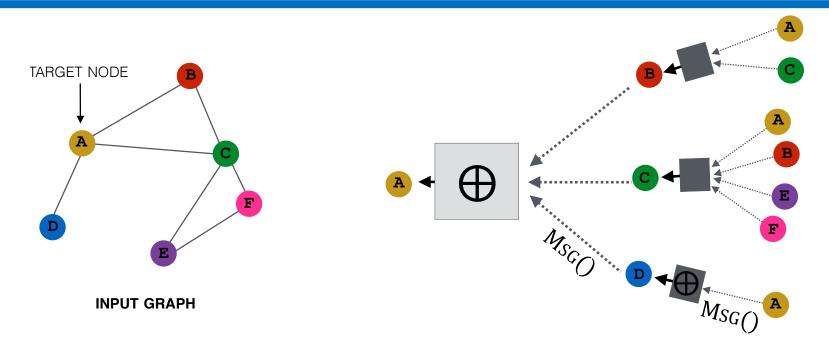


Graph ML is on Fire



Jure Leskovec (@jure), Stanford University

Graph Neural Network

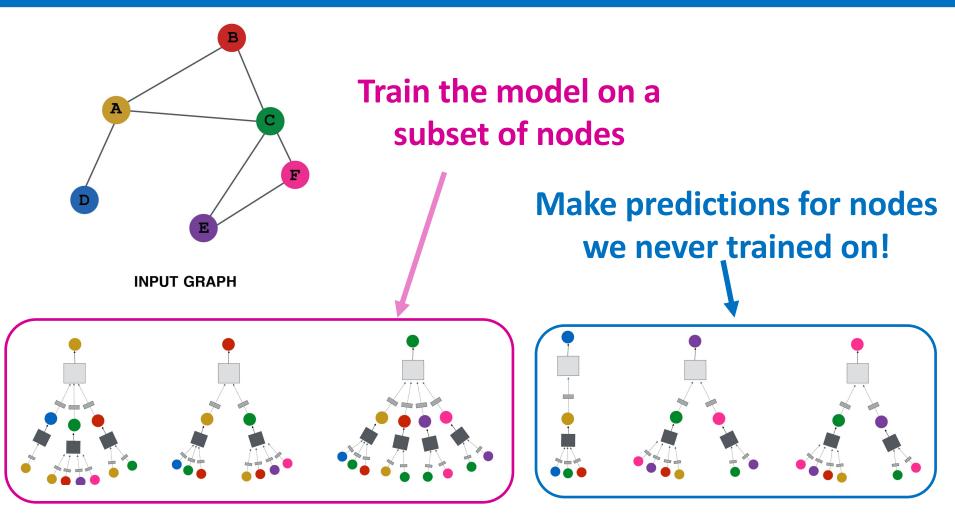


Each node defines a computation graph

- Each edge in this graph is a Msg function
- ⊕ is a message aggregation function

Scarselli et al. 2005. <u>The Graph Neural Network Model</u>. *IEEE Transactions on Neural Networks*. Jure Leskovec (@jure), Stanford University

Inductive Capability



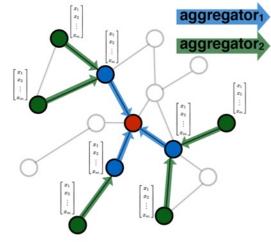
Nodes have different computation graphs

Jure Leskovec (@jure), Stanford University

Two Views of GNNs

The GNN does two things:

- 1) Powerful feature transformer/smoother
 - Node features get passed and transformed around node's *L*-hop neighborhood



• 2) Each node can have a different computation graph and the network is also able to capture/learn its structure

Key Benefits of GNNs

- GNNs adapt to the shape of data
 - Other Deep Learning architectures assume fixed input (matrix, sequence)
- GNNs can integrate multimodal data of various cardinalities and shapes

Key Benefits of GNNs

 GNNs subsume CNNs and Transformers as special cases

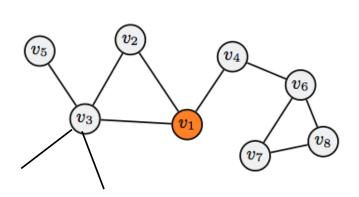
But scalability remains a challenge!

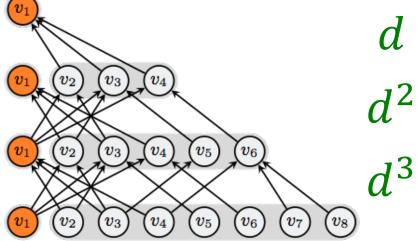
ImageGraphGNN formulation: $h_v^{(l+1)} = \sigma(\mathbf{W}_l \sum_{u \in \mathbf{N}(v)} \frac{h_u^{(l)}}{|\mathbf{N}(v)|} + B_l h_v^{(l)}), \forall l \in \{0, ..., L-1\}$ CNN formulation: $h_v^{(l+1)} = \sigma(\sum_{u \in \mathbf{N}(v)} \mathbf{W}_l^u h_u^{(l)} + B_l h_v^{(l)}), \forall l \in \{0, ..., L-1\}$ Jure Leskovec (@jure), Stanford University

Scalable & Deep GNNs

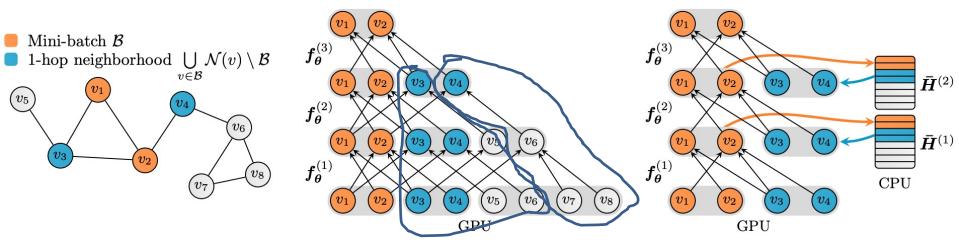
Deep GNNs on large-scale graphs result in neighbor explosions

 Exponentially increasing dependency graph of nodes over layers





Our Work: GNNAutoScale

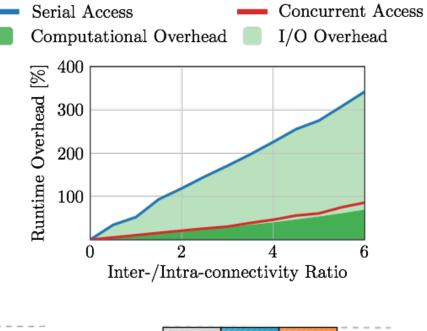


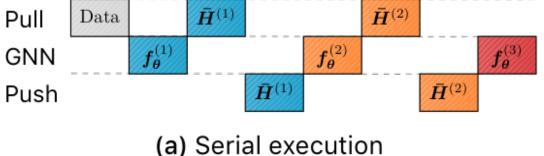
- Pull histories for out-of-minibatch nodes
- Push estimated embeddings to histories
- Theory:
 - (1) Bounded approximation error
 - (2) Provably as expressive as the WL-test

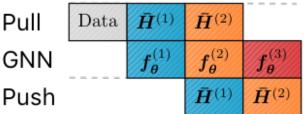
<u>GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings</u>. ICML 2021.

GNNAutoScale

Fast history access via **asynchronous device transfers** to and from the GPU







(b) Concurrent execution

Experimental Results

Dataset	Runti r GTTF	ne (s) GAS	Memor GTTF	y (MB) GAS	# nodes # edges Method	717K 7.9M Yelp	169K 1.2M ogbn- arxiv	2.4M 61.9M ogbn-
Cora PubMed	0.077 0.071	0.006 0.006	18.01 28.79	2.13 2.19	Full-batch	6.64GB/100%		products 21.96GB/100%
POBMED	0.071	0.000	134.86	12.37	GRAPHSAGE	0.76GB/ 9%	0.40GB/ 27%	0.92GB/ 2%
Flickr	1.178	0.007	325.97	16.32	GAS		0.13GB/ 40% 0.22GB/100%	0.36GB/100%

10-100x speedup over GTTF [ICLR '21]

- GTTF 10x better than naïve implementation
- 10-20x less memory over GTTF [ICLR '21]
 - GTTF 4x better than naïve implementation
- GNNAutoScale can be applied with any GNN architecture (GCN, SAGE, GAT)

PyG bundles the state-of-the-art in Graph Representation Learning

- 50+ GNN architectures
- 200+ benchmark datasets
- Extendable via a message passing interface
- Dedicated sparsity-aware CUDA kernels
- Support for various scalability techniques
- Heterogeneous Graph Support
- GNN Design Space Exploration

PyG is OPyTorch-on-the-rocks

- Keeps design principles close to vanilla PyTorch
- Fits nicely into the PyTorch ecosystem

•••

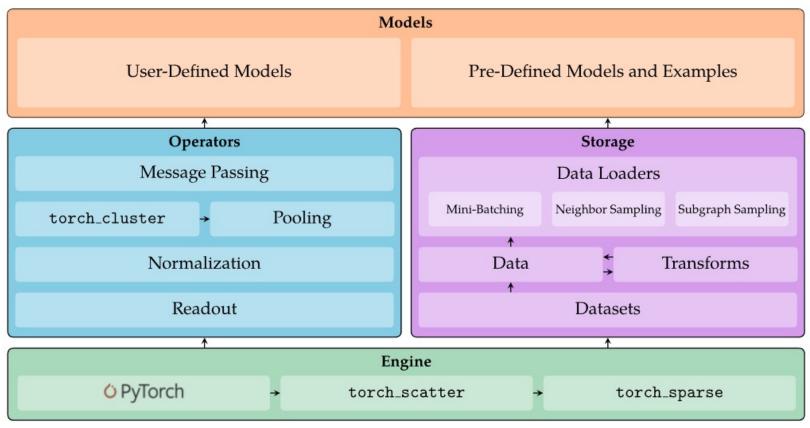
```
from torch.nn import Conv2d
class CNN(torch.nn.Module):
    def __init__(self):
        self.conv1 = Conv2d(3, 64)
        self.conv2 = Conv2d(64, 64)
    def forward(self, input):
        h = self.conv1(input)
        h = h.relu()
        h = self.conv2(h)
        return h
```



```
from torch_geometric.nn import GCNConv
```

```
class GNN(torch.nn.Module):
    def __init__(self):
        self.conv1 = GCNConv(3, 64)
        self.conv2 = GCNConv(64, 64)
    def forward(self, input, edge_index):
        h = self.conv1(input, edge_index)
        h = h.relu()
        h = self.conv2(h, edge_index)
        return h
```


PyG provides the state-of-the-art in Graph Representation Learning



PyG: GNN Library

YG.ORG:

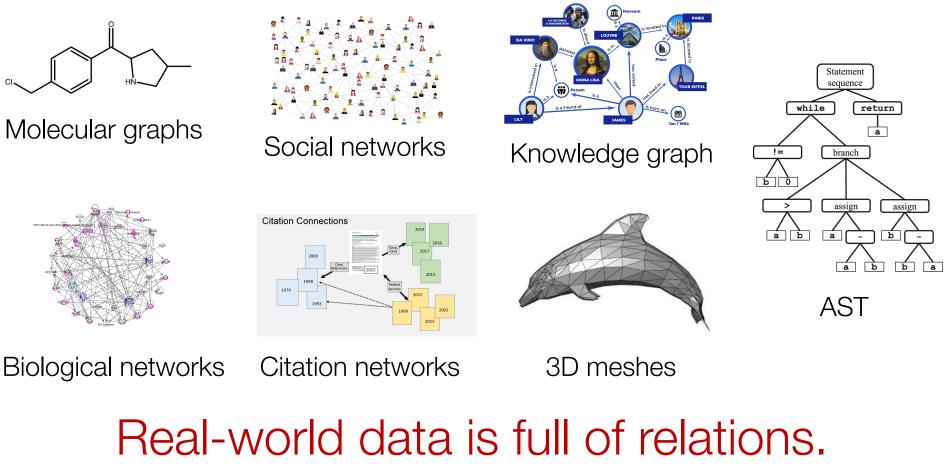
- ~800 research papers written using 🚳 PyG
- ~40K monthly downloads
- ~250 external contributors
- ~1800 members on Slack

- MIT license
- Cite this repository -
- 14.5k stars
- 241 watching
- 2.6k forks

dortmund university Stanford University Spotify OPinterest amazon intel AIRBUS pwc Uber

What are some applications of PyG?

Graphs are Everywhere



Graphs model how "stuff" is connected.

(1): Recommender Engin

Task: Recommend related pins

Task: Learn node embeddings z_i s.t. $d(z_{cake1}, z_{cake2})$ $< d(z_{cake1}, z_{sweater})$

> 0.4 0.3 Mean Reciproca 0.2 Sank 0.1

Challenges:

- Massive size: 3 billion nodes, 20 billion edges
- Heterogeneous data: Rich image and text features

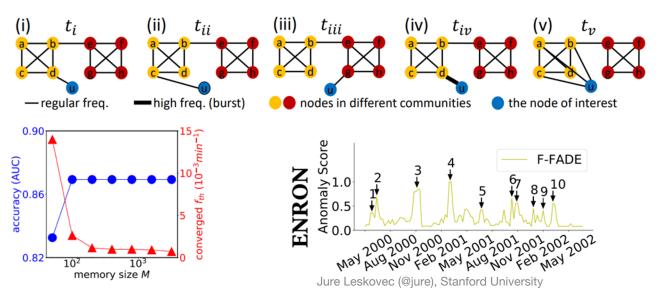
Graph Convolutional Neural Networks for Web-Scale Recommender Systems. R. Ying, et al. KDD, 2018.

(2) Fraud & Intrusion Detection

Fraud and intrusion detection in dynamic transaction graphs

Financial networks

Communication networks



(3) Text + Graph Reasoning

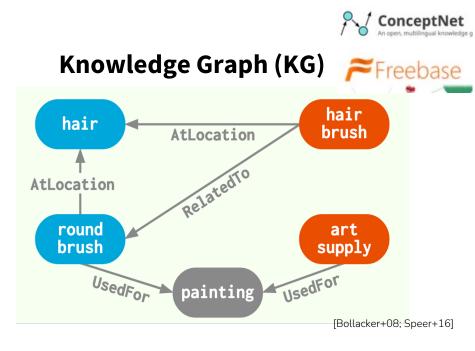
Question

If it is <u>not</u> used for **hair**, a **round brush** is an example of what?

A. hair brush B. bathroom C. art supplies* D. shower

Knowledge sources

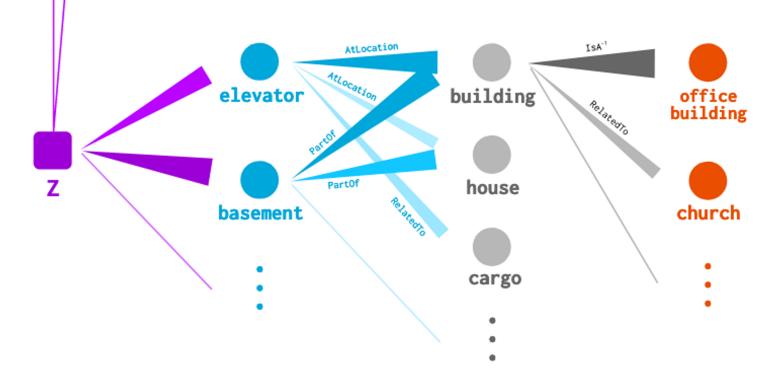
Pre-trained language model (LM)



Interpretability

(a) Attention visualization direction: BFS from Q

Where would you find a **basement** that can be accessed with an **elevator**? A. closet B. church C. office building*



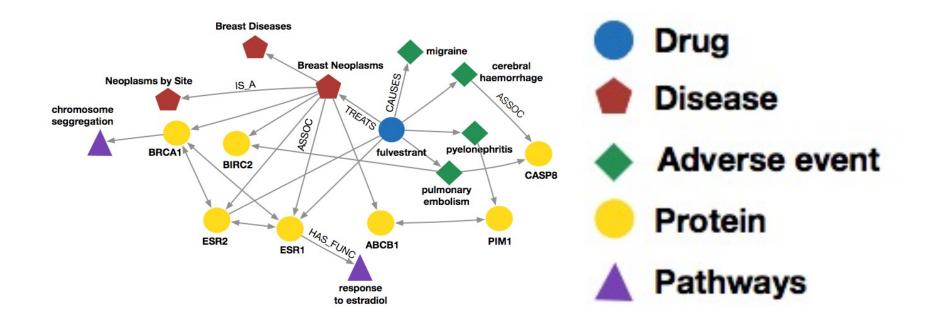
Structured Reasoning

Original Question

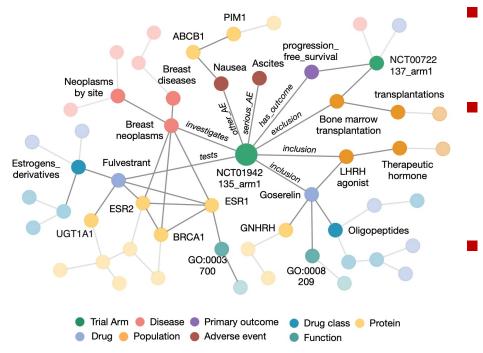
If it is **not** used for **hair**, a **round brush** is an example of what? If it is used for **hair**, a **round brush** is an example A. hair brush B. art supply* of what? A. hair brush B. art supply Ζ A. hair brush (0.38) A. hair brush (0.81) hair hair brush hair hair hair brush hair brush B. art supply (0.64) B. art supply (0.19) round art round art round art brush supply brush supply brush supply painting painting painting GNN 1st Layer GNN Final Layer Model Prediction **GNN Final** Layer Model Prediction

(a) Negation Flipped

(4) Data in Biomedicine



TrialNet Knowledge Graph

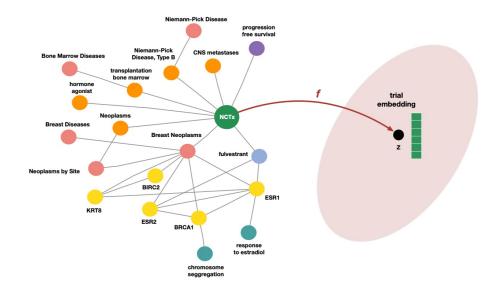


- Covers 70k interventional clinical trials
- **300k nodes** (clinical trials protocol entities, biological and chemical entities)
- **10.8 millions** edges across 18 relation types

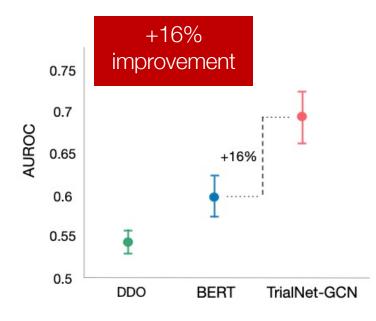
Learning Embeddings

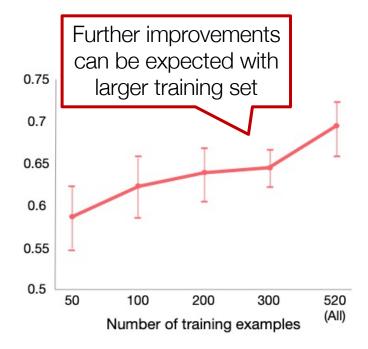
How can we leverage TrialNet and build predictive models?

Key idea: Learn to embed trials, drugs, diseases, population, proteins...

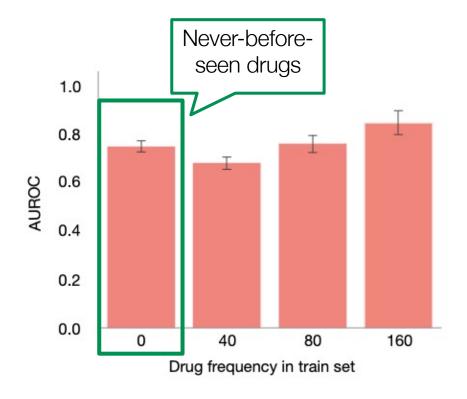


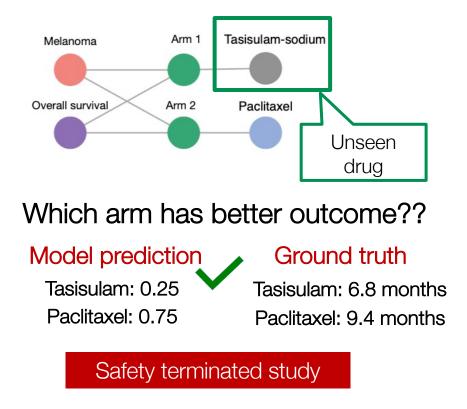
Predicting Drug Efficacy





Generalization to New Drugs





(9) ML on Business data

Production ML

An on-call engineer's biggest nightmare

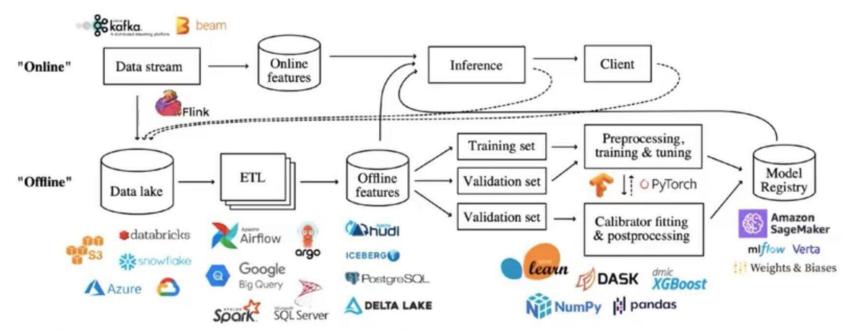


Figure 1: High-level architecture of a generic end-to-end machine learning pipeline. Logos represent a sample of tools used to construct components of the pipeline, illustrating heterogeneity in the tool stack. Shankar et al. 2021

Example: Predict Credit Risk

loan

account idlint

int

date

int

int

varchar

loan id

amount

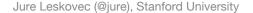
duration

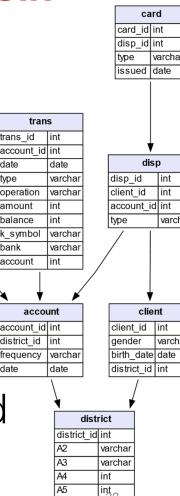
status

date

Data scientists writes workflows to join tables, generate features:

- account age avg. balance total # transactions # cards # bad transactions
- **Time consistency nightmare:** Every feature needs to be recomputed for the time the loan was issued





trans

trans id

date

type

account id

operation

amount

balance

bank

k svmbol

account

district id

frequency

order

lint

varchar

decima

varchar

order_id

bank to

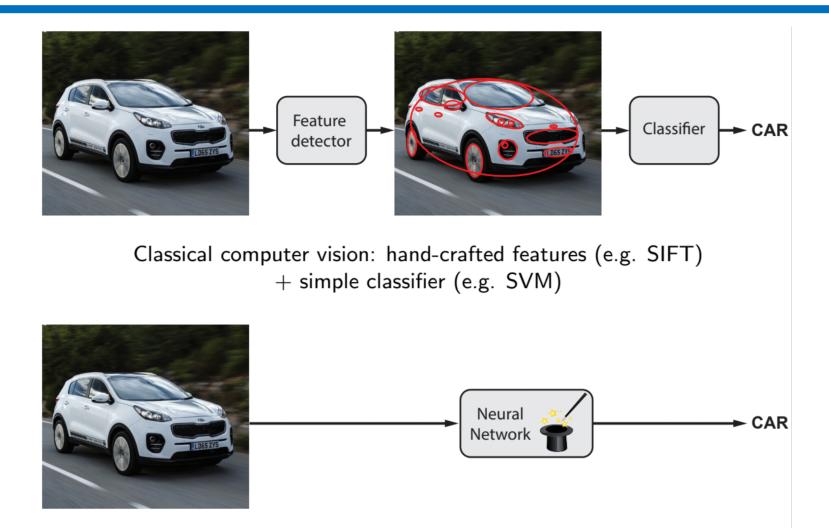
amount

k svmbol

account id int

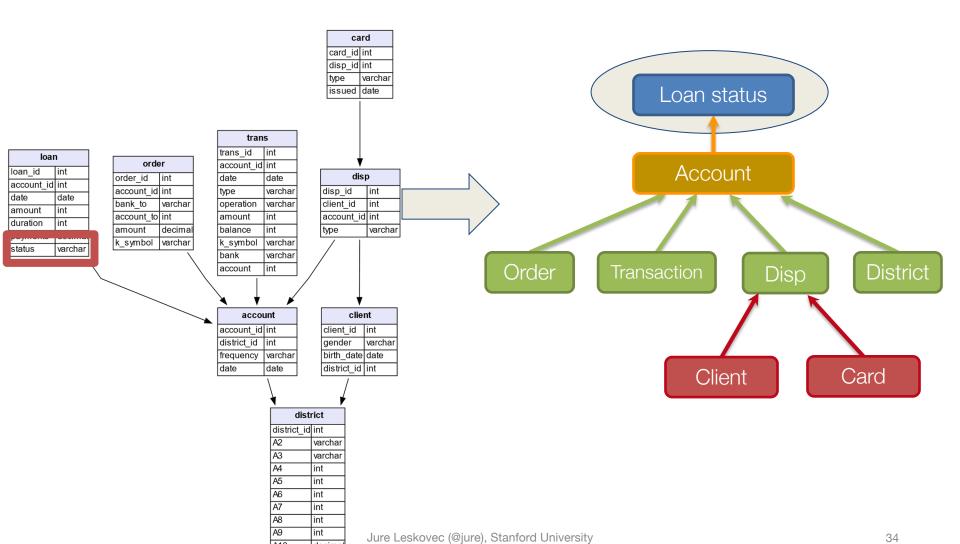
account to int

Representation Learning

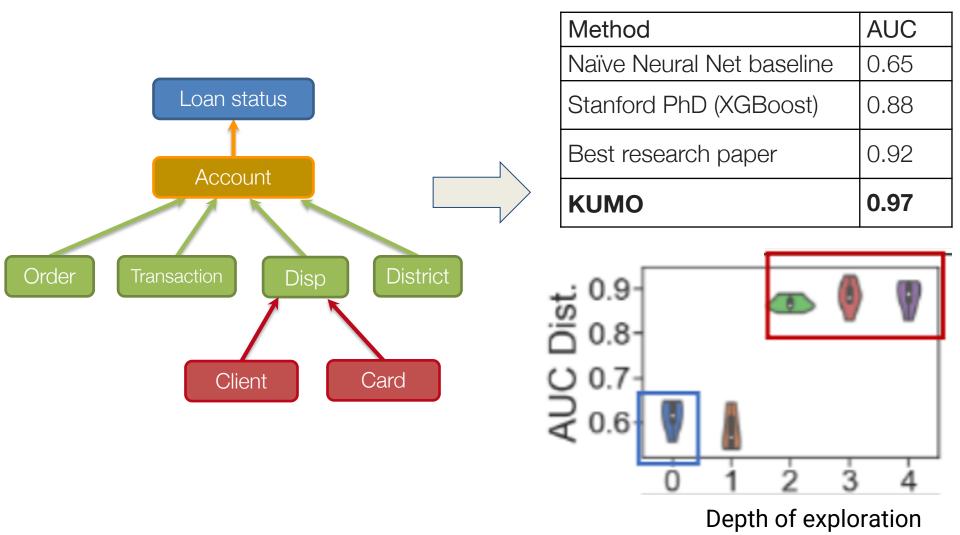


Modern computer vision: data-driven end-to-end systems

kumo: Example



kimo: State of the Art Results



Learned representation (features) is optimal for a given task

State of the art model performance Drastic simplification of the ML stack

No feature store, no backfills, no aggregations, no feature crosses Easy productionisation

Faster time to value

Amplifies data scientists to be more productive

Conclusion

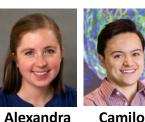
GNNs allow for representation on complex relational data

- Fuse node features & relations
 - State-of-the-art accuracy graph machine learning tasks
- Model size independent of graph size; can scale to billions of nodes
 - Largest embedding to date (5B nodes, 20B edges)
- Leads to significant performance gains

Conclusion

- GNNs are a very general type of NNs
- GNNs subsumes CNNs and Transformers as special cases
- GNNs have a huge range of applications

PhD Students



Alexandra Porter

Jared

Davis

Post-Doctoral Fellows

Serina Chang

Tailin

Wu

Ruiz

Weihua Hu

Hongyu

Ren

Yusuf Roohani

Hamed

Nilforoshan

Kaidi Cao

Michi

Yasunaga

Maria **Brbic**

Industrial Visitors

Yanan

Wang

Maya

Jing Huang

Yoshitaka Inoue

Research Staff

Rok Sosic

IARPA