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Modern 
deep learning toolbox 

is designed for 
sequences & grids
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How can we develop neural 
networks that are much more 

broadly applicable?
New frontiers beyond classic neural 
networks that learn on images and 

sequences



Graph ML is on Fire
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Graph Neural Network
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Each node defines a computation graph
§ Each edge in this graph is a MSG function 
§ ⨁ is a message aggregation function

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks. 

MSG()

⨁

MSG()
⨁

http://ieeexplore.ieee.org/document/4700287/


Inductive Capability
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Train the model on a 
subset of nodes

Make predictions for nodes 
we never trained on!

Nodes have different computation graphs



Two Views of GNNs
The GNN does two things:
§ 1) Powerful feature 

transformer/smoother
§ Node features get passed 

and transformed around 
node’s 𝐿-hop neighborhood 

§ 2) Each node can have a different 
computation graph and the network is 
also able to capture/learn its structure
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Key Benefits of GNNs
§ GNNs adapt to the shape of data

§ Other Deep Learning architectures 
assume fixed input (matrix, sequence)

§ GNNs can integrate multimodal data 
of various cardinalities and shapes
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Key Benefits of GNNs
§ GNNs subsume CNNs and 

Transformers as special cases
§ Example: CNN layer with 3x3 filter
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End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)
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(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph
GNN formulation: h!

(#$%) = 𝜎(𝐖𝒍∑(∈*(!)
+!
(#)

*(!)
+ B#h!

(#)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

CNN formulation: h!
(#$%) = 𝜎(∑(∈*(!)𝐖𝒍

𝒖h(
(#) + B#h!

(#)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

But scalability remains 
a challenge!



Scalable & Deep GNNs
Deep GNNs on large-scale graphs result 
in neighbor explosions
§ Exponentially increasing 

dependency graph of nodes over 
layers
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Our Work: GNNAutoScale

§ Pull histories for out-of-minibatch nodes
§ Push estimated embeddings to histories
§ Theory:

§ (1) Bounded approximation error
§ (2) Provably as expressive as the WL-test
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GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings. ICML 2021.

https://cs.stanford.edu/people/jure/pubs/gnnautoscale-icml21.pdf


GNNAutoScale

Fast history access
via asynchronous
device transfers to
and from the GPU
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Experimental Results

§ 10-100x speedup over GTTF [ICLR ‘21]
§ GTTF 10x better than naïve implementation

§ 10-20x less memory over GTTF [ICLR ‘21]
§ GTTF 4x better than naïve implementation

§ GNNAutoScale can be applied with any 
GNN architecture (GCN, SAGE, GAT)
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PyG: GNN Library
PyG bundles the state-of-the-art in
Graph Representation Learning
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§ 50+ GNN architectures
§ 200+ benchmark datasets
§ Extendable via a message passing interface
§ Dedicated sparsity-aware CUDA kernels
§ Support for various scalability techniques
§ Heterogeneous Graph Support
§ GNN Design Space Exploration



PyG: GNN Library
PyG is PyTorch-on-the-rocks

§ Keeps design principles close to vanilla PyTorch
§ Fits nicely into the PyTorch ecosystem
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PyG: GNN Library
PyG provides the state-of-the-art in
Graph Representation Learning
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PyG: GNN Library
PYG.ORG:
§ ~800 research papers written using PyG
§ ~40K monthly downloads
§ ~250 external contributors
§ ~1800 members on Slack
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http://www.pyg.org/


What are some 
applications of PyG?
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Graphs are Everywhere
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Citation networksBiological networks

Molecular graphs Social networks Knowledge graph

Real-world data is full of relations.
Graphs model how “stuff” is connected.

3D meshes

AST
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Graph Convolutional Neural Networks for Web-Scale Recommender Systems. R. Ying, et al. KDD, 2018.

(1): Recommender Engines

§ Challenges:
§ Massive size: 3 billion nodes, 20 billion edges
§ Heterogeneous data: Rich image and text features

Task: Recommend related pins

Source pin
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Task: Learn node 
embeddings 𝑧! s.t.
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https://cs.stanford.edu/people/jure/pubs/pinsage-kdd18.pdf


(2) Fraud & Intrusion Detection
Fraud and intrusion detection in 
dynamic transaction graphs

Financial networks
Communication networks
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(3) Text + Graph Reasoning
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Question

Knowledge sources
Knowledge Graph (KG)Pre-trained language model (LM)

[Devlin+19; Liu+19; 
Brown+20; ….] [Bollacker+08; Speer+16]



Interpretability 
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Structured Reasoning 
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(4) Data in Biomedicine
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TrialNet Knowledge Graph
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§ Covers 70k interventional 
clinical trials

§ 300k nodes (clinical trials 
protocol entities, biological 
and chemical entities)

§ 10.8 millions edges across 
18 relation types



Learning Embeddings

How can we leverage TrialNet and 
build predictive models?
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Key idea: Learn to 
embed trials, drugs, 

diseases, population, 
proteins…  



Predicting Drug Efficacy
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+16% 
improvement

Further improvements 
can be expected with 

larger training set 



Generalization to New Drugs
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Never-before-
seen drugs

Which arm has better outcome??
Ground truth

Tasisulam: 6.8 months
Paclitaxel: 9.4 months

Model prediction
Tasisulam: 0.25
Paclitaxel: 0.75

Unseen 
drug

Safety terminated study



(9) ML on Business data
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Example: Predict Credit Risk
Data scientists writes workflows to join 
tables, generate features:

account age
avg. balance
total # transactions
# cards
# bad transactions
…

Time consistency nightmare:
Every feature needs to be recomputed
for the time the loan was issued
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Representation Learning
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: Example

Loan status

Account

Order Transaction Disp District

Client Card
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: State of the Art Results
Method AUC
Naïve Neural Net baseline 0.65
Stanford PhD (XGBoost) 0.88

Best research paper 0.92

KUMO 0.97

Loan status

Account

Order Transaction Disp District

Client Card

Depth of exploration
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: Benefits
Learned representation (features) is 
optimal for a given task

State of the art model performance
Drastic simplification of the ML stack

No feature store, no backfills, no 
aggregations, no feature crosses
Easy productionisation

Faster time to value
Amplifies data scientists to be more 
productive
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Conclusion
GNNs allow for representation on 
complex relational data
§ Fuse node features & relations

§ State-of-the-art accuracy graph machine 
learning tasks

§ Model size independent of graph size; 
can scale to billions of nodes
§ Largest embedding to date (5B nodes, 20B edges)

§ Leads to significant performance gains
Jure Leskovec (@jure), Stanford University 37



Conclusion
§ GNNs are a very general type of NNs

§ GNNs subsumes CNNs and 
Transformers as special cases

§ GNNs have a huge range of 
applications
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