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Abstract. This article deals with the development of second order finite volume numeri-
cal schemes for solving option pricing problems, modelled by low dimensional advection-diffusion-
reaction scalar partial differential equations. These equations will be discretized using second order
finite volume Implicit-Explicit (IMEX) Runge-Kutta schemes. The developed methods will be able
to overcome the time step restriction due to the strict stability condition of parabolic problems with
diffusion terms. Besides, the schemes will offer high-accurate and non oscillatory approximations of
option prices and their Greeks.
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1. Introduction. Mathematical models for option pricing play a key role in the
financial industry. An option is a contract that gives the right to buy or sell some
underlying asset at a future date, for an agreed price. The price of the underlying
asset is modelled via stochastic processes. These processes are described by stochastic
differential equations (SDEs) or systems of SDEs. The value of an option at expiration
is given by its payoff function. The expected present value of this payoff function is
the option price before its maturity.

Monte Carlo simulation is the straightforward choice for computing numerically
the expectation defining the option price. This numerical method has many advan-
tages. The fact that its order of convergence is independent of the dimension of the
problem represents its major strength. Besides, the method allows to easily price
options with sophisticated payoffs and complex models for the underlyings. Nev-
ertheless, Monte Carlo simulation has also several drawbacks. Firstly, its order of
convergence is O( %), being S the number of Monte Carlo simulations. Thus, the
method is very slow, since a large number of simulations are needed to get an accurate
price. Secondly, the explicit evaluation of the expectation is very difficult for options
with early-exercise features (American-style options). Besides, the computation of
derivatives of option prices, the so-called Greeks, presents theoretical and practical
challenges to Monte Carlo simulation. Finally, pricing barrier options by means of
Monte Carlo simulation requires the use of the complex Brownian bridge techniques.

Feynman-Kac formula establishes a connection between SDEs and partial differ-
ential equations (PDEs). Therefore, the option price given by the expected present
value of its payoff can be computed by solving PDEs with classical numerical meth-
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ods like finite differences, finite elements or finite volumes. Although these methods
suffer the curse of dimensionality, they offer several advantages: solvers with high-
order of convergence can be developed, the computation of the Greeks is straight-
forward, American options can be easily priced and exotic derivatives like barrier
options fit very naturally in the PDE context, where only boundary conditions need
to be changed. In this article we will develop deterministic numerical methods for
solving Black-Scholes PDEs in low dimension. These are advection-diffusion-reaction
scalar PDEs, with the following general expression in dimension one

U u 2u
% + a(;v,t)g—x + b(x,t)% +
The discretization of these kind of financial PDEs with finite difference and finite ele-
ment methods is discussed in [9, 29, 1, 22]. The combination of finite differences with
Exponentially Fitted techniques is explained in [10]. Besides, Alternate Directions
(ADI) with finite differences is illustrated in [12].

However, the development of finite difference and finite element numerical meth-
ods for PDEs arising in mathematical finance presents several well known difficulties.
First, and most important, these numerical methods usually show instabilities when
the advection term becomes larger and/or the diffusion operator is degenerated. Up-
winding techniques are needed to overcome this issue. Secondly, the development of
high order pricers is challenging, because second order (or higher) convergence is lost
when the initial condition is not regular: this is precisely the usual situation in option
pricing, as the initial condition is given by a payoff function that is usually singu-
lar. Finally, another difficulty, derived from the previous ones, is achieving accurate
and non oscillatory approximations of the Greeks. The derivatives of the solution
are usually computed by means of finite difference formulas, which are very sensitive
to small errors in the approximation of the prices. The higher the derivatives the
more difficult is obtaining approximations without oscillations. This question is of
paramount importance, since the Greeks are vital for trading purposes. Developing
very accurate and high order schemes is a key step towards attaining non-fluctuating
approximations of the Greeks.

In order to avoid the problems originated by non-smooth payoffs, smoothing tech-
niques working on irregular initial data were proposed in the literature, see [28]. One
remarkable smoothing technique is the so-called Rannacher’s method, see [18]. It is
well known that the second order Crank-Nicolson time marching scheme loses order
when initial conditions are non-smooth, or the initial and boundary conditions are
discontinuous, which is the situation with barrier options. Rannacher proposed a
way to suppress wrongful initial oscillations, by preceding Crank-Nicolson with a few
implicit steps.

Additionally, several numerical strategies were presented in the literature in order
to overcome the problems emerging in convection dominated scenarios. One approach
is the method of characteristics. In [8], Forsyth et al. solve option pricing problems
with finite differences combined with the semi-Lagrangian characteristics method. In
the finite element setup, semi-Lagrangian characteristics was applied in [2] for pricing
Asian options. In [7] the authors present a semi-Lagrangian finite difference method
for pricing business companies. The main disadvantages of semi-Lagrangian meth-
ods in option pricing is the difficulty to build high order numerical schemes. In fact,
these numerical methods do not achieve second order convergence due to the non-
smoothness of either the payoff or the boundary conditions. On top of that, the
computational cost of characteristic method is high due to the demanding compul-

(L.1) e(x, tyu = 0.
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FINITE VOLUME IMEX SCHEMES FOR OPTION PRICING 3

sory search at the foot of the characteristic and the required interpolation. Another
approach for a better treatment of the advection terms is the use of finite volume
methods. The first work applying finite volume methods in option pricing problems
was [32]. Later, in [23] conservative explicit finite volume methods were proposed for
convection dominated pricing problems. More precisely, the authors propose to use
the extension of the central schemes presented by Nessyahu-Tadmor in [20] to the
advection-diffusion problem developed in [15]. Recently, in [4], the authors propose a
second order improvement to [23] with appropriate time methods and slope limiters.
In [3] the authors apply the explicit third order Kurganov-Levy scheme presented
in [14] along with the CWENO reconstructions presented in [17]. In all theses arti-
cles, it is shown that explicit finite volume schemes do not suffer loss in the order of
convergence. Besides, they are able to obtain approximations of the Greeks without
oscillations. Nevertheless, these works present numerical schemes explicit in time.
Explicit time integrators introduce a severe restriction in the time step, imposed by
the Von Neuman stability condition related to the diffusion terms. As a consequence,
these schemes have a huge computational cost and are not able in practice to work
with refined meshes in space, specially in problems with spatial dimension greater
than one.

In this work we develop finite volume numerical solvers for option pricing problems
in low dimension. The proposed schemes address the mentioned problems of finite
difference and finite element methods, while at the same time retain a large time step
in the time discretization. More precisely, we present a general technique, following
[21, 6], for building second-order Implicit-Explicit (IMEX) Runge-Kutta finite volume
solvers for option pricing. This numerical scheme allows to use different numerical
flux functions and opens the door to the consideration of high order reconstructions
in mathematical finance. The proposed method is able to overcome the severe time
step restriction thanks to the implicit treatment of the diffusive part, while retaining
at the same time the benefits of treating the advective term by means of a explicit
finite volume scheme. In this way the stability condition of the IMEX scheme allows
to use the same time step of the advective part, which is far larger than the diffusive
time step. Moreover, finite volume schemes allow to address the lost of order of
convergence when initial data is non-smooth, since they handle the integral version
of the equations, working with the averaged solutions in each cell. Consequently, true
second order schemes are proposed for option pricing problems, that also allow to
recover accurate and non oscillatory approximations of the Greeks.

The organization of this paper is as follows. In the Section 2 we review Black-
Scholes PDEs and vanilla, butterfly, barrier and Asian options. In Section 3 we
describe the proposed finite volume IMEX Runge-Kutta numerical scheme. In Sec-
tion 4, we present the numerical experiments that we have carried out. We validate
the numerical scheme by pricing options with known analytical solution. More pre-
cisely, Section 4.1 is devoted to price vanilla, butterfly and barrier options under the
classical Black-Scholes model. All these options are priced by means of solving the
one dimensional Black-Scholes PDE with different terminal conditions. In Section 4.2
a two dimensional problem is considered: Asian options are valued by solving a two
dimensional Black-Scholes PDE without crossed derivatives. Asian PDEs are solved
by extending the one dimensional numerical schemes using the method of lines.

2. Option pricing PDE models. A financial derivative is a contract whose

value depends on the evolution of the price of one or more assets, called underlying
assets. An option is a kind of derivative consisting of a contract between two parties

This manuscript is for review purposes only.



133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

.__
ot ot Ot
- 2

167
168
169
170
171
172
173
174

175

4 J.G. LOPEZ, M. SUAREZ, M.J. CASTRO, A.M. FERREIRO AND J.A. GARCIA

about trading a risky asset at a certain future time, or within a specified period of
time, given by the exercise date or maturity (7"). One party is the seller of the option,
who fixes the terms of the contract, and gives to the option’s holder the right (and
not the obligation) to buy (call option) or sell (put option) a particular asset at a
fixed price. This price is agreed on beforehand, and it is known as exercise price or
strike (K).

Options are mainly characterized by the payoff function and the kind of allowed
exercise. Call and put options, also called vanilla options, are the simplest ones. On
the other hand, the so-called exotic options, have very complicated structures. An
option is called path-dependent when its payoff depends explicitly on the values of
the underlying asset at multiple dates before expiration. Examples of path dependent
options are the barrier and Asian options. An option is called European if exercise is
only permitted at maturity, and is called American if it can be exercised at any time
before expiry.

Determining the fair price of the option, the so-called premium, at the time of
the contract signature is an important financial problem. This is the subject of the
present work. More precisely, we will focus on pricing several European-style options:
vanilla options and exotic options (barrier and Asian options). For the dynamics of the
underlying asset we will consider the Black-Scholes model, which is briefly introduced
below.

2.1. Black-Scholes model. Let us now consider the Black-Scholes option pric-
ing model presented in the articles by Merton [19] and Black and Scholes [5]. The
model describes the evolution of the risky asset through the following SDE

dSt

(2.1) e (r —q)dt + odWy,

with W; a standard Brownian motion. The parameter r € R is the risk free constant
interest rate and g € R is the continuous dividend yield. This SDE implicitly describes
the risk-neutral dynamics of the underlying asset price, since the coefficient on dt in
(2.1), the so-called mean rate of return, is considered as 7 —q. The parameter o € R
is the volatility of the stock price, which is again considered as constant. BlackScholes
model is based on several assumptions, like for example the fact that the volatility of
the underlying asset is a deterministic constant (see [29] for details on all assumptions).
Although nowadays all of these assumptions about the market can be shown wrong
up to a certain extent, the Black-Scholes model is still very important in theory and
practice, and it has a huge impact on financial markets.

The SDE (2.1) has analytical solution which can be expressed as

1
ST:soexp(<r—q—202)T+0WT>,

where sg is the known current price of the underlying asset, and Wy is a random
variable normally distributed with mean 0 and variance T. Therefore, the asset price
has a lognormal distribution. For some payoffs, like those of vanilla options, the
expected present value of the payoff of the option, which is an integral with respect to
the lognormal density of st, can be analytically computed, giving rise to the celebrated
Black-Scholes formulas for the prices of call and put options.

The price u of any option on the underlying s is fully determined at every instant
t by the asset value s;. Hence, the value of the option is a function wu(s,t). Applying
It’s lemma (see [27], for example), one can derive the SDE for u. In order to comply
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FINITE VOLUME IMEX SCHEMES FOR OPTION PRICING 5

with the no-arbitrage conditions, the process du has to be martingale. Therefore,
the drift term of the SDE for w must be zero, which implies the well-known linear
parabolic backward in time Black-Scholes PDE

0 1 02 0
(2.2) 6—1; + 502528—;; + (r— q)sa—z —ru=0, (s,t)€]0,00)x[0,T].
Hereafter, in this work we will work forward in time by making the change of variable
7 =T —tin (2.2). By abuse of notation this forward time 7 is again written as ¢, so
that forward in time Black-Scholes PDE is

2 ou
(2.3) 5 37 5 g (r— q)s—s +ru=0, (s1)€]0,00)x][0,T].

PDE (2.3) must be completed with initial and boundary conditions. The initial con-
dition u(s,0) depends on the payoff of the option and the boundary conditions should
be carefully determined taking into account financial aspects as well as mathematical
questions. Throughout the next subsections several types of options will be described,
together with their corresponding initial and boundary conditions.

2.1.1. Vanilla options. A European call option is the right to buy a risky asset
at a fixed strike price K only at the future time T (measured in years). The call option
holder would exercise the option at expiry if the asset price is above the strike K and
not if it is below. Therefore, the payoff of a call option is s — K if sp > K and 0
otherwise. Thus, the payoff of a European call option is max(sy — K, 0). Conversely,
a put option gives the right to sell. At expiry the option is worth max(K — sz, 0).
Therefore, the initial condition of (2.3) is u(s,0) = max(s — K, 0) for call options and
u(s,0) = max(K — s,0) for put options.

In order to solve numerically the Black-Scholes PDE we need to truncate the
spatial domain. Therefore u will be computed for s € (0,5), with 5 large enough.
Besides, boundary conditions have to be imposed at the boundaries. For call options
the following Dirichlet boundary conditions can be used

uw(0,t) =0, u(5,t) =35 9" - Ke ™,
while for put options
u(0,t) = Ke "™ —5e™ 9, w(5,t) = 0.

The analytical solutions for European call and put options are given by (see
[5, 19])
(2.4) C(s,K,t) = se "' N(dy(s,K)) — Ke "' N(da(s, K)),
(2.5) P(s,K,t) = Ke "' N(—da(s, K)) — se """ N(—d; (s, K)),
where N is the cumulative distribution function of the standard normal distribution,
and dq, dy are defined as

0.2

(2.6) d1(57K):%ﬁ[lﬂ(%>+Vt}, v=r—q+5,
(2.7) dy(s, K) = dy (s, K) — o/t

The delta of an option is the sensitivity of the option to a change in the underlying

asset, A = %. The gamma of an option, I', is the sensitivity of the delta to the
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u

underlying, I' = ‘3232 . For call and put options under the Black-Scholes model, Greeks
are known in closed form

e~ n(dyi(s, K))
so\/t ’
(2.9) Ap(s,K,t) = —e 1" N(—d;(s, K)), p(s, K,t) =Tc(s, K, t),

(2.8) Ac(s,K,t) = e " N(dy(s, K)), Lo(s, K, t) =

—x2/2

V2r

where n(z) = is the probability density function of the standard normal

distribution.

2.1.2. Butterfly spread. A butterfly spread is a financial product which in-
volves buying two calls with strike prices K; and K3 and selling two calls with strike
price Ky = %(Kl + K3), where K1 < K5 < K3. In this case, Black-Scholes PDE (2.3)
is completed with the initial condition

1
u(s,0) = max(s — K1,0) + max(s — K3,0) — 2max <s D) (K1 + K3) ,0) ,

and with homogeneous Dirichlet boundary conditions u(0,t) = u(5,t) = 0.
The price of the butterfly spread is also known analytically and is given by

u(s,t) = C(s,K1,t) + C(s, K3,t) — 2C(s, K2, 1),

where C is the price of the call option given in (2.4). Thus, the Greeks of the but-
terfly spread can be computed in closed form as a linear combination of the Greeks
associated to the call options involved in the financial product.

2.1.3. Barrier options. Barrier options are exotic path-dependent options.
One example of barrier options is the down-and-out call option. This derivative pays
max(s — K,0) at expiry, unless at any previous time the underlying asset touched
or crossed a prespecified level B, called the barrier. In that situation the option be-
comes worthless. There are also in options which only pays off if the asset reached or
crossed the barrier, otherwise they expire worthless. These barrier options are called
continuously monitored barrier options.

A down-and-out call option under Black-Scholes model can be priced solving PDE
(2.3) with initial condition

u(s,0) = max(s — K,0) for s> B,
o for s < B,

in the localized domain (s, t) € [B, 5] x (0, T] with the boundary conditions u(B,t) =0
and u(5,t) = se” % — Ke™"* for t € (0,7]. Due to the sharp discontinuity arising at
the barrier this option is mathematically interesting in the PDE world. We will price
this product with our proposed finite volume IMEX Runge-Kutta schemes.
Standard European continuously monitored barrier options can be priced in closed
form. Their Greeks can be also computed analytically. In [19], Merton provides for
first time such formulas. See also [25, 24, 30, 26]. Hereafter we are going to detail
these formulas for down-and-in call options. Formulas for down-and-out call options
can be inferred using that a portfolio consisting of an in option and its corresponding
out option has the same price and Greeks of the corresponding vanilla option, i.e
C(s,K,t) = Cpo(s,K,t) + Cpy(s, K,t). All these formulas are needed in order to

This manuscript is for review purposes only.
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measure the accuracy and the order of convergence of the proposed numerical schemes.
Greek formulas are carefully detailed below since we were not able to find them in
the literature.

Let K = max(B,K) and let A = Z(r — ¢ — "72) The price of the down-and-in
call option is given by:

coru=(2) [ (2 ) 5w o ()]

—rt
(2.10) + {P(s7 K,t)— P(s,B,t) + %N[—dl(s, B)]} 1psk.
s\t

Hereafter we compute the delta and the gamma Greeks for the down-and-in call
option. In the following expressions, for sake of brevity, in the formulas of the prices
and deltas of vanilla call and put options, the time ¢ dependency is omitted. The
delta of the down-and-in call option can be computed by deriving (2.10) with respect
to s, and is given by

(211) ADI = :;\iii\ + (AP(S,K) - AP(S,B) — (B;jf/);_rtn[—dl(s,B)]) ]lB>K,

where

S

el (0] - ol ()]

Again, differentiating in (2.11) with respect to s, the gamma of the down-and-in
call option is given by

2 2 2
T:_MﬂBjﬂ_BACP’ﬂ
s

TB A+1) UB*
A2 A1

I'pr=—
(2.12)
l:FP(S,K) - FP(S,B) + w

os2\/t

n[—di(s, B)] +7"[ di(s,B)] ) | 1p>k,
( i)

where

U= f—; ((A+1)Ac {B K] +B—2Fc [BQ I‘(D

A (ol (58 [ (55)])

Finally, note that the delta and the gamma of the down-and-out call option can
be obtained as App = A¢c — Aprand 'po =T'¢ — I'py.

2.1.4. Asian options. Asian options are path dependent options whose payoff
depends on the price sy of the risky asset and also on the arithmetic average price
ar of the price s; defined by a; = % fot srd7. Different types of Asian options are
traded in financial markets. Floating strike call options have the payoff function
max (st — ar,0), while fixed strike call options consider the payoff max(ar — K, 0),
being K the strike price. American-style Asian options are also negotiated.
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269 Let us denote by u(s,a,t) the price of an Asian option. Under the standard
270 Black-Scholes model for the risky asset, one can check that the price of an Asian
271 option with payoff function wug(s,a) is the solution of the following forward in time
272 two dimensional PDE (see [31])

2
(2.13) gu _ 252% — rs% — L(s - a)%

[\)
-3

1
5t 37 % 9a2 95 T —1 +ru=0, wu(s,a,0)=uy(s, a).
274 As an example, ug(s,a) = max(a — K, 0) is the initial condition for an European fixed
275  strike call option.
276 For European or American floating strike options, in [13] Ingersoll reduced PDE
277 (2.13) to a one-dimensional PDE under a suitable change of variable. For European
278 Asian options, both fixed and floating strike, in [16], Rogers and Shi showed that
279 the value of the Asian option is governed by an alternative one dimensional PDE.
280 Nevertheless, in order to value American-style fixed strike options, one can not use
281 one dimensional models, and has to solve the two dimensional PDE (2.13). For this
282 reason, in this work we restrict ourselves to the general two dimensional framework
283 (2.13). Analytical solutions are not known, except for the case of fixed strike options
284  with K = 0.
285 PDE (2.13) has no diffusion in the a variable, thus this equation is difficult to solve
286 numerically. In fact, the convective term in the a direction increases as t approaches
287 T. At t = T, PDE (2.13) has a singularity because of the (s — a)% term. For
288 fixed strike options, the singularity can be avoided considering s = a at t = T. Under
289 this assumption, (2.13) reduces to Black-Scholes equation (2.3) at t = T.
290 In the Section 4 of the numerical experiments we will price a European-style
291 Asian fixed strike call option. PDE (2.13) will be solved in the localized domain
292 (s,a,t) € (0,5) x (0,a) x (0,7] (usually § = a) with the following boundary condition
293 %(5, a,t) = 0. The other portions of the boundary do not require the prescription
294 of boundary conditions. Since the convective term in the a direction depends on
295 time, once the problem is discretized, the matrices of the resulting systems have to
296 be computed and inverted at each time step.

297 3. Numerical methods. Finite volume IMEX Runge-Kutta. In this sec-
208 tion we present a second order finite volume semi-implicit numerical scheme for solving
299 (2.3). First, the equation (2.3) must be written in conservative form:

ou 0 0
300 (3.1) Fn + %f(u) = %g(us) + h(u).
301  The numerical solution of equation (3.1) using a explicit finite volume scheme may
302  have a huge computational cost because of the tiny time steps induced by the diffusive
3 terms. To avoid this difficulty we consider IMEX Runge-Kutta methods (see [21]).
1 These methods play a major rule in the treatment of differential systems governed by
5 stiff and non stiff terms.
6 The procedure for obtaining the numerical scheme can be summarized as follows.
First, we perform a spatial finite volume semi-discretization of (3.1), explicit in con-
308 vection and reaction, and implicit in the diffusive part. As a result we obtain a stiff
9 time ODE system, that we discretize using IMEX Runge-Kutta methods. In what
310 follows we succinctly describe the space and time discretizations.

311 3.1. Spatial semi-discretization. Finite volume method. The spatial semi-Ji
312 discretization of the advective and source terms is performed by means of a explicit
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finite volume scheme. First, a finite volume mesh is built. The spatial domain is split
into cells (finite volumes) {I;}, with I; = [s;_1/2,8i41/2], i = ..., —1,0,1,..., being
s; the center of the cell I;. Let |I;| be the size of cell I;. The basic unknowns of our
problem are the averages of the solution u(s,t) in the cells {I;}, @; = ﬁ / 7, uds. In-
tegrating equation (3.1) in space on I; and dividing by |I;| we obtain the semi-discrete
equation

(32) = o [Fusssa/2,8) = Fla(sica/a,t)]

(3.3) " ﬁ (915 (51412, 1) — gt (51-12, )]
1

(3.4) + 1A /Il h(u) ds.

Then, the right hand side of this expression (3.2)-(3.4) is approximated with a function
of the cell averages {@;(¢)};.

The convective terms in (3.2) can be approximated by solving the Riemann prob-
lems at the edge of the cells using a suitable numerical flux function F consistent with
the analytical flux f, i.e.

f(u(six1/2,1)) = ]:(u;il/wu;rilﬂ)'
Thus one obtains
f(u(3i+1/2,t)) - f(U(Si,l/g,t)) ~ f(ui__;_l/yuii_l/z) - }-(ui__l/zvu:__yz)-
The quantities uil /2 are computed as

uiiﬂm: lim R(s),

STSiL1/2

where R is a reconstruction of the unknown function wu(s,t). More precisely, R is
given by a piecewise polynomial starting from cell averages {@;(t)},

R(s) = Zpi(s)]lsefw

where P; is a polynomial satisfying some accuracy and non oscillatory property, and
1s¢y, is the indicator function of cell I;. For second order schemes, the reconstruction
have to be at least piecewise linear.

In this work for the numerical flux functions we use the CIR numerical flux

Flum ) = ) + 5 - -, a= |5 ()],

The integral of the source term (3.4) can be explicitly discretized using a second
order quadrature rule, for example the midpoint rule:

(3.5) / h(u)ds ~ |I;] h(ii;).

I;

Finally, the diffusion terms in (3.3) can be approximated as

U1 — Uj U; — Uj—
g(u5(3i+1/2)) - g(us(3i71/2)) ~g <+|II|> -9 <|I|1> .
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3.2. Time discretization. IMEX Runge-Kutta. After performing the spa-
tial semi-discretization of equation (3.1) we obtain a stiff ODE system of the form

(3.6) 87U—i-F(U)=S(U),
ot

where U = (@;(t)) and F, S : RN — R being F the non-stiff term and S the stiff one.
An IMEX scheme consists of applying an implicit discretization to the stiff term and
an explicit one to the non stiff term. In this way, both can be solved simultaneously
with high order accuracy using the same time step of the convective part, which is in
general much larger than the time step of the diffusive part.

When IMEX is applied to system (3.6) it takes the form

k—1 P
(3.7) Uk = ym — At Z dle(tn + ¢ At, U(l)) + At Z ale(tn + ¢ At, U(l)),
=1 =1

4 14
(3.8) U™ =U"—AtY GpF(tn + &AL UR) + ALY wpS(tn + AL UR),
k=1 k=1

where U™ = (a}), UM = (a*t!) are the vector of the unknowns cell averages at
times " and "1, thus U®) and U’ are the vector of unknowns at the stages k, [ of
the IMEX method. The matrices A = (agr), with ag; = 0 for I > k, and A = (ag;) are
square matrices of order p, such that the ensuing scheme is implicit in S and explicit
in F. Solving efficiently at each time step the system of equations corresponding to
the implicit part is extremely important. Therefore, one usually considers ag; = 0,
for I > k, the so-called diagonally implicit Runge-Kutta (DIRK) schemes .

IMEX Runge-Kutta schemes can be represented by a double tableau in the usual

Butcher notation, R
el A clA

‘ @’ | w
where @ = (01,...,W,) and w = (w1,...,w,). Besides, the coeflicient vectors ¢ =
(é1,...,¢,)T and ¢ = (c1,...,¢c,)T are only used for the treatment of non autonomous

systems, and have to satisfy the relations

k—1 k
(39) 5k = E flkl, C — E Q.
=1 =1

In this work we will consider the second order IMEX-SSP2(2,2,2) L-stable scheme
(see [21])
0| o 0 ol v 0 1
1 1 0 1=y 1-2y v y=1-—.
| 1/2 1/2 12 1/2 V2
An explicit time integrator needs extremely small time steps due to the following
stability conditions

At 1 At
3.10 <= 3.11 — <1
( ) 77(As)2 -2’ ( ) aAs -
_ |99, _|9f T ints
where 1 = EM , = 3l for all cells I; and for all boundary points s;i1/2.

However, IMEX only needs to satisfy the advection stability condition (3.11).
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4. Numerical experiments. In this section the accuracy and convergence of
the proposed numerical scheme is assessed. The developed numerical method is ap-
plied to the discretization and solution of the one and two dimensional financial PDEs
discussed in Section 2. More precisely, experiments under the Black-Scholes model
for vanilla, butterfly and barrier options are presented in Section 4.1. Besides, the
numerical results are compared with the analytical solutions presented in Section 2.
Later, in Section 4.2 two dimensional problems in space are solved. Indeed, Asian
options are priced.

At each one of the following subsections, we start by writing the involved PDE in
conservative form. Then, graphs containing numerical results, such as option prices,
Greeks (Delta and Gamma) and numerical errors are presented. Moreover, tables for
the Ly errors and the L; orders of convergence are shown. Additionally, a comparison
of the time step sizes supplied by the stability conditions of the explicit and IMEX
Runge-Kutta methods is presented. For all the tests in this paper a CFL of 0.5 is
considered in the stability conditions.

4.1. Options under the Black-Scholes model. First of all, the Black-Scholes
PDE (2.3) is written in the conservative form (3.1), where the conservative functions
are given by:

1, 50u
277 9s”

Hereafter, vanilla, butterfly and barrier European call options are priced under
this model.

flu)=(0® —r+q)su, g(us) = h(u) = (0% = 2r + qJu.

4.1.1. European call options. In this section, three tests are considered, whose
market data are collected in Table 1. Test 2 is a diffusion-dominated example, while
Test 3 is convection-dominated. Test 1 represents a balanced configuration. Although
the setup of Test 3 is financially unrealistic, because of the high value of r, it is use-
ful as a stress-test of the numerical scheme. In these three experiments the spatial
domain is set to [0, 5 = 400].

o r q | T | K
Test 1 | 0.01 | 0.10
Test 2 | 0.5 [ 0.02 |0 | 1 | 100
Test 3 | 0.02 | 0.5

Table 1: Market data for European call options under the Black-Scholes model.

In Figures 1, 2 and 3, numerical (@) and exact (u) option prices are plotted at
t =T for Tests 1, 2 and 3, respectively. A mesh with 800 discretization points in space
was considered. Numerical prices were computed with the IMEX Runge-Kutta time
integrator. Besides, numerical errors (|u—u/) are displayed in that figures. In addition,
exact and numerical Delta and Gamma Greeks at the final time T are presented.
The numerical Greeks (Aw, I'a) are computed with second order finite differences
approximations, even at the boundaries of the spatial domain, see [11] for details.
The numerical results are plotted in red squares, while the analytical solutions are
represented in continuous blue line. The reader can observe that the proposed finite
volume numerical scheme offers high-resolution approximations, without oscillations,
for the option prices and the Greeks, even at regions of discontinuities and non-
smoothness in the initial condition.
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Fig. 1: Call option prices, numerical errors and Greeks (A, T') for Test 1 at t =T
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Fig. 2: Call option prices, numerical errors and Greeks (A, T') for Test 2 at t = T.

Tables 2, 3 and 4 record L; errors and L orders of convergence at t = T for both
explicit and IMEX finite volume numerical methods for Tests 1, 2 and 3, respectively.
Ly error is given by Ly = As Zi.vzl\ﬁ(si, T) — u(s;, T)|, where N denotes the number
of discretization points in space. Besides, the time steps and execution times are
shown for each spatial discretization. The time steps for IMEX and the explicit
method were obtained from the stability conditions (3.10) and (3.11). Codes were
implemented using C++ programming language, compiled with GNU C++ compiler
9.3.0 and run in a machine with one AMD Ryzen 9 5950X processor. On the one
hand, these tables show that both IMEX and explicit numerical schemes are able to
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Fig. 3: Call option prices, numerical errors and Greeks (A, T') for Test 3 at t =T

approximate the solution with order two. Second order is achieved even in the presence
of non-smoothness in the initial condition, thus avoiding the necessity of regularization
techniques for the initial condition, like the Rannacher time-stepping. On the other
hand, numerical results show, as expected, that the IMEX time integrator outperforms
the explicit method. In fact, in the diffusion dominated scenario of Test 2, IMEX time
steps are between 54 and 6967 times larger than corresponding explicit time steps.
As a result, IMEX is between 17 and 1791 times faster than the explicit method.
In Figure 4 the natural logarithms of L; errors and execution times of Table 3 are
plotted for both the IMEX and explicit numerical schemes; IMEX superiority in this
figure is overwhelming. As expected, when N increases the distance between both
schemes is larger and larger. In advection dominated scenarios, like the one in Test
3, both IMEX and the explicit methods perform similarly in the coarser meshes in
space. Nevertheless, IMEX performs again better when dealing with finer grids in
space. For example, in the mesh with 6400 finite volumes, IMEX time step is 5 times
larger than the corresponding explicit time step, thus executing 1.64 times faster. In
more balanced scenarios, like the one in Test 1, IMEX keeps performing better and
better as long as the space grid is refined in space. In fact, in the grid with N = 6400,
IMEX time step is 6.4 times larger than the explicit time step. As a result, IMEX
is able to compute the solution 1.74 times faster. Having in mind that the common
situation in finance is the diffusion dominated scenario, the IMEX time integrator
represents the right choice. As a summary, although both time marching methods
achieve similar results in terms of accuracy and convergence order, IMEX is able to
converge using much larger times steps, thus it consumes much less computing time.

4.1.2. Butterfly Spread. In this section a butterfly spread option is priced
considering the market data ¢ = 0.2, r = 0.1, ¢ =0, T = 0.5, K1 = 45 and K35 = &80.
The computational domain is set as [0, 5 = 200].

In Figure 5, prices, numerical errors and Greeks are shown at ¢t = T with N =
800. These plots show that the here proposed numerical methods achieve very good
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IMEX
N Ly error Order At Time (s)

50 1.6145 x 10T — 1.01 x 10°T | 28 x 10~ 1%
100 7.1629 x 10° 1.17 5.03x 1072 | 4.7x107%
200 2.6877 x 10° 1.41 2.50 x 1072 | 1.18 x 1073

400 9.1734 x 101 1.55 1.25 x 1072 | 3.6 x 1072
800 2.8046 x 107 ¢ 1.70 6.26 x 1073 1.1 x 1072
1600 || 7.2788 x 1072 1.95 3.13x 1073 | 2.6 x107?
3200 || 1.7410 x 1072 2.06 1.56 x 1072 | 9.5 x 1072
6400 || 3.4791 x 1073 2.32 7.82x107% | 35x 107!

Explicit
N L, error Order At Time (s)
50 1.6146 x 10T — 1.01 x 1071 1.1x 107
100 7.1626 x 10° 1.17 5.03 x 1072 1.9 x 107%
200 2.6875 x 10° 1.41 2.50 x 1072 4.4 x 1074

400 9.1713 x 107 ¢ 1.55 1.25 x 1072 1.5 x 1073
800 2.8039 x 107! 1.71 6.26 x 1073 4.3 %1073
1600 || 7.3346 x 1072 1.93 1.95 x 1072 | 2.2 x 1072
3200 || 1.7622 x 1072 2.06 488 x 1074 | 9.6 x 1072
6400 || 3.5252 x 1072 2.32 1.22x107* | 6.1 x 107!

Table 2: L; errors and L; orders of convergence of the IMEX and explicit finite
volume methods for the call option of Test 1.

IMEX
N Lqi error Order At Time (s)
50 7.8413 x 10° — 4.34x 1072 [ 3.8 x 102
100 1.9886 x 10° 1.98 2.17x 1072 | 7.8 x 1074

1072 | 2.2x107°

200 5.0056 x 10+ 1.99 1.09 x

400 1.2554 x 1071 1.99 5.43 x 1072 | 6.9 x 1073
800 3.1367 x 1072 2.00 2.72x 1073 | 1.5 x 1072
1600 || 7.7625 x 1073 2.02 1.36 x 1072 | 5.0 x 1072
3200 || 1.8499 x 1072 2.07 6.80 x 107% | 1.8 x 107!
6400 || 3.7004 x 10~* 2.32 3.40 x 107% | 6.7 x 107!

Explicit

N L, error Order At Time (s)
50 7.4158 x 10° — 8.00 x 10~ % | 6.7x 107>
100 1.8518 x 10° 2.00 2.00 x 1074 | 1.8 x 1072
200 4.6253 x 107 ¢ 2.00 5.00 x 107° | 8.7 x 1072
400 1.1551 x 107! 2.00 1.25 x 107° | 4.8 x 1071
800 2.8793 x 1072 2.00 3.13 x 107° 2.9 x 10°
1600 || 7.1211 x 1073 2.02 7.81 x 1077 2.0 x 10!
3200 1.6999 x 1073 2.07 1.95 x 107 1.5 x 10?
6400 || 3.4735 x 107% 2.29 4.88 x 1078 1.2 x 10°

Table 3: L;i errors and L; orders of convergence of the IMEX and explicit finite
volume methods for the call option of Test 2.

approximations of prices and Greeks, even for this butterfly derivative, with sharp
corners at strike prices in the initial condition and several jumps in derivatives. In
Table 5, Ly errors and L; orders of convergence are shown for this derivative. Second
order of convergence is again achieved. IMEX time step is between 33 and 4262 times
larger than the explicit time step. As a consequence, IMEX is between 7 and 959
times faster.

4.1.3. Barrier Option. In this section a down-and-out call option with the
market data o = 0.2, r = 0.05, ¢ = 0, T =1, K = 70 and the barrier at B = 200 is
priced. The computational domain is thus set to [B,5B].

In Figure 6 option prices, numerical errors, Deltas and Gammas are shown at
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Fig. 4: Efficiency curve of IMEX and explicit time marching schemes for Test 2.

IMEX
N L, error Order At Time (s)
50 3.4261 x 107 —— 2.00x 1072 | 5.8 x 10~ %
100 1.3092 x 10! 1.39 1.00 x 1072 | 1.4 x 1073
200 4.8437 x 10° 1.44 5.00 x 1072 | 4.4 x 1073
400 1.6448 x 10° 1.56 2.50 x 1073 | 1.2 x 1072
800 4.8968 x 1071 1.75 1.25 x 1072 | 3.3 x 1072
1600 || 1.2745 x 107* 1.94 6.25 x 1074 | 1.1 x 107!

3200 || 3.0473 x 1072 2.06 3.13x107% | 4.3x 107!

6400 || 6.1026 x 1073 2.32 1.56 x 1074 1.7 x 10°

Explicit
N L, error Order At Time (s)
50 3.4278 x 1071 — 2.00 x 102 | 3.5 x 10~ 2

100 1.3124 x 10* 1.39 1.00 x 1072 | 7.4 x 107*
200 4.8616 x 10° 1.43 5.00 x 1073 | 1.9 x 1073
400 1.6535 x 10° 1.56 2.50 x 1072 | 6.3 x 1072
800 4.9281 x 107 ¢ 1.75 1.25 x 1072 | 1.4 x 1072
1600 1.2841 x 107! 1.94 4.88x107* | 5.3 x 1072

3200 || 3.0728 x 1072 2.06 1.22x107% | 3.7x 107!

6400 || 6.1716 x 1073 2.32 3.05 x 107° 2.8 x 10°

Table 4: L errors and

L orders

of convergence
volume methods for the call option of Test 3.

of the IMEX and explicit finite

t = T considering a mesh with N = 800. These plots show that the here proposed
numerical methods are able to obtain good approximations without oscillations, even
at difficult zones like close to the barrier. Table 6 shows L errors and L; order
of convergence at ¢t = T. Second order accuracy is achieved again. In this case,
IMEX time step is between 200 and 25606 times larger than the explicit time step.

Consequently, IMEX executes between 10 and 12222 times faster.

4.2. Asian option. Using the method of lines, the previous one dimensional nu-
merical methods can be easily extended to the two dimensional case. Generally speak-
ing, we are interested in solving the following two dimensional advection-diffusion-
reaction PDE without crossed derivatives:

du

(4.1)

0

in ou
+a—+b—+
dy

or

2

u
C@‘Fd

ou
02

:O7
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Fig. 5: Butterfly spread option prices, numerical errors and Greeks (A, T").

IMEX
N L, error Order At Time (s)
50 2.8534 x 10° — 1.66 x 10~ | 9.0 x 10~°
100 8.6913 x 107 ¢ 1.72 8.33x 1072 | 3.1x 1074
200 2.4055 x 1071 1.85 4.17x 1072 | 5.5 x 1074
400 6.2948 x 1072 1.93 2.08x 1072 | 1.3x 1073
800 1.6034 x 1072 1.97 1.04 x 1072 | 4.1 x 1073
1600 || 4.0019 x 1073 2.00 5.21 x 1073 | 1.4 x 1072

3200 || 9.5613 x 107% 2.07 2.60 x 107° | 2.9 x 1072

6400 || 1.9134 x 1074 2.32 1.30 x 1072 | 9.9 x 1072

Explicit
N L error Order At Time (s)
50 3.6096 x 10° — 5.00 x 1075 | 6.5 x 10~ 2

100 1.0029 x 10° 1.85 1.25 x 1072 | 2.7 x 1073
200 2.7238 x 1071 1.88 3.15 x 1074 | 1.1 x 1072
400 7.0883 x 1072 1.94 7.81x107° | 4.7 x 1072
800 1.7997 x 1072 1.98 1.95 x 107° | 2.5 x 107!
1600 || 4.4939 x 1073 2.00 4.88 x 107° 1.7 x 10°

3200 1.0839 x 1073 2.05 1.23 x 1076 1.2 x 10t

6400 || 2.2739 x 1074 2.25 3.05 x 1077 9.5 x 10*

Table 5: Ly errors and L; orders of convergence
volume methods for the butterfly spread option.

where a,b, ¢, d, e are functions of ¢, z, y and w. This equation (4.1) can be written in

conservative form as

of the IMEX and explicit finite

ou 0f1 0 fo 0g1 dgo
4.2 — + = ——(u) = =— — .
The stability conditions are
At At 1 At At
. _— < = <
(43) Mnage TR A Sy MRy o2, S
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Fig. 6: Down-and-out call option prices, numerical errors and Greeks (A, T') at t = T.

IMEX
N L, error Order At Time (s)
50 1.3889 x 102 — 1.00 x 10° 1.8x 107
100 3.4052 x 10° 2.03 5.00 x 1071 | 2.6 x 107%
200 8.5310 x 10° 2.03 2.50 x 1071 | 4.6 x 1074
400 2.1249 x 10° 2.02 1.25 x 107! | 9.4 x 107*
800 5.2912 x 10~ ¢ 2.01 6.25 x 1072 | 2.4 x 1073
1600 || 1.3097 x 10~* 1.98 3.13x 1072 | 7.3 x 1073

3200 || 3.1547 x 1072 2.00 1.56 x 1072 | 1.6 x 10™2

6400 || 6.7624 x 1073 2.26 7.81 x 1073 | 4.5 x 1072

Explicit
N L, error Order At Time (s)
50 1.3979 x 102 — 5.00 x 10°° | 1.8 x 10~ °

100 3.4401 x 10* 2.02 1.25 x 1072 | 7.7 x 1073
200 8.5373 x 10° 2.01 3.12x 1074 | 3.0x 1072
400 2.1271 x 10° 2.01 781 x107° | 1.3 x 107!
800 5.3130 x 107 ¢ 2.01 1.95 x 1072 | 9.5 x 107
1600 || 1.3316 x 10~* 2.01 4.88 x 10~ 6.4 x 10°
3200 || 3.3721 x 1072 2.05 1.22 x 1076 6.4 x 10"
6400 || 8.8809 x 1073 2.22 3.05 x 1077 5.5 x 102

Table 6: L; errors and L, orders of convergence
volume methods for the down-and-out call option.

991
Ouy

992

) = d
72 ' o, and oy

N 1
1 p— —
’ Ou

where 17, = ‘

volumes.

of the IMEX and explicit finite

9fs

ou

for all boundaries of all

Therefore, the Asian PDE (2.13) is then written in the conservative form of PDE

(4.2) using

fitu) = (0% = r)su, folu) = —
1 2

T—-1

g1(us) = =0°s%us,  ga2(ua) =0, h(u)=

2
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At this point, a fixed strike Asian call option is valued with the market data o = 0.2,
r=0.1, T =1, K = 100 on the spatial domain (s, a) € [0,300] x [0,300]. Numerical
option prices and Greeks at ¢t = T' using a mesh of size N7 x Ny = 800 x 800 are shown
in Figure 7.

175
150
125

300
250
o 150 200 50
s

300
150 200 250

10 0

0, 50 s

(b) Delta. (c) Gamma.

10
0 o 50

Fig. 7: Prices, Deltas and Gammas of the Asian option at ¢t = T.

Table 7 records L; errors and L; orders of convergence at ¢t = % Both IMEX and
explicit numerical schemes achieve second-order accuracy in the L; norm. In this case
fo depends on time t. Therefore, the time step inferred by the convective stability
condition in (4.3) depends on the actual time step. For each row of the table, only
the smallest time step is shown, i.e the one computed at the final time step. In the
case of this financial derivative, IMEX time marching is up to 40 times faster than
the explicit scheme.

5. Conclusions. In this article we have shown that finite volume IMEX Runge-
Kutta numerical schemes are remarkably suitable for solving PDE option pricing
problems. On the one hand, the IMEX time discretization is outstandingly efficient.
Indeed, large time steps can be used, avoiding the need to use the smaller, and possibly
extremely small, time steps enforced by the diffusion stability condition, which has to
be satisfied in explicit schemes. Numerical results show that IMEX outperforms the
explicit method. In fact, IMEX is the only way to solve problems in highly refined
meshes is space. Besides, even in its worst scenarios, IMEX performs at least as well as

This manuscript is for review purposes only.



FINITE VOLUME IMEX SCHEMES FOR OPTION PRICING 19

IMEX
N1 X N3 L1 error Order At Time (s)
25 X 25 2.6092 x 107 —— 1.00 x 10°2 | 1.7 x 10~ 2
50 x 50 8.5678 x 10° 1.61 5.00 x 1072 | 8.0 x 1072
100 x 100 8.5678 x 10° 1.42 2.50 x 1072 | 5.9 x 1071
200 x 200 1.2092 x 103 1.40 1.25 x 1073 5.7 x 10°
400 x 400 3.2323 x 102 1.90 6.25 x 1074 5.3 x 10*
800 x 800 9.7991 x 10! 1.72 3.13 x 1074 5.1 x 102

1600 x 1600 || 2.3879 x 10* 2.04 1.57 x 1074 5.0 x 10°

Explicit
N1 X N3 L1 error Order At Time (s)
25 X 25 2.6273 x 107 —— 1.00x 10°2 | 8.1 x10~°
50 x 50 8.5704 x 103 1.62 5.00 x 1072 | 3.5 x 1072

1072 | 2.3 x 1071
1074 4.1 x 10°
1075 6.6 x 10*
107° 1.2 x 10°
10~6 2.0 x 10°

100 x 100 2.9837 x 10° 1.52 1.25
200 x 200 9.8509 x 102 1.59 3.12
400 x 400 3.2357 x 102 1.61 7.81
800 x 800 9.8241 x 10! 1.72 1.95
1600 x 1600 || 2.4234 x 10' 2.02 4.88

X X X X X

Table 7: Ly errors and L; orders of convergence of the IMEX and explicit finite
volume methods for the Asian option.

the explicit method. On the other hand, finite volume space discretization contributes
substantially to the achievement of second order convergence. Its consideration is
crucial to handle appropriately convection dominated problems and/or problems with
non smooth initial and/or boundary conditions, which is the usual situation in finance.
Thus, no special regularization techniques of the non smooth data need to be taken
into account. The accuracy of the numerical scheme turns to be of key importance
for the accurate and non oscillatory computation of the Greeks. Finally, in this paper
we provide a set of benchmark problems, together with their analytical solutions.
These benchmarks can also be valuable for mathematical researchers working in the
development of high order numerical schemes for advection-diffusion problems.
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