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Abstract. This article deals with the development of second order finite volume numeri-5
cal schemes for solving option pricing problems, modelled by low dimensional advection-diffusion-6
reaction scalar partial differential equations. These equations will be discretized using second order7
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diffusion terms. Besides, the schemes will offer high-accurate and non oscillatory approximations of10
option prices and their Greeks.11
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1. Introduction. Mathematical models for option pricing play a key role in the13

financial industry. An option is a contract that gives the right to buy or sell some14

underlying asset at a future date, for an agreed price. The price of the underlying15

asset is modelled via stochastic processes. These processes are described by stochastic16

differential equations (SDEs) or systems of SDEs. The value of an option at expiration17

is given by its payoff function. The expected present value of this payoff function is18

the option price before its maturity.19

Monte Carlo simulation is the straightforward choice for computing numerically20

the expectation defining the option price. This numerical method has many advan-21

tages. The fact that its order of convergence is independent of the dimension of the22

problem represents its major strength. Besides, the method allows to easily price23

options with sophisticated payoffs and complex models for the underlyings. Nev-24

ertheless, Monte Carlo simulation has also several drawbacks. Firstly, its order of25

convergence is O( 1√
S

), being S the number of Monte Carlo simulations. Thus, the26

method is very slow, since a large number of simulations are needed to get an accurate27

price. Secondly, the explicit evaluation of the expectation is very difficult for options28

with early-exercise features (American-style options). Besides, the computation of29

derivatives of option prices, the so-called Greeks, presents theoretical and practical30

challenges to Monte Carlo simulation. Finally, pricing barrier options by means of31

Monte Carlo simulation requires the use of the complex Brownian bridge techniques.32

Feynman-Kac formula establishes a connection between SDEs and partial differ-33

ential equations (PDEs). Therefore, the option price given by the expected present34

value of its payoff can be computed by solving PDEs with classical numerical meth-35
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ods like finite differences, finite elements or finite volumes. Although these methods36

suffer the curse of dimensionality, they offer several advantages: solvers with high-37

order of convergence can be developed, the computation of the Greeks is straight-38

forward, American options can be easily priced and exotic derivatives like barrier39

options fit very naturally in the PDE context, where only boundary conditions need40

to be changed. In this article we will develop deterministic numerical methods for41

solving Black-Scholes PDEs in low dimension. These are advection-diffusion-reaction42

scalar PDEs, with the following general expression in dimension one43

(1.1)
∂u

∂t
+ a(x, t)

∂u

∂x
+ b(x, t)

∂2u

∂x2
+ c(x, t)u = 0.44

The discretization of these kind of financial PDEs with finite difference and finite ele-45

ment methods is discussed in [9, 29, 1, 22]. The combination of finite differences with46

Exponentially Fitted techniques is explained in [10]. Besides, Alternate Directions47

(ADI) with finite differences is illustrated in [12].48

However, the development of finite difference and finite element numerical meth-49

ods for PDEs arising in mathematical finance presents several well known difficulties.50

First, and most important, these numerical methods usually show instabilities when51

the advection term becomes larger and/or the diffusion operator is degenerated. Up-52

winding techniques are needed to overcome this issue. Secondly, the development of53

high order pricers is challenging, because second order (or higher) convergence is lost54

when the initial condition is not regular: this is precisely the usual situation in option55

pricing, as the initial condition is given by a payoff function that is usually singu-56

lar. Finally, another difficulty, derived from the previous ones, is achieving accurate57

and non oscillatory approximations of the Greeks. The derivatives of the solution58

are usually computed by means of finite difference formulas, which are very sensitive59

to small errors in the approximation of the prices. The higher the derivatives the60

more difficult is obtaining approximations without oscillations. This question is of61

paramount importance, since the Greeks are vital for trading purposes. Developing62

very accurate and high order schemes is a key step towards attaining non-fluctuating63

approximations of the Greeks.64

In order to avoid the problems originated by non-smooth payoffs, smoothing tech-65

niques working on irregular initial data were proposed in the literature, see [28]. One66

remarkable smoothing technique is the so-called Rannacher’s method, see [18]. It is67

well known that the second order Crank-Nicolson time marching scheme loses order68

when initial conditions are non-smooth, or the initial and boundary conditions are69

discontinuous, which is the situation with barrier options. Rannacher proposed a70

way to suppress wrongful initial oscillations, by preceding Crank-Nicolson with a few71

implicit steps.72

Additionally, several numerical strategies were presented in the literature in order73

to overcome the problems emerging in convection dominated scenarios. One approach74

is the method of characteristics. In [8], Forsyth et al. solve option pricing problems75

with finite differences combined with the semi-Lagrangian characteristics method. In76

the finite element setup, semi-Lagrangian characteristics was applied in [2] for pricing77

Asian options. In [7] the authors present a semi-Lagrangian finite difference method78

for pricing business companies. The main disadvantages of semi-Lagrangian meth-79

ods in option pricing is the difficulty to build high order numerical schemes. In fact,80

these numerical methods do not achieve second order convergence due to the non-81

smoothness of either the payoff or the boundary conditions. On top of that, the82

computational cost of characteristic method is high due to the demanding compul-83
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sory search at the foot of the characteristic and the required interpolation. Another84

approach for a better treatment of the advection terms is the use of finite volume85

methods. The first work applying finite volume methods in option pricing problems86

was [32]. Later, in [23] conservative explicit finite volume methods were proposed for87

convection dominated pricing problems. More precisely, the authors propose to use88

the extension of the central schemes presented by Nessyahu-Tadmor in [20] to the89

advection-diffusion problem developed in [15]. Recently, in [4], the authors propose a90

second order improvement to [23] with appropriate time methods and slope limiters.91

In [3] the authors apply the explicit third order Kurganov-Levy scheme presented92

in [14] along with the CWENO reconstructions presented in [17]. In all theses arti-93

cles, it is shown that explicit finite volume schemes do not suffer loss in the order of94

convergence. Besides, they are able to obtain approximations of the Greeks without95

oscillations. Nevertheless, these works present numerical schemes explicit in time.96

Explicit time integrators introduce a severe restriction in the time step, imposed by97

the Von Neuman stability condition related to the diffusion terms. As a consequence,98

these schemes have a huge computational cost and are not able in practice to work99

with refined meshes in space, specially in problems with spatial dimension greater100

than one.101

In this work we develop finite volume numerical solvers for option pricing problems102

in low dimension. The proposed schemes address the mentioned problems of finite103

difference and finite element methods, while at the same time retain a large time step104

in the time discretization. More precisely, we present a general technique, following105

[21, 6], for building second-order Implicit-Explicit (IMEX) Runge-Kutta finite volume106

solvers for option pricing. This numerical scheme allows to use different numerical107

flux functions and opens the door to the consideration of high order reconstructions108

in mathematical finance. The proposed method is able to overcome the severe time109

step restriction thanks to the implicit treatment of the diffusive part, while retaining110

at the same time the benefits of treating the advective term by means of a explicit111

finite volume scheme. In this way the stability condition of the IMEX scheme allows112

to use the same time step of the advective part, which is far larger than the diffusive113

time step. Moreover, finite volume schemes allow to address the lost of order of114

convergence when initial data is non-smooth, since they handle the integral version115

of the equations, working with the averaged solutions in each cell. Consequently, true116

second order schemes are proposed for option pricing problems, that also allow to117

recover accurate and non oscillatory approximations of the Greeks.118

The organization of this paper is as follows. In the Section 2 we review Black-119

Scholes PDEs and vanilla, butterfly, barrier and Asian options. In Section 3 we120

describe the proposed finite volume IMEX Runge-Kutta numerical scheme. In Sec-121

tion 4, we present the numerical experiments that we have carried out. We validate122

the numerical scheme by pricing options with known analytical solution. More pre-123

cisely, Section 4.1 is devoted to price vanilla, butterfly and barrier options under the124

classical Black-Scholes model. All these options are priced by means of solving the125

one dimensional Black-Scholes PDE with different terminal conditions. In Section 4.2126

a two dimensional problem is considered: Asian options are valued by solving a two127

dimensional Black-Scholes PDE without crossed derivatives. Asian PDEs are solved128

by extending the one dimensional numerical schemes using the method of lines.129

2. Option pricing PDE models. A financial derivative is a contract whose130

value depends on the evolution of the price of one or more assets, called underlying131

assets. An option is a kind of derivative consisting of a contract between two parties132
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about trading a risky asset at a certain future time, or within a specified period of133

time, given by the exercise date or maturity (T ). One party is the seller of the option,134

who fixes the terms of the contract, and gives to the option’s holder the right (and135

not the obligation) to buy (call option) or sell (put option) a particular asset at a136

fixed price. This price is agreed on beforehand, and it is known as exercise price or137

strike (K).138

Options are mainly characterized by the payoff function and the kind of allowed139

exercise. Call and put options, also called vanilla options, are the simplest ones. On140

the other hand, the so-called exotic options, have very complicated structures. An141

option is called path-dependent when its payoff depends explicitly on the values of142

the underlying asset at multiple dates before expiration. Examples of path dependent143

options are the barrier and Asian options. An option is called European if exercise is144

only permitted at maturity, and is called American if it can be exercised at any time145

before expiry.146

Determining the fair price of the option, the so-called premium, at the time of147

the contract signature is an important financial problem. This is the subject of the148

present work. More precisely, we will focus on pricing several European-style options:149

vanilla options and exotic options (barrier and Asian options). For the dynamics of the150

underlying asset we will consider the Black-Scholes model, which is briefly introduced151

below.152

2.1. Black-Scholes model. Let us now consider the Black-Scholes option pric-153

ing model presented in the articles by Merton [19] and Black and Scholes [5]. The154

model describes the evolution of the risky asset through the following SDE155

(2.1)
dst
st

= (r − q)dt+ σdWt,156

with Wt a standard Brownian motion. The parameter r ∈ R is the risk free constant157

interest rate and q ∈ R is the continuous dividend yield. This SDE implicitly describes158

the risk-neutral dynamics of the underlying asset price, since the coefficient on dt in159

(2.1), the so-called mean rate of return, is considered as r−q. The parameter σ ∈ R+160

is the volatility of the stock price, which is again considered as constant. BlackScholes161

model is based on several assumptions, like for example the fact that the volatility of162

the underlying asset is a deterministic constant (see [29] for details on all assumptions).163

Although nowadays all of these assumptions about the market can be shown wrong164

up to a certain extent, the Black-Scholes model is still very important in theory and165

practice, and it has a huge impact on financial markets.166

The SDE (2.1) has analytical solution which can be expressed as

sT = s0 exp

((
r − q − 1

2
σ2

)
T + σWT

)
,

where s0 is the known current price of the underlying asset, and WT is a random167

variable normally distributed with mean 0 and variance T . Therefore, the asset price168

has a lognormal distribution. For some payoffs, like those of vanilla options, the169

expected present value of the payoff of the option, which is an integral with respect to170

the lognormal density of sT , can be analytically computed, giving rise to the celebrated171

Black-Scholes formulas for the prices of call and put options.172

The price u of any option on the underlying s is fully determined at every instant173

t by the asset value st. Hence, the value of the option is a function u(s, t). Applying174

It’s lemma (see [27], for example), one can derive the SDE for u. In order to comply175
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with the no-arbitrage conditions, the process du has to be martingale. Therefore,176

the drift term of the SDE for u must be zero, which implies the well-known linear177

parabolic backward in time Black-Scholes PDE178

(2.2)
∂u

∂t
+

1

2
σ2s2 ∂

2u

∂s2
+ (r − q)s∂u

∂s
− ru = 0, (s, t) ∈ [0,∞)× [0, T ].179

Hereafter, in this work we will work forward in time by making the change of variable180

τ = T − t in (2.2). By abuse of notation this forward time τ is again written as t, so181

that forward in time Black-Scholes PDE is182

(2.3)
∂u

∂t
− 1

2
σ2s2 ∂

2u

∂s2
− (r − q)s∂u

∂s
+ ru = 0, (s, t) ∈ [0,∞)× [0, T ].183

PDE (2.3) must be completed with initial and boundary conditions. The initial con-184

dition u(s, 0) depends on the payoff of the option and the boundary conditions should185

be carefully determined taking into account financial aspects as well as mathematical186

questions. Throughout the next subsections several types of options will be described,187

together with their corresponding initial and boundary conditions.188

2.1.1. Vanilla options. A European call option is the right to buy a risky asset189

at a fixed strike price K only at the future time T (measured in years). The call option190

holder would exercise the option at expiry if the asset price is above the strike K and191

not if it is below. Therefore, the payoff of a call option is sT −K if sT > K and 0192

otherwise. Thus, the payoff of a European call option is max(sT −K, 0). Conversely,193

a put option gives the right to sell. At expiry the option is worth max(K − sT , 0).194

Therefore, the initial condition of (2.3) is u(s, 0) = max(s−K, 0) for call options and195

u(s, 0) = max(K − s, 0) for put options.196

In order to solve numerically the Black-Scholes PDE we need to truncate the
spatial domain. Therefore u will be computed for s ∈ (0, s̄), with s̄ large enough.
Besides, boundary conditions have to be imposed at the boundaries. For call options
the following Dirichlet boundary conditions can be used

u(0, t) = 0, u(s̄, t) = s̄e−qt −Ke−rt,

while for put options

u(0, t) = Ke−rt − s̄e−qt, u(s̄, t) = 0.

The analytical solutions for European call and put options are given by (see197

[5, 19])198

C(s,K, t) = se−qtN(d1(s,K))−Ke−rtN(d2(s,K)),(2.4)199

P (s,K, t) = Ke−rtN(−d2(s,K))− se−qtN(−d1(s,K)),(2.5)200

where N is the cumulative distribution function of the standard normal distribution,201

and d1, d2 are defined as202

d1(s,K) =
1

σ
√
t

[
ln
( s
K

)
+ νt

]
, ν = r − q +

σ2

2
,(2.6)203

d2(s,K) = d1(s,K)− σ
√
t.(2.7)204205

The delta of an option is the sensitivity of the option to a change in the underlying206

asset, ∆ = ∂u
∂s . The gamma of an option, Γ, is the sensitivity of the delta to the207
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6 J.G. LÓPEZ, M. SUÁREZ, M.J. CASTRO, A.M. FERREIRO AND J.A. GARCÍA

underlying, Γ = ∂2u
∂s2 . For call and put options under the Black-Scholes model, Greeks208

are known in closed form209

∆C(s,K, t) = e−qtN(d1(s,K)), ΓC(s,K, t) =
e−qtn(d1(s,K))

sσ
√
t

,(2.8)210

∆P (s,K, t) = −e−qtN(−d1(s,K)), ΓP (s,K, t) = ΓC(s,K, t),(2.9)211212

where n(x) =
e−x

2/2

√
2π

is the probability density function of the standard normal213

distribution.214

2.1.2. Butterfly spread. A butterfly spread is a financial product which in-
volves buying two calls with strike prices K1 and K3 and selling two calls with strike
price K2 = 1

2 (K1 +K3), where K1 < K2 < K3. In this case, Black-Scholes PDE (2.3)
is completed with the initial condition

u(s, 0) = max(s−K1, 0) + max(s−K3, 0)− 2 max

(
s− 1

2
(K1 +K3) , 0

)
,

and with homogeneous Dirichlet boundary conditions u(0, t) = u(s̄, t) = 0.215

The price of the butterfly spread is also known analytically and is given by

u(s, t) = C(s,K1, t) + C(s,K3, t)− 2C(s,K2, t),

where C is the price of the call option given in (2.4). Thus, the Greeks of the but-216

terfly spread can be computed in closed form as a linear combination of the Greeks217

associated to the call options involved in the financial product.218

2.1.3. Barrier options. Barrier options are exotic path-dependent options.219

One example of barrier options is the down-and-out call option. This derivative pays220

max(s − K, 0) at expiry, unless at any previous time the underlying asset touched221

or crossed a prespecified level B, called the barrier. In that situation the option be-222

comes worthless. There are also in options which only pays off if the asset reached or223

crossed the barrier, otherwise they expire worthless. These barrier options are called224

continuously monitored barrier options.225

A down-and-out call option under Black-Scholes model can be priced solving PDE
(2.3) with initial condition

u(s, 0) =

{
max(s−K, 0) for s > B,

0 for s ≤ B,

in the localized domain (s, t) ∈ [B, s̄]×(0, T ] with the boundary conditions u(B, t) = 0226

and u(s̄, t) = se−qt −Ke−rt for t ∈ (0, T ]. Due to the sharp discontinuity arising at227

the barrier this option is mathematically interesting in the PDE world. We will price228

this product with our proposed finite volume IMEX Runge-Kutta schemes.229

Standard European continuously monitored barrier options can be priced in closed230

form. Their Greeks can be also computed analytically. In [19], Merton provides for231

first time such formulas. See also [25, 24, 30, 26]. Hereafter we are going to detail232

these formulas for down-and-in call options. Formulas for down-and-out call options233

can be inferred using that a portfolio consisting of an in option and its corresponding234

out option has the same price and Greeks of the corresponding vanilla option, i.e235

C(s,K, t) = CDO(s,K, t) + CDI(s,K, t). All these formulas are needed in order to236
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measure the accuracy and the order of convergence of the proposed numerical schemes.237

Greek formulas are carefully detailed below since we were not able to find them in238

the literature.239

Let K̄ = max(B,K) and let λ = 2
σ2 (r − q − σ2

2 ). The price of the down-and-in240

call option is given by:241

CDI(s,K, t) =

(
B

s

)λ [
C

(
B2

s
, K̄, t

)
+ (K̄ −K)N

(
d1

(
B2

s
, K̄

))]
242

+

[
P (s,K, t)− P (s,B, t) +

(B −K)e−rt

σs
√
t

N [−d1(s,B)]

]
1B>K .(2.10)243

Hereafter we compute the delta and the gamma Greeks for the down-and-in call244

option. In the following expressions, for sake of brevity, in the formulas of the prices245

and deltas of vanilla call and put options, the time t dependency is omitted. The246

delta of the down-and-in call option can be computed by deriving (2.10) with respect247

to s, and is given by248

(2.11) ∆DI =
ΥBλ

sλ+1
+

(
∆P (s,K)−∆P (s,B)− (B −K)e−rt

σs
√
t

n[−d1(s,B)]

)
1B>K ,249

where250

Υ =− λC
[
B2

s
, K̄

]
− B2

s
∆C

[
B2

s
, K̄

]
251

− (K̄ −K)e−rt
{
λN

[
d1

(
B2

s
, K̄

)]
+

1

σ
√
t
n

[
d1

(
B2

s
, K̄

)]}
.252

Again, differentiating in (2.11) with respect to s, the gamma of the down-and-in253

call option is given by254

ΓDI = −ΥBλ(λ+ 1)

sλ+2
+

ΨBλ

sλ+1
+255

[
ΓP (s,K)− ΓP (s,B) +

(B −K)e−rt

σs2
√
t

(
n[−d1(s,B)] +

1

σ
√
t
n′[−d1(s,B)]

)]
1B>K ,

(2.12)

256
257

where258

Ψ =
B2

s2

(
(λ+ 1)∆C

[
B2

s
, K̄

]
+
B2

s
ΓC

[
B2

s
, K̄

])
259

+
(K̄ −K)e−rt

σs
√
t

(
λn

[
d1

(
B2

s
, K̄

)]
+

1

σ
√
t
n′
[
d1

(
B2

s
, K̄

)])
.260

Finally, note that the delta and the gamma of the down-and-out call option can261

be obtained as ∆DO = ∆C −∆DI and ΓDO = ΓC − ΓDI .262

2.1.4. Asian options. Asian options are path dependent options whose payoff263

depends on the price sT of the risky asset and also on the arithmetic average price264

aT of the price st defined by at = 1
t

∫ t
0
sτdτ . Different types of Asian options are265

traded in financial markets. Floating strike call options have the payoff function266

max(sT − aT , 0), while fixed strike call options consider the payoff max(aT − K, 0),267

being K the strike price. American-style Asian options are also negotiated.268
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Let us denote by u(s, a, t) the price of an Asian option. Under the standard269

Black-Scholes model for the risky asset, one can check that the price of an Asian270

option with payoff function u0(s, a) is the solution of the following forward in time271

two dimensional PDE (see [31])272

(2.13)
∂u

∂t
− 1

2
σ2s2 ∂

2u

∂s2
− rs∂u

∂s
− 1

T − t
(s− a)

∂u

∂a
+ ru = 0, u(s, a, 0) = u0(s, a).273

As an example, u0(s, a) = max(a−K, 0) is the initial condition for an European fixed274

strike call option.275

For European or American floating strike options, in [13] Ingersoll reduced PDE276

(2.13) to a one-dimensional PDE under a suitable change of variable. For European277

Asian options, both fixed and floating strike, in [16], Rogers and Shi showed that278

the value of the Asian option is governed by an alternative one dimensional PDE.279

Nevertheless, in order to value American-style fixed strike options, one can not use280

one dimensional models, and has to solve the two dimensional PDE (2.13). For this281

reason, in this work we restrict ourselves to the general two dimensional framework282

(2.13). Analytical solutions are not known, except for the case of fixed strike options283

with K = 0.284

PDE (2.13) has no diffusion in the a variable, thus this equation is difficult to solve285

numerically. In fact, the convective term in the a direction increases as t approaches286

T . At t = T , PDE (2.13) has a singularity because of the 1
T−t (s − a)∂u∂a term. For287

fixed strike options, the singularity can be avoided considering s = a at t = T . Under288

this assumption, (2.13) reduces to Black-Scholes equation (2.3) at t = T .289

In the Section 4 of the numerical experiments we will price a European-style290

Asian fixed strike call option. PDE (2.13) will be solved in the localized domain291

(s, a, t) ∈ (0, s̄)× (0, ā)× (0, T ] (usually s̄ = ā) with the following boundary condition292
∂2u
∂s2 (s̄, a, t) = 0. The other portions of the boundary do not require the prescription293

of boundary conditions. Since the convective term in the a direction depends on294

time, once the problem is discretized, the matrices of the resulting systems have to295

be computed and inverted at each time step.296

3. Numerical methods. Finite volume IMEX Runge-Kutta. In this sec-297

tion we present a second order finite volume semi-implicit numerical scheme for solving298

(2.3). First, the equation (2.3) must be written in conservative form:299

(3.1)
∂u

∂t
+

∂

∂s
f(u) =

∂

∂s
g(us) + h(u).300

The numerical solution of equation (3.1) using a explicit finite volume scheme may301

have a huge computational cost because of the tiny time steps induced by the diffusive302

terms. To avoid this difficulty we consider IMEX Runge-Kutta methods (see [21]).303

These methods play a major rule in the treatment of differential systems governed by304

stiff and non stiff terms.305

The procedure for obtaining the numerical scheme can be summarized as follows.306

First, we perform a spatial finite volume semi-discretization of (3.1), explicit in con-307

vection and reaction, and implicit in the diffusive part. As a result we obtain a stiff308

time ODE system, that we discretize using IMEX Runge-Kutta methods. In what309

follows we succinctly describe the space and time discretizations.310

3.1. Spatial semi-discretization. Finite volume method. The spatial semi-311

discretization of the advective and source terms is performed by means of a explicit312
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finite volume scheme. First, a finite volume mesh is built. The spatial domain is split313

into cells (finite volumes) {Ii}, with Ii = [si−1/2, si+1/2], i = . . . ,−1, 0, 1, . . ., being314

si the center of the cell Ii. Let |Ii| be the size of cell Ii. The basic unknowns of our315

problem are the averages of the solution u(s, t) in the cells {Ii}, ūi = 1
|Ii|
∫
Ii
u ds. In-316

tegrating equation (3.1) in space on Ii and dividing by |Ii| we obtain the semi-discrete317

equation318

dūi
dt

=− 1

|Ii|
[
f(u(si+1/2, t))− f(u(si−1/2, t))

]
(3.2)319

+
1

|Ii|
[
g(us(si+1/2, t))− g(us(si−1/2, t))

]
(3.3)320

+
1

|Ii|

∫
Ii

h(u) ds.(3.4)321

322

Then, the right hand side of this expression (3.2)-(3.4) is approximated with a function323

of the cell averages {ūi(t)}i.324

The convective terms in (3.2) can be approximated by solving the Riemann prob-
lems at the edge of the cells using a suitable numerical flux function F consistent with
the analytical flux f , i.e.

f(u(si±1/2, t)) ≈ F(u−i±1/2, u
+
i±1/2).

Thus one obtains325

f(u(si+1/2, t))− f(u(si−1/2, t)) ≈ F(u−i+1/2, u
+
i+1/2)−F(u−i−1/2, u

+
i−1/2).326

327

The quantities u±i±1/2 are computed as

u±i±1/2 = lim
s→s±

i±1/2

R(s),

where R is a reconstruction of the unknown function u(s, t). More precisely, R is
given by a piecewise polynomial starting from cell averages {ūi(t)},

R(s) =
∑
i

Pi(s)1s∈Ii ,

where Pi is a polynomial satisfying some accuracy and non oscillatory property, and328

1s∈Ii is the indicator function of cell Ii. For second order schemes, the reconstruction329

have to be at least piecewise linear.330

In this work for the numerical flux functions we use the CIR numerical flux

F(u−, u+) =
1

2
(f(u−) + f(u+))− α

2
(u+ − u−), α =

∣∣∣∣∂f∂u
(
u− + u+

2

)∣∣∣∣ .
The integral of the source term (3.4) can be explicitly discretized using a second331

order quadrature rule, for example the midpoint rule:332 ∫
Ii

h(u)ds ≈ |Ii|h(ūi).(3.5)333

334

Finally, the diffusion terms in (3.3) can be approximated as335

g(us(si+1/2))− g(us(si−1/2)) ≈ g
(
ūi+1 − ūi
|Ii|

)
− g

(
ūi − ūi−1

|Ii|

)
.336

337
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3.2. Time discretization. IMEX Runge-Kutta. After performing the spa-338

tial semi-discretization of equation (3.1) we obtain a stiff ODE system of the form339

(3.6)
∂U

∂t
+ F (U) = S(U),340

where U = (ūi(t)) and F, S : RN → RN , being F the non-stiff term and S the stiff one.341

An IMEX scheme consists of applying an implicit discretization to the stiff term and342

an explicit one to the non stiff term. In this way, both can be solved simultaneously343

with high order accuracy using the same time step of the convective part, which is in344

general much larger than the time step of the diffusive part.345

When IMEX is applied to system (3.6) it takes the form346

U (k) = Un −∆t

k−1∑
l=1

ãklF (tn + c̃l∆t, U
(l)) + ∆t

ρ∑
l=1

aklS(tn + cl∆t, U
(l)),(3.7)347

Un+1 = Un −∆t

ρ∑
k=1

ω̃kF (tn + c̃k∆t, U (k)) + ∆t

ρ∑
k=1

ωkS(tn + ck∆t, U (k)),(3.8)348

349

where Un = (ūni ), Un+1 = (ūn+1
i ) are the vector of the unknowns cell averages at350

times tn and tn+1, thus U (k) and U l are the vector of unknowns at the stages k, l of351

the IMEX method. The matrices Ã = (ãkl), with ãkl = 0 for l ≥ k, and A = (akl) are352

square matrices of order ρ, such that the ensuing scheme is implicit in S and explicit353

in F . Solving efficiently at each time step the system of equations corresponding to354

the implicit part is extremely important. Therefore, one usually considers akl = 0,355

for l > k, the so-called diagonally implicit Runge-Kutta (DIRK) schemes .356

IMEX Runge-Kutta schemes can be represented by a double tableau in the usual357

Butcher notation,358

c̃ Ã
ω̃

,
c A

ω
,359

where w̃ = (w̃1, . . . , w̃ρ) and w = (w1, . . . , wρ). Besides, the coefficient vectors c̃ =360

(c̃1, . . . , c̃ρ)
T and c = (c1, . . . , cρ)

T are only used for the treatment of non autonomous361

systems, and have to satisfy the relations362

(3.9) c̃k =

k−1∑
l=1

ãkl, ck =

k∑
l=1

akl.363

In this work we will consider the second order IMEX-SSP2(2,2,2) L-stable scheme364

(see [21])365

0 0 0
1 1 0

1/2 1/2

γ γ 0
1− γ 1− 2γ γ

1/2 1/2
γ = 1− 1√

2
.366

An explicit time integrator needs extremely small time steps due to the following367

stability conditions368

(3.10) η
∆t

(∆s)2
≤ 1

2
, (3.11) α

∆t

∆s
≤ 1 ,369

where η =

∣∣∣∣ ∂g∂us
∣∣∣∣ , α =

∣∣∣∣∂f∂u
∣∣∣∣ , for all cells Ii and for all boundary points si±1/2.370

However, IMEX only needs to satisfy the advection stability condition (3.11).371
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4. Numerical experiments. In this section the accuracy and convergence of372

the proposed numerical scheme is assessed. The developed numerical method is ap-373

plied to the discretization and solution of the one and two dimensional financial PDEs374

discussed in Section 2. More precisely, experiments under the Black-Scholes model375

for vanilla, butterfly and barrier options are presented in Section 4.1. Besides, the376

numerical results are compared with the analytical solutions presented in Section 2.377

Later, in Section 4.2 two dimensional problems in space are solved. Indeed, Asian378

options are priced.379

At each one of the following subsections, we start by writing the involved PDE in380

conservative form. Then, graphs containing numerical results, such as option prices,381

Greeks (Delta and Gamma) and numerical errors are presented. Moreover, tables for382

the L1 errors and the L1 orders of convergence are shown. Additionally, a comparison383

of the time step sizes supplied by the stability conditions of the explicit and IMEX384

Runge-Kutta methods is presented. For all the tests in this paper a CFL of 0.5 is385

considered in the stability conditions.386

4.1. Options under the Black-Scholes model. First of all, the Black-Scholes
PDE (2.3) is written in the conservative form (3.1), where the conservative functions
are given by:

f(u) = (σ2 − r + q)su , g(us) =
1

2
σ2s2 ∂u

∂s
, h(u) = (σ2 − 2r + q)u.

Hereafter, vanilla, butterfly and barrier European call options are priced under387

this model.388

4.1.1. European call options. In this section, three tests are considered, whose389

market data are collected in Table 1. Test 2 is a diffusion-dominated example, while390

Test 3 is convection-dominated. Test 1 represents a balanced configuration. Although391

the setup of Test 3 is financially unrealistic, because of the high value of r, it is use-392

ful as a stress-test of the numerical scheme. In these three experiments the spatial393

domain is set to [0, s̄ = 400].394

σ r q T K

Test 1 0.01 0.10
0 1 100Test 2 0.5 0.02

Test 3 0.02 0.5

Table 1: Market data for European call options under the Black-Scholes model.

In Figures 1, 2 and 3, numerical (ū) and exact (u) option prices are plotted at395

t = T for Tests 1, 2 and 3, respectively. A mesh with 800 discretization points in space396

was considered. Numerical prices were computed with the IMEX Runge-Kutta time397

integrator. Besides, numerical errors (|u−ū|) are displayed in that figures. In addition,398

exact and numerical Delta and Gamma Greeks at the final time T are presented.399

The numerical Greeks (∆ū, Γū) are computed with second order finite differences400

approximations, even at the boundaries of the spatial domain, see [11] for details.401

The numerical results are plotted in red squares, while the analytical solutions are402

represented in continuous blue line. The reader can observe that the proposed finite403

volume numerical scheme offers high-resolution approximations, without oscillations,404

for the option prices and the Greeks, even at regions of discontinuities and non-405

smoothness in the initial condition.406

This manuscript is for review purposes only.
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Fig. 1: Call option prices, numerical errors and Greeks (∆, Γ) for Test 1 at t = T .

Fig. 2: Call option prices, numerical errors and Greeks (∆, Γ) for Test 2 at t = T .

Tables 2, 3 and 4 record L1 errors and L1 orders of convergence at t = T for both407

explicit and IMEX finite volume numerical methods for Tests 1, 2 and 3, respectively.408

L1 error is given by L1 = ∆s
∑N
i=1|ū(si, T )− u(si, T )|, where N denotes the number409

of discretization points in space. Besides, the time steps and execution times are410

shown for each spatial discretization. The time steps for IMEX and the explicit411

method were obtained from the stability conditions (3.10) and (3.11). Codes were412

implemented using C++ programming language, compiled with GNU C++ compiler413

9.3.0 and run in a machine with one AMD Ryzen 9 5950X processor. On the one414

hand, these tables show that both IMEX and explicit numerical schemes are able to415
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Fig. 3: Call option prices, numerical errors and Greeks (∆, Γ) for Test 3 at t = T .

approximate the solution with order two. Second order is achieved even in the presence416

of non-smoothness in the initial condition, thus avoiding the necessity of regularization417

techniques for the initial condition, like the Rannacher time-stepping. On the other418

hand, numerical results show, as expected, that the IMEX time integrator outperforms419

the explicit method. In fact, in the diffusion dominated scenario of Test 2, IMEX time420

steps are between 54 and 6967 times larger than corresponding explicit time steps.421

As a result, IMEX is between 17 and 1791 times faster than the explicit method.422

In Figure 4 the natural logarithms of L1 errors and execution times of Table 3 are423

plotted for both the IMEX and explicit numerical schemes; IMEX superiority in this424

figure is overwhelming. As expected, when N increases the distance between both425

schemes is larger and larger. In advection dominated scenarios, like the one in Test426

3, both IMEX and the explicit methods perform similarly in the coarser meshes in427

space. Nevertheless, IMEX performs again better when dealing with finer grids in428

space. For example, in the mesh with 6400 finite volumes, IMEX time step is 5 times429

larger than the corresponding explicit time step, thus executing 1.64 times faster. In430

more balanced scenarios, like the one in Test 1, IMEX keeps performing better and431

better as long as the space grid is refined in space. In fact, in the grid with N = 6400,432

IMEX time step is 6.4 times larger than the explicit time step. As a result, IMEX433

is able to compute the solution 1.74 times faster. Having in mind that the common434

situation in finance is the diffusion dominated scenario, the IMEX time integrator435

represents the right choice. As a summary, although both time marching methods436

achieve similar results in terms of accuracy and convergence order, IMEX is able to437

converge using much larger times steps, thus it consumes much less computing time.438

4.1.2. Butterfly Spread. In this section a butterfly spread option is priced439

considering the market data σ = 0.2, r = 0.1, q = 0, T = 0.5, K1 = 45 and K3 = 80.440

The computational domain is set as [0, s̄ = 200].441

In Figure 5, prices, numerical errors and Greeks are shown at t = T with N =442

800. These plots show that the here proposed numerical methods achieve very good443
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IMEX
N L1 error Order ∆t Time (s)

50 1.6145× 101 −− 1.01× 10−1 2.8× 10−4

100 7.1629× 100 1.17 5.03× 10−2 4.7× 10−4

200 2.6877× 100 1.41 2.50× 10−2 1.18× 10−3

400 9.1734× 10−1 1.55 1.25× 10−2 3.6× 10−3

800 2.8046× 10−1 1.70 6.26× 10−3 1.1× 10−2

1600 7.2788× 10−2 1.95 3.13× 10−3 2.6× 10−2

3200 1.7410× 10−2 2.06 1.56× 10−3 9.5× 10−2

6400 3.4791× 10−3 2.32 7.82× 10−4 3.5× 10−1

Explicit
N L1 error Order ∆t Time (s)

50 1.6146× 101 −− 1.01× 10−1 1.1× 10−4

100 7.1626× 100 1.17 5.03× 10−2 1.9× 10−4

200 2.6875× 100 1.41 2.50× 10−2 4.4× 10−4

400 9.1713× 10−1 1.55 1.25× 10−2 1.5× 10−3

800 2.8039× 10−1 1.71 6.26× 10−3 4.3× 10−3

1600 7.3346× 10−2 1.93 1.95× 10−3 2.2× 10−2

3200 1.7622× 10−2 2.06 4.88× 10−4 9.6× 10−2

6400 3.5252× 10−3 2.32 1.22× 10−4 6.1× 10−1

Table 2: L1 errors and L1 orders of convergence of the IMEX and explicit finite
volume methods for the call option of Test 1.

IMEX
N L1 error Order ∆t Time (s)

50 7.8413× 100 −− 4.34× 10−2 3.8× 10−4

100 1.9886× 100 1.98 2.17× 10−2 7.8× 10−4

200 5.0056× 10−1 1.99 1.09× 10−2 2.2× 10−3

400 1.2554× 10−1 1.99 5.43× 10−3 6.9× 10−3

800 3.1367× 10−2 2.00 2.72× 10−3 1.5× 10−2

1600 7.7625× 10−3 2.02 1.36× 10−3 5.0× 10−2

3200 1.8499× 10−3 2.07 6.80× 10−4 1.8× 10−1

6400 3.7004× 10−4 2.32 3.40× 10−4 6.7× 10−1

Explicit
N L1 error Order ∆t Time (s)

50 7.4158× 100 −− 8.00× 10−4 6.7× 10−3

100 1.8518× 100 2.00 2.00× 10−4 1.8× 10−2

200 4.6253× 10−1 2.00 5.00× 10−5 8.7× 10−2

400 1.1551× 10−1 2.00 1.25× 10−5 4.8× 10−1

800 2.8793× 10−2 2.00 3.13× 10−6 2.9× 100

1600 7.1211× 10−3 2.02 7.81× 10−7 2.0× 101

3200 1.6999× 10−3 2.07 1.95× 10−7 1.5× 102

6400 3.4735× 10−4 2.29 4.88× 10−8 1.2× 103

Table 3: L1 errors and L1 orders of convergence of the IMEX and explicit finite
volume methods for the call option of Test 2.

approximations of prices and Greeks, even for this butterfly derivative, with sharp444

corners at strike prices in the initial condition and several jumps in derivatives. In445

Table 5, L1 errors and L1 orders of convergence are shown for this derivative. Second446

order of convergence is again achieved. IMEX time step is between 33 and 4262 times447

larger than the explicit time step. As a consequence, IMEX is between 7 and 959448

times faster.449

4.1.3. Barrier Option. In this section a down-and-out call option with the450

market data σ = 0.2, r = 0.05, q = 0, T = 1, K = 70 and the barrier at B = 200 is451

priced. The computational domain is thus set to [B, 5B].452

In Figure 6 option prices, numerical errors, Deltas and Gammas are shown at453
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Fig. 4: Efficiency curve of IMEX and explicit time marching schemes for Test 2.

IMEX
N L1 error Order ∆t Time (s)

50 3.4261× 101 −− 2.00× 10−2 5.8× 10−4

100 1.3092× 101 1.39 1.00× 10−2 1.4× 10−3

200 4.8437× 100 1.44 5.00× 10−3 4.4× 10−3

400 1.6448× 100 1.56 2.50× 10−3 1.2× 10−2

800 4.8968× 10−1 1.75 1.25× 10−3 3.3× 10−2

1600 1.2745× 10−1 1.94 6.25× 10−4 1.1× 10−1

3200 3.0473× 10−2 2.06 3.13× 10−4 4.3× 10−1

6400 6.1026× 10−3 2.32 1.56× 10−4 1.7× 100

Explicit
N L1 error Order ∆t Time (s)

50 3.4278× 101 −− 2.00× 10−2 3.5× 10−4

100 1.3124× 101 1.39 1.00× 10−2 7.4× 10−4

200 4.8616× 100 1.43 5.00× 10−3 1.9× 10−3

400 1.6535× 100 1.56 2.50× 10−3 6.3× 10−3

800 4.9281× 10−1 1.75 1.25× 10−3 1.4× 10−2

1600 1.2841× 10−1 1.94 4.88× 10−4 5.3× 10−2

3200 3.0728× 10−2 2.06 1.22× 10−4 3.7× 10−1

6400 6.1716× 10−3 2.32 3.05× 10−5 2.8× 100

Table 4: L1 errors and L1 orders of convergence of the IMEX and explicit finite
volume methods for the call option of Test 3.

t = T considering a mesh with N = 800. These plots show that the here proposed454

numerical methods are able to obtain good approximations without oscillations, even455

at difficult zones like close to the barrier. Table 6 shows L1 errors and L1 order456

of convergence at t = T . Second order accuracy is achieved again. In this case,457

IMEX time step is between 200 and 25606 times larger than the explicit time step.458

Consequently, IMEX executes between 10 and 12222 times faster.459

4.2. Asian option. Using the method of lines, the previous one dimensional nu-460

merical methods can be easily extended to the two dimensional case. Generally speak-461

ing, we are interested in solving the following two dimensional advection-diffusion-462

reaction PDE without crossed derivatives:463

(4.1)
∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
+ c

∂2u

∂x2
+ d

∂2u

∂y2
+ e = 0 ,464
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Fig. 5: Butterfly spread option prices, numerical errors and Greeks (∆,Γ).

IMEX
N L1 error Order ∆t Time (s)

50 2.8534× 100 −− 1.66× 10−1 9.0× 10−5

100 8.6913× 10−1 1.72 8.33× 10−2 3.1× 10−4

200 2.4055× 10−1 1.85 4.17× 10−2 5.5× 10−4

400 6.2948× 10−2 1.93 2.08× 10−2 1.3× 10−3

800 1.6034× 10−2 1.97 1.04× 10−2 4.1× 10−3

1600 4.0019× 10−3 2.00 5.21× 10−3 1.4× 10−2

3200 9.5613× 10−4 2.07 2.60× 10−3 2.9× 10−2

6400 1.9134× 10−4 2.32 1.30× 10−3 9.9× 10−2

Explicit
N L1 error Order ∆t Time (s)

50 3.6096× 100 −− 5.00× 10−3 6.5× 10−4

100 1.0029× 100 1.85 1.25× 10−3 2.7× 10−3

200 2.7238× 10−1 1.88 3.15× 10−4 1.1× 10−2

400 7.0883× 10−2 1.94 7.81× 10−5 4.7× 10−2

800 1.7997× 10−2 1.98 1.95× 10−5 2.5× 10−1

1600 4.4939× 10−3 2.00 4.88× 10−6 1.7× 100

3200 1.0839× 10−3 2.05 1.23× 10−6 1.2× 101

6400 2.2739× 10−4 2.25 3.05× 10−7 9.5× 101

Table 5: L1 errors and L1 orders of convergence of the IMEX and explicit finite
volume methods for the butterfly spread option.

where a, b, c, d, e are functions of t, x, y and u. This equation (4.1) can be written in465

conservative form as466

(4.2)
∂u

∂t
+
∂f1

∂x
(u) +

∂f2

∂y
(u) =

∂g1

∂x
(ux) +

∂g2

∂y
(uy) + h(u).467

The stability conditions are468

(4.3) 2η1
∆t

(∆x)2
+ 2η2

∆t

(∆y)2
≤ 1

2
, α1

∆t

∆x
+ α2

∆t

∆y
≤ 1,469
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Fig. 6: Down-and-out call option prices, numerical errors and Greeks (∆, Γ) at t = T .

IMEX
N L1 error Order ∆t Time (s)

50 1.3889× 102 −− 1.00× 100 1.8× 10−4

100 3.4052× 101 2.03 5.00× 10−1 2.6× 10−4

200 8.5310× 100 2.03 2.50× 10−1 4.6× 10−4

400 2.1249× 100 2.02 1.25× 10−1 9.4× 10−4

800 5.2912× 10−1 2.01 6.25× 10−2 2.4× 10−3

1600 1.3097× 10−1 1.98 3.13× 10−2 7.3× 10−3

3200 3.1547× 10−2 2.00 1.56× 10−2 1.6× 10−2

6400 6.7624× 10−3 2.26 7.81× 10−3 4.5× 10−2

Explicit
N L1 error Order ∆t Time (s)

50 1.3979× 102 −− 5.00× 10−3 1.8× 10−3

100 3.4401× 101 2.02 1.25× 10−3 7.7× 10−3

200 8.5373× 100 2.01 3.12× 10−4 3.0× 10−2

400 2.1271× 100 2.01 7.81× 10−5 1.3× 10−1

800 5.3130× 10−1 2.01 1.95× 10−5 9.5× 10−1

1600 1.3316× 10−1 2.01 4.88× 10−6 6.4× 100

3200 3.3721× 10−2 2.05 1.22× 10−6 6.4× 101

6400 8.8809× 10−3 2.22 3.05× 10−7 5.5× 102

Table 6: L1 errors and L1 orders of convergence of the IMEX and explicit finite
volume methods for the down-and-out call option.

where η1 =

∣∣∣∣ ∂g1

∂ux

∣∣∣∣, η2 =

∣∣∣∣ ∂g2

∂uy

∣∣∣∣, α1 =

∣∣∣∣∂f1

∂u

∣∣∣∣ and α2 =

∣∣∣∣∂f2

∂u

∣∣∣∣ for all boundaries of all470

volumes.471

Therefore, the Asian PDE (2.13) is then written in the conservative form of PDE472

(4.2) using473

f1(u) = (σ2 − r)su , f2(u) = − 1

T − t
(s− a)u ,474

g1(us) =
1

2
σ2s2us , g2(ua) = 0, h(u) =

(
σ2 − 2r +

1

T − t

)
u .475
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At this point, a fixed strike Asian call option is valued with the market data σ = 0.2,476

r = 0.1, T = 1, K = 100 on the spatial domain (s, a) ∈ [0, 300]× [0, 300]. Numerical477

option prices and Greeks at t = T using a mesh of size N1×N2 = 800×800 are shown478

in Figure 7.479

(a) Price.

(b) Delta. (c) Gamma.

Fig. 7: Prices, Deltas and Gammas of the Asian option at t = T .

Table 7 records L1 errors and L1 orders of convergence at t = T
2 . Both IMEX and480

explicit numerical schemes achieve second-order accuracy in the L1 norm. In this case481

f2 depends on time t. Therefore, the time step inferred by the convective stability482

condition in (4.3) depends on the actual time step. For each row of the table, only483

the smallest time step is shown, i.e the one computed at the final time step. In the484

case of this financial derivative, IMEX time marching is up to 40 times faster than485

the explicit scheme.486

5. Conclusions. In this article we have shown that finite volume IMEX Runge-487

Kutta numerical schemes are remarkably suitable for solving PDE option pricing488

problems. On the one hand, the IMEX time discretization is outstandingly efficient.489

Indeed, large time steps can be used, avoiding the need to use the smaller, and possibly490

extremely small, time steps enforced by the diffusion stability condition, which has to491

be satisfied in explicit schemes. Numerical results show that IMEX outperforms the492

explicit method. In fact, IMEX is the only way to solve problems in highly refined493

meshes is space. Besides, even in its worst scenarios, IMEX performs at least as well as494
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IMEX
N1 ×N2 L1 error Order ∆t Time (s)

25× 25 2.6092× 104 −− 1.00× 10−2 1.7× 10−2

50× 50 8.5678× 103 1.61 5.00× 10−3 8.0× 10−2

100× 100 8.5678× 103 1.42 2.50× 10−3 5.9× 10−1

200× 200 1.2092× 103 1.40 1.25× 10−3 5.7× 100

400× 400 3.2323× 102 1.90 6.25× 10−4 5.3× 101

800× 800 9.7991× 101 1.72 3.13× 10−4 5.1× 102

1600× 1600 2.3879× 101 2.04 1.57× 10−4 5.0× 103

Explicit
N1 ×N2 L1 error Order ∆t Time (s)

25× 25 2.6273× 104 −− 1.00× 10−2 8.1× 10−3

50× 50 8.5704× 103 1.62 5.00× 10−3 3.5× 10−2

100× 100 2.9837× 103 1.52 1.25× 10−3 2.3× 10−1

200× 200 9.8509× 102 1.59 3.12× 10−4 4.1× 100

400× 400 3.2357× 102 1.61 7.81× 10−5 6.6× 101

800× 800 9.8241× 101 1.72 1.95× 10−5 1.2× 103

1600× 1600 2.4234× 101 2.02 4.88× 10−6 2.0× 105

Table 7: L1 errors and L1 orders of convergence of the IMEX and explicit finite
volume methods for the Asian option.

the explicit method. On the other hand, finite volume space discretization contributes495

substantially to the achievement of second order convergence. Its consideration is496

crucial to handle appropriately convection dominated problems and/or problems with497

non smooth initial and/or boundary conditions, which is the usual situation in finance.498

Thus, no special regularization techniques of the non smooth data need to be taken499

into account. The accuracy of the numerical scheme turns to be of key importance500

for the accurate and non oscillatory computation of the Greeks. Finally, in this paper501

we provide a set of benchmark problems, together with their analytical solutions.502

These benchmarks can also be valuable for mathematical researchers working in the503

development of high order numerical schemes for advection-diffusion problems.504
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