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Abstract
Using a metric based on solutions for the scalar of a 5-dimensional Kaluza model in the field equations for
curved space-time allows to derive a convergent series of particle energies, to be quantized as a function of
the fine-structure constant,  α, with limits given by the energy values of the electron and the Higgs vacuum
expectation value. The value of α can be given numerically by the gamma functions of the integrals involved,
extending the formalism to N-dimensions yields a single expression for the electroweak coupling constants.
The series expansion of the energy equation provides quantitative terms for particle energy, Coulomb and
gravitational  interaction.  Additional  terms in the  field equations  may give a  value for  the  cosmological
constant in the correct order of magnitude.
The model can be expressed ab initio without use of free parameters.

1 Introduction 
Theory of everything is a somewhat ironic and pompous term and maybe an unachievable goal. Theodor
Kaluza in 1919 developed a unified field theory of gravitation and electromagnetism that  produced the
formalism for the field equations of the general  theory of relativity (GR) and Maxwell's  equations thus
unifying both major forces known at his time. His 5-dimensional model [1] is mainly known as Kaluza-Klein
theory today,  including  the  contributions  of  Klein  [2]  who introduced the  idea of  compactification and
attempted to join the model with the emerging principles of quantum mechanics. This version became a
progenitor  of  string theory.  The classical  Kaluza model  was developed further as well  [3],  Wesson and
coworkers elaborated a general non-compactified version to describe phenomena extending from particles to
cosmological problems. The equations of 5D space-time may be separated in a 4D Einstein tensor and metric
terms representing mass and the cosmological constant, Λ. Particles may be described as photon-like in 5D,
traveling on time-like paths in 4D. This version is known as space-time-matter theory [4]. Both successor
theories give general relationships rather than providing quantitative results for specific phenomena such as
particle energy. 
The model described in the following evolved from a heuristic approach and does not attempt to give a
complete solution for a 5D theory but to demonstrate that Kaluza's ansatz provides very  simple, parameter-
free and in particular quantitative solutions for a wide range of phenomena. Basic equations from the existing
literature may be used, with one significant simplification: 
The terms in the metric tensor have to be dimensionless. Kaluza’s approach presupposes electromagnetic
units. To reproduce the Einstein field equations (EFE) he choose a  gravitational term to keep the electro-
magnetic potential terms in the metric dimensionless, a rather unfitting combination 1. This assumption will
be dropped in this work, the equations will be interpreted in their entirety as related to electromagnetism.
Gravitational phenomena will be recovered via a series expansion of the energy equation.
A necessary  boundary  condition  in  the  equations  used will  be  that  all  particles  have  to  posses  angular
momentum, i.e. integer or half-integer spin or be composed of half-integer spin components (e.g. mesons).
Spin might be considered to be implicit in Kaluza's ansatz as well, since electrodynamics allows solutions for
circular polarized light. 
For the model presented here it might be helpful to use the following visualization: a photon with its intrinsic
angular momentum interpreted as having its E-vector rotating around a central axis of propagation  will be
transformed into an object that has the - still rotating - E-vector constantly oriented to a fixed point, the
origin of a local coordinate system, resulting in an SO(3)-like object with  point charge properties  2.  The
vectors E, B and V of the propagation velocity  3 are supposed to be locally orthogonal and subject to the

1 In the closing remarks of [1] Kaluza considers to replace „die etwas fragwürdige Gravitationskonstante‟ –„the 
somewhat questionable constant of gravitation‟.
2 Neutral particles are supposed to exhibit nodes separating corresponding equal volume elements of reversed E-vector 
orientation and opposite polarity.
3 Referred to as ‟EBV-triple‟ in the following; in the limit r -> rn („particle radius‟) => V -> c0;
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standard Maxwell equations, however, on the background of an appropriately curved space-time. Curvature
of space-time based on an electromagnetic version of the field equations of GR will be strong enough to
localize a photon in a self trapping kind of mechanism, yielding energy states in the range of the particle zoo.
Such a qualitative model has some merits of its own, see [A1], quantitative results will be based on Kaluza’s
equations.

The basic proceeding will be as follows:
Kaluza’s equations for flat 5D-space may be arranged to give [4, chapter 6.6]
1) Einstein-like equations for space-time curved  by  electromagnetic  and  scalar  fields (equ. (5)),
2) Maxwell equations where the source depends on the scalar field,
3) a wave-like equation connecting the scalar with the electromagnetic tensor (equ. (6)).
Solutions for  the scalar  Φ of 3) in a flat 5D-metric will be used as general ansatz in a 4D-metric. This is
considered to be a proof of concept only since it can not be expected that equations derived from classic GR
provide an adequate ansatz for particles with spin. The results obtained seem to justify this to be a reasonable
approximation. These are among others: electroweak coupling constants as geometric coefficients in 3 and 4
spatial  dimensions; a convergent  series of particle energies quantized as a function of the  fine-structure
constant, α, with limits given by electron and the Higgs vacuum expectation value (VEV) energy. The series
expansion of the incomplete Γ-function in the energy expression for a point charge will include a term which
at short range yields effects that may be associated with strong interaction, at long range gives a quantitative
term for gravitational  interaction.  Additional  scalar  field terms of 1) may be considered to be a natural
candidate for the cosmological constant, Λ, and using the basic coefficients of this model will give a result in
the correct order of magnitude.

The equations presented in the following can essentially be expressed “ab initio” i.e. without free parameters.
Three well defined coefficients will enter the exponential of the pivotal function derived below:
- electromagnetic potential, A, in the static approximation of this work the electric potential, Ael ≈ e/(4πεr),
  will be required in the solution for Φ (chpt. 2.2), 
- a coefficient, σ, will represent the integration limit necessary to yield angular moment Jz = ħ/2 (2.4, [A5]),
- a coefficient αPl = We/WPl, the ratio of electron and Planck energies, is required by the expansion of the Γ-
function in the energy expression (chpt. 2.11, 2.12).

The relation of the masses e, µ, π with α was noted first in 1952 by Nambu [5]. MacGregor calculated
particle mass and constituent quark mass as multiples of α and related parameters [6].
To focus on the more fundamental relationships some minor aspects of the model are exiled to an appendix,
related topics to be marked as [A]. Typical accuracy of the calculations is in the order of 0.001-0.0001 4. The
difference between calculated and experimental results is consistent with a variation of input parameters
related to elementary charge in an order of magnitude of QED corrections which are not included in this
model.

2 Calculation
2.1 System of natural units
It is common to define natural electromagnetic units by referring them to the value of the speed of light. The
same will be done here, thus subscript c will be used. Retaining SI units  for length, time and energy the
electromagnetic constants may be defined as:

c0
2  = (εc μc)-1 (1)

 with εc = (2.998E+8 [m²/Jm] )-1 = (2.998E+8)-1 [J/m] 
μc = (2.998E+8 [Jm/s²] )-1 = (2.998E+8)-1 [s2/Jm] 

From the Coulomb term b0 = e2/(4πε0) = ec
2 /(4πεc) = 2.307E-28 [Jm] follows for the square of the elementary

charge: ec
2 = 9.671E-36 [J2]. In the following ec

 = 3.110E-18 [J] and ec/(4πεc) = 7.419E-11 [m] will be used as
natural unit of energy and length. 
The constant G/c0

4 [m/J] in the Einstein field equations (EFE) will be replaced by:

(8 π )G /c0
4      =>     ≈   1

εc

    (2)

4 Including e.g. errors due to the numerical approximation of incomplete Γ-functions.
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in an accordingly modified field equation (Tαß = stress-energy tensor):

  Gαβ  = Rαβ  - 1
2

gαβ R  = 1
εc

T αβ     (3)

2.2 Kaluza theory
Kaluza theory is an extension of general relativity to 5D-space-time with a metric given as  [4, equ. 2.2]:

g AB  = [(gαβ−κ2 Φ2 Aα Aβ ) −κ Φ2 Aα

−κ Φ2 A β −Φ2 ]     (4)

In  (4) roman letters correspond to 5D  5,  greek letters to 4D.  κ2 corresponds to the constant in the field
equation (2), A is the electromagnetic potential.  In the context of the electrostatic approximation of this
model A will be assumed to be represented by the electric potential, Ael = ec/(4πεcr) = ρ0/r [-] 6. Assuming 5D-
space-time to be flat, i.e. RAB = 0, gives for the 4D-part of the field equations [4, equ. 2.3]:

Gαβ  = 
κ2 Φ2

2
T αβ

EM  - 
1
Φ

(∇ α(∂αΦ)  - gαβ □ Φ)     (5)

From R44 = 0 follows:

□ Φ  = − κ2 Φ3

4
Fαβ Fαβ     (6)

In the  following  only derivations  with respect  to  r  of  a  spherical  symmetric  coordinate  system will  be
considered. Equation (6) will be used to obtain an ansatz for a metric to get a solution of the 00-component
in (3). A function ΦN

 ΦN  ≈ ( ρ
r )

N−1

eν / 2  = ( ρ
r )

N−1

exp(-( ρ
2 r )

N

)               7 (7)

yields solutions for an equation of general type of (6), where  the term of highest order of exponential N,
given by Φ'' ~ ρ3N-1 /r3N+1, may be interpreted to provide the terms for A'(r) ~ ρ0/r2 ~ ec/(4πεcr2 ), see [A2]:

ΦN ' '   ~  ( ρ3 N−1

r3N +1 )eν /2  ~ Φ N
3  e−ν (A0 ')2  ≈ [( ρ

r )
N−1

e ν /2]
3

e−ν( ρ
r2)

2

   =   ( ρ
r )

3 N−3

e ν /2  ( ρ
r2)

2

(8)

The significance of (8) lies in providing the relation of exponential and pre-exponential terms and first of all
in the requirement to contain A ~ (ρ0/r) in the exponent of ΦN, to be used in the following.

2.3 Example for metric, point charge energy
The following will be used as ansatz for a general metric. 

gµν  = (ρ0

r )
n

exp(−a(ρ
r )

3

),   −(ρ0

r )
n

exp(−b(ρ
r )

3

),   −/+ r 2 ,   −/+ r 2 sin2 ϑ (9)

In a simple exponential ansatz for a metric such as given by [4, equ. 6.76f] coefficient n will be zero, n = 0.
While  this  gives  reasonable  relative  values  for  particle  energy,  see  [A3],  this  corresponds  to  a  photon
interpretation of this model and may not yield much further information. 
In the EBV-triple interpretation angular momentum has to be an indispensable property of particles and a
description in the point charge picture including angular momentum as additional restraint provides much
more information than the simpler photon picture. This path will be followed in the remainder of this work.
In  [A4]  it  will  be  demonstrated  that  one  may  derive  appropriate  solutions  from the  EFE  with  n  =  2,
corresponding to Φ of (7) with N = 3  8 and eν/2 being squared. This is considered a proof of concept only 9. 
In general it might be necessary to differentiate between ρ in the exponent and the pre-exponential term. In

5 (ct, r, ϑ, φ, 5th coord.) = (x0, x1, x2, x3, x4)
6 In an electrostatic approximation Ael in the metric is dimensionless and the replacement of the G-term of (2) by 1/εc 
does cancel in the term of the EM-stress-energy tensor, leaving E2 in units of [1/m2] =>  κ ≈ 1. 
7 In the following any index for ν will be omitted, when necesseray φN = ev/2 will be used;
8 Which is supposed to represent 3 spatial dimensions, see chpt. 2.6;
9 The considerations of 2.4 indicate that 1st order derivatives might play a role in an appropriate differential equation.
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the  following  ρ0 represents  the  Coulomb term while  ρ  ~  ρ0 may  include  additional  coefficients,  to  be
discussed below (cf. equ. (22)).
The Einstein tensor component G00 will be:

G00 = ρ0
2/r4 ev  (10)

and using equ. (2)f will give:

ρ0
2

r 4 ev  ≈ 
w
ε c

     =>     
ε c ρ0

2

r4 ev  ≈ w     (11)

The volume integral over (11) gives the particle energy according to:

W n  = ε c ρ0
2  ∫

0

rn

ev

r4
 d3 r  = 4 π εc ρ0

2  ∫
0

rn

ev

r 2
 dr (12)

Solutions for integrals over ev, with v according to (7), times some function of r can be given by:

∫
0

rn

exp(−(ρn /r)
N )r−(m+1)dr  = Γ (m /N ,(ρn /r n)

3)  
ρn

−m

N
  =  ∫

(ρn /rn)
3

∞

t
m
N

 −1
e− t dt  

ρn
−m

N
          (m = N-2) (13)

valid for N = {3; 4}, m = {-2; -1; 0; +1;+2}. The term Γ(m/N, (ρn/rn)3) denotes the upper incomplete gamma
function, given by the Euler integral of the second kind 10. In the range of values relevant in this work, for m ≥ 1
the complete gamma function Γm/N is a sufficient approximation, for m ≤ 0 the integrals have to be integrated
numerically, requiring an integration limit, see 2.4. 
Equation (12) will give as energy for a particle n: 

W n, elstat  = 4 π ε c ρ0
2  ∫

0

rn

ev

r2
 dr =  b0 Γ(1/3, (ρn/rn)3) ρn

-1/3 ≈  b0 Γ1/3 ρn
-1/3    (14)

including the integral for the energy of a point charge term modified by ev = φ2 . Particles are supposed to be
electromagnetic objects possessing photon-like properties, thus it will be assumed that particle energy has equal
contributions of electric and magnetic energy, i.e.

Wn = Wn,elstat + Wn,mag  = 2Wn,elstat  ≈  2 b0 Γ1/3 ρn
-1/3 (15)

2.4 Angular momentum, coefficient σ 
The integral limits required for Euler integrals of (13) with m ≤ 0 are rn („particle radius‟ of state n) in integrals
over ev and (ρn/rn)3 in the Euler integrals. The latter will be expressed via a constant defined as 8/σ (chosen to give
coefficient σ in the exponent of ev, see (22), [A5]): 

(ρn/rn)3 = 8/σ (16)

whose value may be derived from the condition for angular momentum Jz = 1/2 [ħ]. A simple relation with
angular momentum Jz for spherical symmetric states will be given by applying a semi-classical approach
using 

J z  = r2 x p (r 1)  = r2 W n(r1)/c0 (17)

with Wkin,n = 1/2 Wn , using term 2b0 of equ. (15) as constant factor, integrating over a circular path of radius
|r2| = |r1|. Equation (13) will give for m = 0:

Jz = ∫
0

rn

∫
0

2 π

J z (r ,φ)dφ dr  = 4 π
b0

c0

 ∫
0

rn

ev r−1 dr  = 4 π αħ∫
0

rn

ev r−1 dr  = 4 π
3

αħ∫
8/ σ

∞

t -1 e-t dt ≡ 1/2 [ħ] (18)

To obtain Jz = 1/2 [ħ] the integral over evr-1 of (18), has to yield α-1/8π.

∫
0

rn

ev r−1 dr  = 1 /3∫
8/σ

∞

t -1 e-t dt  ≡  α
−1

8π
 ≈ 5.45  (19)

Relation (19) may be used for a numerical calculation of the integration limit,  8/σ,  giving a value of σ0 for
spherical symmetry as σ0 = 1.810E+8 [-], to be used in the following. 
The existence of such an integration limit implies a differential equation of a general type: 

10 Euler integrals yield positive values, the sign convention of Γ-functions gives negative values for negative 
arguments. In the following the abbreviation  Γ-1/3 will be used for |Γ(-1/3)| etc.
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−d 2 ev /2

dr2  + 
σρ3

2 r 4

de v /2

dr
 - 

ρ3

2r5 ev /2  = 0  11 (20)

with a solution

ev /2  = exp(−(σ ρn
3

2r 3
+[(σ ρn

3

2r3 )
2

– 4
ρn

3

2r 3]
0.5

)/2)       (21)

where

ρn
3 ≈ (σ0 α(n) (ec/(4πεCr))3)       (22)

with α(n) being a particle specific coefficient, see 2.7.  Within the parameter range of interest here φn = ev/2 ≈
exp(-(ρn

3/(2r3)) with ρn
3  of equ. (22) may serve as an excellent approximation of (21) 12. From (21) follows

(16).
The model presented here does not consider QED-corrections and it is not obvious how and where to include
those. Due to the nonlinearity of the Γ-functions a variation in the order of magnitude of QED-corrections i.e.
1.001 may result in variations of ≈ 1.007 in the values for particle energy and α. 

2.5 Photon energy
In the following a term for length expressed via the Euler integral of (13) will be introduced for λC,n: 

λC,n = ∫
0

λC , n

e2 v dr  = ρn /3 ∫
(ρn/ λC ,n)

3

∞

t -4/3 e-t dt ≈ Γ(-1/3, (ρn/λC,n)3)  ρn/3 (23)

In the limit (ρx/rx)N ->0

Γ(-1/N, (ρx/rx)N) = ∫
(ρ x /r x )

N

∞

t−(1 /N+1 )e−t dt ≈ N (ρx/rx)-1            (24)

holds.  Equation  (24) inserted  in  the  right  side  of  (23) gives  back  λC,n,  however,  (23)f may be  seen  as
expressing λC,n in terms useful for this model, i.e. ρn, σ0 and Γ-functions. Using equ. (24) for the incomplete
Γ-function and multiplying rx in the integration limit (ρn/rx)3 by √3, the ratio of total angular momentum and
its z-component (see [A5, (69)]), gives in good approximation:

λC,n  ≈ 31.5 σ0
1/3/2  ρn/3 ≈ 36 π2 Γ-1/3 ρn/3     (25)

 (last term for easier comparison with terms used below). With (25) energy of a photon can be expressed by:

WPhot,n = hc0/λC,n  = hc0  / ∫
λC , n

e2v dr =
2hc0

30.5 ρn σ 0
1/ 3 ≈ 

3hc0

36 π 2 Γ−1/3 ρn

(26)

2.6 Fine-structure constant, α
The energy of a particle  is assumed to be the same in both photon and point charge description. Equating
(15) with (26)

Wpc,n = WPhot,n = 2b0 Γ1/3 ρn /3 ≈
3hc0

2 π 18π Γ  ̶ 1/3 ρn

(27)

and rearranging to emphasize the relationship of α with the gamma functions (Γ1/3 = 2.679;  Γ-1/3 = 4.062)
gives as first approximation (note: h => ħ):

α−1  = 
hc0

2 π b0

 = 
4 π Γ 1/3 Γ−1/3

0.998
 13  (28)

Equ. (28) is based on the integral over the 3-dimensional point charge term modified by the exponential term

11 This might give a hint at a relationship with quantum mechanics. Using the 3rd term with σ -> 1 in (45)f for elements 
of potential energy and an expansion by (ħc0)2α2 /b0

2 for the 2nd order term of (20), an approximate differential equation
for this model may be given by −(α2 ħc0)

2r /b0  d2 φ(r )/dr2  +  r V (r )  dφ (r)/dr  −  V (r )φ (r)  = 0 that resembles 
quantum mechanical terms. V(r) ≈ b0 ρ3/(2 r4)/σ ;  c0

2r/b0 ~ „1/m‟-term;
12 For higher angular terms, l -> ∞, σ will approach ≈ 1 (see 2.8) and (21) will approximate ev/2 of equ. (7)ff as well.
13 Alternatively α  = 30.5 2π /(Γ1 /3σ 0

1 /3) = 1.016 α-1; Varying (18)ff by 1.001162 yields ≈ 1.003 α-1;
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from (7), φN
2 = ev, with N = 3, and  a complementary integral to yield a dimensionless constant. This may be

generalized  to  N  dimensions (N ={3;  4}),  to give  a  point  charge  term (SN =  geometric  factor  for  N-
dimensional surface, in case of 3D: 4π):

∫
0

r

φN (r)2 r−2(N−1) dN r  = SN∫
0

r

φN (r)2 r−(N−1)d r (29)

that has to be multiplied by a complementary integral 

∫
0

r

φN (r)2 r(N−3)dr      (30)

The exact result depends on the integration limit of the second integral, cf. [A6]. 
In terms of the Γ-functions both electroweak coupling constants can be given as

α N
−1  = S N  

Γ (+m /N )Γ (−m /N)
m2

 =  SN

Γ (+(N−2)/ N)Γ (−(N−2)/N )
(N−2)2

    (m = N-2, cf. (13)) (31)

Table 1: Values of electroweak coupling constants 14

The ratio of α and αweak represents the Weinberg angle, θW, and may be expressed as:

sin2θW  = 
α

αweak

 = 
π3

4 Γ 1/3 Γ−1/3
 = 0.227   (32)

(Experimental values: PDG [8]: sin2θW = 0.231, CODATA [9]: sin2θW = 0.222). The mass ratio of the W- and
Z-bosons will be given by cos θW,calc = (mW/mZ)calc = 0.879 = 0.998  (mW/mZ)exp  [10]. 

2.7 Quantization with powers of 1/3n over α
Most relations given here are valid for any particle energy which should be expected as there is a continuous
spectrum of energies according to special relativity. However, a particular set of energies may be identified
by relaxing the condition of orthogonality of different states of quantum mechanics to requiring different
states to a) be expressible in simple terms of a ground state coefficient,  α0, in the exponent of φn and b) to
exhibit no dependence on intermediary states.
This may be illustrated  best  by  considering the  product of the  point charge and the photon expression of
energy, (15) and (26):
In a general case ρn may be given as product of ρ0 = ec/(4πεc) [m], σ0 and a partial product of particle specific
dimensionless coefficients, α(n), of succeeding particles representing the ratio ρn+1

3 / ρn
3
  in the exponential of

φn as (α0 = ground state coefficient): 

ρn
3  ~ α 0 Πk=1

n α(k)            n = {1;2;..}      (33)

or ρn of the energy expression: 

ρn  ~ α0
1/3 Πk=1

n αk
1/3            n = {1;2;..}      (34)

Inserting (34) in the product of the point charge and the photon expression of energy, (15) and (26), gives for
the square of energy Wn

2 = Wpc,n Wphot,n: 

W n
2  = 2b0 hc0  

∫
r n

e v r−2 dr

∫
λC , n

ev dr

 = 
4 π b0

2

   α
 
∫
rn

e v r−2dr

∫
λC , n

e v dr

 = 
4 b0

2 Γ 1/3
2

9 [α 4 π Γ1 /3 Γ−1/3] ρn
2  = (2b0 Γ 1/3

   3 ρn
)

2

 ~ 
α0

1/3 α1
1 /3.....αn

1 /3

α0α 1 ....α n

(35)

The last expression of (35) is obtained by expanding the product of  αk
2/3 included in  ρn

2 of  (35) with  the
product of αk

1/3. 
All intermediate particle coefficients cancel out if a relation αn+1 = αn

1/3 holds 15:

14 All values and calculations of this work refer to a rest frame.
15 It is condition a) that requires the exponential of 1/3 in the equations. The reasoning of 2.7 implies a second solution 
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W n
2  ~ 

α0
1/3 α0

1/9 ....α 0
1/(3 ^n) α0

1/(3^(n+1))

α0
1 α0

1/3 α0
1/ 9 ....α0

1/(3^n )  = 
α 0

1 /(3^(n+1))

α0

                                       (36)

Identifying α0 as α0 = α3, i.e. the cube of the fine structure constant, and comparing with experimental particle
data shows that an expression for particle energies can be given using the muon as reference state Wµ = W0:

W n  ~ (α ^(1/3n)
α3 )

0.5

 = 
α ^(0.5 /3n)

α1.5  = Πk=0
n α ^(−1/3k)                n = {0;1;2;..}    (37)

The ratio Wn/Wµ will be given by the partial product of (37) with n = {1;2;..}.
In chpt. 2.11, 2.12 it will be demonstrated that a 3rd order relationship according to the terms of this work
exists between Planck energy and ground state energy, implying the lowest charged particle, the electron, to
correspond to a ground state term, however, requiring an ad hoc factor 1.513 ≈ 3/2 in addition to a modified
α0 = α9. With We as ground state Wn would be given by (33)ff relative to the electron state as:

Wn /We  ≈ 1.513 Πk=1
n α^(-3/3k )                                                             n = {1;2;..}      (38)

for spherical symmetric states, see table 2. Index n will indicate spherical symmetric solutions and serve in
the following as equivalent of a radial quantum number. For the angular terms of Φ(r, ϑ, φ), to be indicated
by index l, only rudimentary results exist, their contribution will be assigned to parameter σ.  The electron
coefficient in the exponential of φe

2 and the energy term, equ. (15), would be given as: 

ρe
3  ~ α e  ≈ 1.5133 α 9  ≈ (3/2)3 α 9      and     W e  ~ α e

−1/ 3  ≈ 2/3  α−3           (39)

2.8 Upper limit of energy
Above relations refer to a point charge and thus to spherical symmetric states. Non-spherical particle states
should exhibit lower values of σ 16. The minimal possible value for σ is defined by the Γ-term in the integral
expression for length, (23)f, and factor 8 in (16) to be: 

σmin = (2 Γ-1/3/3)3 (40)

leaving a term 

α l, max≈ (1.513 α−1)−3  ≈ 8 /27 α3 (41)

as  variable part in ρn
3 (see [A5]). The maximum angular contribution to Wmax would be:

ΔWmax, angular  = 1.513 α-1 ≈ 3/2 α-1   (42)

According to  (38) and (42), the maximum energy will be Wmax ≈ We 9/4 α-2.5 =  4.05E-8 [J]  (=1.03 Higgs
vacuum expectation value, VEV = 246GeV = 3.941E-8 [J] [11]).
In  the  visualization  of  the  EBV-triple  sketched  in  the  introduction  the  “rotating  E-vector”  might  be
interpreted to cover the whole angular range in the case of spherical symmetric states while an object with
one angular node, as represented by the spherical harmonic y1

0 or an atomic p-orbital, might be interpreted as
forming a double cone. Increasing the number of angular nodes would close the angle of the cone leaving in
the angular limit case, l -> ∞, a state of minimal angular extension representing the original vector, however,
extending in both directions from the origin and featuring parity p= -1. Considering only „half“ such a state,
extending in one direction only and having p = +1, would feature an energy of 1.01 WHiggs, the energy value
of the Higgs boson. 

2.9 Other non-spherical symmetric states
Except for the limit case of 2.8 angular solutions for particle states are not known yet and to extend the
model to such states assumptions have to be made.
Assuming the angular  part  to  be related to  spherical  harmonics and exhibiting the corresponding nodes
would give the analog of an atomic p-state for the 1 st angular state, y1

0. With the additional assumption that
Wn,l ~ 1/rn,l ~ 1/Vn,l

1/3 (Vn,l = volume) is applicable for non-spherically symmetric states as well, this would
give W1

0/W0
0 = 31/3  = 1.44. A second partial product series of energies in addition to (38) corresponding to

these values approximately fits the data, see tab. 2. 
A change in angular momentum has to be expected for a transition from spherical symmetric states, y0

0  , to

given by αn+1 = αn
3. Using the parameters of this work will result in values corresponding to α0 (electron), α0 α0

3
 (≈Planck

energy), α0 α0
3

 α0
9

 (≈ 1.4E+72[J]),
16 According to the geometric interpretation of [A5] as well as higher energy Wn,l requiring lower ρn,l.
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y1
0   which is actually observed with ΔJ = ± 1 except for the pair µ/π with Δ J = 1/2. 

The final version for the energy term according to (15), (22), (38)f and (49) would be: 

W n  ≈ 2b0

Γ 1/3

3
ρn

−1  ≈ 2b0

Γ1/3

3 [1.5133δ0, n σ 0 αPl α(n)α (l)( ec

4πεc
)

3]
−1/ 3

 ≈ 

2b0

Γ1/ 3

3 [1.5133δ0 ,n σ 0

α l ,max
1/3

2
 1.5133  Πk=0

n α ^(9 /3k)α (l )( ec

4 πεc
)

3]
−1/3

                   n = {0;1;2;..} (43)

(1.513δ = extra coefficient for the electron only; αPl ratio of electron and Planck energy, comprising αl,max and
electron coefficient  αe,  see 2.12;  α(n) particle coefficient,  excluding electron (n=0) (38)f;  α(l)  = angular
coefficient,  α(y0) = 1, α(y1) = 1/3, α(y∞) = αl,max (41);)
Expressing σ0 by (67) We may be approximated as (1.513 ≈ 3/2):

W e ≈ 2b0

Γ 1/3

3 [(3
2 )

3

σ 0α Pl(e c

4 πε c
)

3]
−1 /3

≈ 
2 ec

2

4 πεc

Γ 1/3

3 [(3
2 )

5

8(4 πΓ−1 /3
3

3 )
3
α10

2 (e c

4 πεc
)

3]
−1/3

≈ ec[Γ1 /3α−10 /3

πΓ−1/3
3 35 /3 ]      (44)

2.10 Results of energy calculation

Table 2: Particle energies; col.2: radial, angular quantum number, ** see 2.8; col.3: energy values of [11]
except* (see (48)); col. 4: α-coefficient in Wn, (43); col.5: ratio of calculated energy, Wcalc and literature value
[11]; col.6: angular momentum Jz [ħ]; col.7: particle radius rn [fm];

Table 2 presents the results of the energy calculation according to (43) for y0
0 (bold), y1

0. Only states given in
[11] as 4-star,  characterized as „Existence is certain, and properties are at least fairly well explored‟, are
included,  up to Σ'0 all states given in [11] are listed. Coefficients given in col. 4 refer to the bold terms of
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n, l J

Planck 1.0 E+21*
- -

0, 0 0.51 1.005 1/2 1412

1, 0 105.66 1.008 1/2 6.83
1, 1 139.57 1.100 0 4.74

K 495 see [A7] 0

2, 0 547.86 1.001 0 1.32
2, 1 775.26 1.020 1 0.92

2, 1 782.65 1.010 1 0.92
K* 894 1

3, 0 938.27 1.009 1/2 0.76

n 3, 0 939.57 1.008 1/2 0.76
958 see [A7] 0

1019 see [A7] 1

4, 0 1115.68 1.018 1/2 0.63

5, 0 1192.62 1.012 1/2 0.61
Δ 1232.00 1.010 3/2 0.59

1318 1/2
3, 1 1383.70 0.987 3/2 0.53

4, 1 1672.45 0.980 3/2 0.45

N(1720) 5, 1 1720.00 1.012 3/2 0.43
1776.82 1.010 1/2 0.40

Higgs 1.25 E+5
1.031

0 0.006

VEV 2.46 E+5 1.04 0 0.003

W
n,Lit      

 
[MeV] 

α-coefficient in Wn
                                         

α(n)-1/3 [α(l)-1/3]
W

calc
/ W

Lit
 r

n
 [fm]  

(-1,∞)  2 (2/3 α-3)3 [3/2 α-1 ]                     
source term, relative to We ! 

0.9994  

rel. to e ! 

e+-  2/3 α-3

µ+-  α-3α-1

π+-  α-3α-1 [31/3] 

η 0  α-3α-1α-1/3

ρ0  (α-3α-1α-1/3) [31/3] 

ω0  (α-3α-1α-1/3) [31/3] 

p+-  α-3α-1α-1/3α-1/9

 α-3α-1α-1/3α-1/9

η'

Φ0

Λ0  α-3α-1α-1/3α-1/9α-1/27

Σ0  α-3α-1α-1/3α-1/9α-1/27α-1/81

∞, 0  α-9/2

Ξ

Σ*0  (α-3α-1α-1/3α-1/9) [31/3]  

Ω-  (α-3α-1α-1/3α-1/9α-1/27) [31/3]  
 (α-3α-1α-1/3α-1/9α-1/27α-1/81) [31/3] 

tau+- ∞, 1  (α-9/2) [31/3] 
∞,∞ 
**

 (α-9/2) [3/2 α-1] /2

∞,∞ 
**

 (α-9/2) [3/2 α-1] 



(43), including extra term of electron, 1.513 approximated by 3/2. Exponents of -9/2 for Δ and tauon are
equal to the limit of the partial product of α(n), including the electron. “Particle radius”, rn, is calculated with
equ. (16). For σ0 the value calculated for Jz = 1/2 from chpt. 2.4 is used. Blanks in the table are discussed in
[A7]. The values of physical constants are taken from [11].
To illustrate possible QED-Effects, a calculation of σ0 with values of (18)f varying within +/-1.00116 gives a
range of energy values of +/-1.006, varying within +/-1.001162 gives a range of energy values of +/-1.013
compared to the values given in table 2.  Additional effects due to e.g. different charge in the nucleons may
be expected.
The accuracy of ~1% of the values calculated for leptons, mesons and baryons is comparable to that for
baryons in lattice-QED calculations, while for mesons the accuracy of the latter is >> 1% [12].

2.11 Expansion of the incomplete gamma function Γ(1/3, (ρn/r)3), „strong‟ force
The series expansion of Γ(1/3,(ρn/rn)3) in the equation for calculating particle energy (14)f gives [13]:

Γ (1/3 ,  (ρn/ r)3)  ≈ Γ1/3  - 3( ρn

r )+ 
3
4( ρn

r )
4

+ 
3
7( ρn

r )
7

+ ... (45)

and for Wn(r): 

W n(r)  ≈ W n  - 2b0

3 ρn

3 ρn r
 + 2b0

3
4

ρn
4

3 ρn r4  + 2b0
3
7

ρn
7

3 ρn r 7  = W n  - 
2b0

r
 + b0

ρn
3

2 r4  + b0

ρn
6

7r7 + ... (46)

The 2nd term in (46) drops the particle specific factor  ρn and gives  twice  17 the electrostatic energy of two
elementary charges at distance r. The 3rd term might be an appropriate choice for a potential energy term in
the differential equation (cf. 2.4) as. As such it is supposed to be responsible for the localized character of a
particle  state  and  may  play  a  similar  role  as the  “strong  force”  of  the  standard  model, an  interaction
observable e.g. in particle scattering.

In the standard model the leptons are distinguished from the hadrons by not being subject to the strong
interaction and the tauon with its mass beyond the proton stands out as being grouped with the electron and
the muon. According to this model it is suggestive to interpret strong interaction as evidenced in scattering
events to be due to overlap of a wave function-like φn. Such an overlap should depend on: 1) comparable size
and energy of wave functions, 2) sufficient net overlap. Condition 1) prevents neutrino or electron to exhibit
effective interaction with hadrons, condition 2) prevents interaction of the tauon which is at the very end of
the partial  product  series  for  y1

0  and should exhibit  a  high,  potentially  infinite  number  of  radial  nodes,
separating densely spaced volume elements of alternating wave function sign 18. 

2.12 Gravitation
2.12.1 Planck scale
Gravitational effects may be recovered via the series expansion of chpt. 2.11,  implying that the Coulomb
term b0 will be part of the expression for FG, i.e. the ratio between gravitational and Coulomb force, e.g. for
the electron,  FGr,e /FCo,e = 2.41E-43, should be a completely separate, self-contained term. This is equivalent
to assume that gravitational interaction is a higher order effect with respect to electromagnetic interaction
and as such should be of less or equal strength compared to the latter. This suggests to use the expression

b0 = G mPl
2 = G WPl

2 /c0
4               (47)

as definition for Planck terms , giving for the Planck energy, WPl
 :

WPl
  = c0

2 (b0 /G)0.5 = c0
2 (αħc0/G)0.5 = 1.671 E+8 [J] (48)

The value of Wpl according to definition (48) allows to give the ratio of We and WPl as (cf. (39), (41)f):

1.0003
W e

W Pl

 = 
α l,max

1/3 α e

2 
 = 1.5132 α10/2 = 4.903 E-22  = αPl (49)

i.e. the relation between the electrostatic part of We, We, elst =  We/2 and the electrostatically defined WPl 19 is

17 Due to adding up the electromagnetic contributions in (15): Wn = 2Wn,el = 2Wn,mag = Wn,el + Wn,mag

18 As for energy density ~ Wm/Wn
4

 : e/p ~ E-13, µ/p ~ 6E-4;  µ/π ~ 1/3, with r of (16), i.e. in case of µ/π  some 
distinctive effect could be expected; different symmetry may play an additional role. 
19 Equivalent to doubling the value of WPl according to relation (15).
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given by αe, the electron coefficient in the exponent of φe, (39), corresponding to an extension of relation (38)
for spherical symmetric states beyond the electron, times the angular limit factor according to (41)f. In the
next chapter the relation of this term with the third term of the energy expansion (46) will be discussed. 
The constant G may be given as

G  = 
αPl

2 c0
4 b0

W e
2 (50)

i.e. since We may be expressed as function of π, Γ1/3, Γ-1/3 and ec only ((28) and (44)) G may be expressed as a
coefficient based on electromagnetic constants.

2.12.2 Virtual states
Equ.  (47)ff  requires  gravitational  potential  to  be  a  factor  of  α0 smaller  than  electrical  potential  for  the
electron. Angular momentum and therefore  σ should have no significance for the states considered below,
except for maybe the coefficient Γ-1/3/3 that would have to appear in expressions for r as well. This will be
neglected in the following 20. The 3rd term in (46) will give the gravitational potential of the electron at R ≈
ec/(4πεc), i.e. at the length scale considered to be a natural unit for length the correct relationship between
electromagnetism and gravitation will be met. 

W 3(e)≈ 
b0 ρe

3

  2R4
 ≈ 

b0 αPl (ec /(4 πεc ))
3

(e c/ (4 πεc))
3(ec / (4 πεc))

 ≈ 
b0αPl

ec /(4 πεc )
 = ec αPl

    (51)

What about the r-1 dependance of gravitation?
Within this model particles of energy Wn are not expected to actually exhibit something like a rigid radius.
Even without relying on the uncertainty principle „virtual‟ particle states of energy WVS < Wn should be
possible, extending in space up to a distance rVS. Any such state adhering to the relations of this model
 would exhibit an according α(VS) in ρVS

3 and rVS
3 ≈  ρVS

3 ≈ α(VS) i.e. these terms would cancel in (51) giving

W 3(e)≈ 
b0 αPl α (VS)(ec /(4 πεc ))

3

α (VS)(ec /(4 πε c))
3((α (VS )1/3 ec /(4 πεc )))

 ≈ 
b0 αPl

α (VS)1/3 ec /(4 πεc )
 = 

ec αPl

R (VS)
    21   (52)

Equation (52) is a representation of the gravitational potential of the electron (while the 4 th term of (46)
would give the gravitational potential energy of two electrons). Terms for other particles may be obtained by
inserting their energy values relative to the electron according to (38)f in (52) which might be interpreted as
the intensity/frequency of  the  emergence of virtual states being proportional to the energy of the  primary
particle.
As a consequence of (52) the highest possible particle energy value will be αPl

-1, i.e. the value of the Planck
energy relative to the electron, consistent with the energy relations of 2.7, 2.8 and the assumption used in the
definition of equ. (47)f.

2.13 Cosmological constant Λ
The 2nd term on the right side of the full 5D equation (5), ~ 1/Φ (∇α(∂α Φ)  - g αβ □ Φ) , might be considered
to be a natural candidate for the cosmological constant term, gαβΛ. Its exact expression will depend on the
complete 5D metric used. Nevertheless it will have to contain terms of type g αβΦ''/Φ such as ρn

3/r5 of G00 in
[A3],  [A4].  Referring the resulting expression to  the  natural  unit  of  length used in  this  work,  i.e.  R =
ec/(4πεc), will yield approximate values in the order of magnitude of critical, vacuum density, ρc, ρvac and of
Λ.  As in  2.12.2 the symmetry coefficient  σ,  related to  angular  momentum,  will  be  dropped to give an
expression of αPl and R ≈ ec/(4πεc) only: 

Φ ' '
Φ

 ≈ 
ρ3

r5  ≈ 
αPl

(ec/(4 π εc))
5( ec

4 π εc
)

3

 =  αPl(4 π ε c

ec
)

2

= 0.089 [m-2] (53)

Multiplied by εc this gives an energy density of 2.97E-10 [J/m3].
Multiplied by the conversion factor for the electromagnetic and gravitational equations, equ. (2), 8πεcG/c0

4 

20 i.e. approximating the angular limit of (40)ff; cf. the imaginary solution of (21) is independent of σ;
21 The term for gravitational attraction, Fm,n; R between two particles, m and n at a distance Rm,n, would be obtained by 
using 1/b0 as proportionality constant: Fm , n; R  ≈ W VS( m, r )WVS (n ,r )/b0  ≈ b0  α0

2  α (n)α (m)Rm , n
−2
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(53) gives as a rough estimate for Λ:

αPl

(4π )2 ε c
3

ec
2

8πG

c0
4  ≈ 6.17E-53 [m-2]    22 (54)

3 Discussion
The model presented above is far from being complete, however, it is quite minimalistic in its assumptions
and parameters. It starts out from 5D-GR according to Kaluza plus the additional condition for particles to
exhibit spin or be composed of spin-posessing components. Conventional GR does not accommodate for
this, preventing a closed solution. In any case solutions for Φ have to be part of a 5D-metric and seem to be
of general use.   
This  model  works  without  free  parameters,  the  natural  constants  needed are  those  of  electrodynamics,
specifically c0, its constituent  εc and elementary charge. Using only electromagnetic constants in the field
equations is not only the simplest approach of a Kaluza-like model but justified by the possibility to recover
the effects of gravitation and thus the original EFE via the series expansion of the energy term. While in the
gravitational term of (51) the coefficient α0 has a consistent base in all aspects of this model, the use of the
Coulomb coefficient as radius of reference is admittedly a target-oriented choice though attractive in its
simplicity and supported by giving a correct order of magnitude for the cosmological constant with the same
approach. 

It is a  common thought that GR somehow has to be unified with quantum mechanics (QM). This model
suggests that a combination of GR and EM as pioneered by Kaluza might be essentially sufficient to cover
QM itself. Features of quantum mechanics that emerge from such an ansatz include quantization of energy,
wave-character  of  particles  and non-locality (cf.  2.12.2).  Last  not  least  the  pivotal  constant  of  quantum
mechanics, Plancks constant, h, may be derived from the electromagnetic constants e c, εc and geometry as
expressed in α. 
Formally  in  GR,  EM  and  QM  differential  equations  of  2nd order  are  sufficient  for  the  mathematical
description and some congruence of GR with QM, such as the Klein-Gordon equation, is elaborated on in
[4].  QM might be considered to be an effective theory for phenomena beyond the particle itself. Mass is a
parameter replacing the integral over energy density of a particle, a QM wave function ψ represents effects of
a wave based on EM and Φ in 5D-space-time.

As for the quantum field theory extensions of QM, QED corrections are a very likely amendment of this
model.
Concerning electroweak interaction, weak interaction has no place in the series expansion of energy derived
from the Γ-function. Yet there seems to be an intricate relationship of electroweak interaction with the EBV-
triple  interpretation of  this  model.  A rotating orthogonal  vector  triple  of  E,  B and V with the  E-vector
constantly oriented to a point of origin implies charge, a rest frame (mass), intrinsic chirality (left- and right-
handeness of E, B, V), i.e. properties pertaining to electroweak theory and Higgs-mechanism. In particular
rotation establishes a direct relationship with the SO(3) / SU(2) representation of weak interaction 23.
The prominent position of the energy levels corresponding to Higgs boson and vacuum expectation energy at
the upper end of the energy series is startling. The upper limit of the particle states considered here would be
reduced to a one-dimensional object as far as the E-field is concerned, while all other states might be figured
as originating from an average over a trajectory of such a state, maybe giving it some significance beyond a
mere upper limit 24. 
This model obviously relies mainly on a function of radial coordinates of a spherical coordinate system. The
lack of detailed solutions for angular components and thus of information about structure and symmetry is a
crucial  obstacle  to further  investigate  a  connection of weak isospin and hypercharge with  states  of this
model. The possibility to derive both electroweak coupling constants in different dimension indicates that a
simple 3D-rotational picture alone will not be sufficient to map this model on electroweak theory. 
While by and large it seems that the concepts of electroweak theory may fit quite well especially to the EBV-
triple  aspects of  this  model,  a  congruence with quantum chromodynamics  (QCD) and the properties of

22 Λ ~ 1.11E -52 [m-2] with Hubble constant H0 = 67.66 [km/s/Mpc] [14]
23 Spin ½, 1etc. may be modeled by attributing differing phase to E, B and V in a quaternion representation, see [15];
24 It has been speculated about a relationship of the Higgs-field with the 5th coordinate and the scalar Φ in [4]. 
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quarks is far from obvious. Supposed differences in orientation of E-vector, chirality, spin etc. of volume
elements  of  particle  states  might  be  a  source  for  emulating  quark  properties  yet  without  more  detailed
structural information one is confined to speculation ([A8] gives some, concerning fractal charges 1/3, 2/3).
At this point this may leave the tauon as an irresolvable contradiction to the SM though not to experimental
evidence. The similar scattering behaviour of leptons may be explained within this model, see 2.11. The
distinctive  interaction  with  neutrinos  might  in  turn  be  based  on  the  absence  of  the  effects  of  „strong‟
interaction. 
Neutrinos themselves are a blind spot of this model. As mentioned in the electroweak interaction section, a
multi-dimensional approach seems to be needed to address this problem.

Conclusion
The model presented here provides a coherent, quantitative and parameter-free formalism based on Kaluza
and including spin. It reduces the particle zoo to one elementary particle, the 5D-photon, covers effects of the
„4 forces‟ gravitation, electromagnetism, „strong‟ and „weak‟ force and it  connects phenomena ranging
from particle to cosmological scale.
In particular it yields

- a single expression for the values of the electroweak coupling constants,
- a single energy expression comprising particle energy, electromagnetic and gravitational interaction,
- a convergent series of particle energies quantized as a function of the fine-structure constant, α, with
  electron and the Higgs VEV energy as lower and upper limit,
- a term for the cosmological constant, Λ, in the correct order of magnitude.

The  model  does  not  only  work  without  free  parameters  but  allows  to  reduce  the  conventional  set  of
fundamental constants from: 
e, c0, h, G, α, αweak, energy of elementary particles 
to: 
e, c0.
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Appendix
[A1] Rotating orthogonal vector triple of E, B and V – EBV-triple 
Defining particles as being based on an orthogonal vector triple of E, B and V of the propagation velocity 25 rotating in
3D with the E-vector constantly oriented to a fixed point in a local coordinate system (EBV-Triple) has the following
consequences 26:
1) The orientation of the E-vector allows 2 charges, switching orientation in equal volume or time elements allows
neutral particles;
2) A center of rotation defines a rest frame; energy in a rest frame = mass;
3) Lateral extension of the E-field would imply infinitely growing energy density and curvature of space for r -> 0;
4)  Rotating  EBV-triples  may be modeled by quaternions representing the E-vector  - with 3 phases  for  E,  B, V –
establishing a relationship to SO(3), SU(2) - symmetry of electroweak theory;
5) Simple rotations of such an EBV-triple with different angular frequency of E and B, relative to V,  n ωE = n ωB = ωV,
yields in-phase solutions for n = 2, i.e. S =1/2, with an effective field strength of the E, B-vectors of 2/3, maybe related
to this factor appearing in electron energy and magnetic moments (quaternion calculation, [15]);
6) Chirality, Helicity, Spin
Geometry allows for 2 different chiral orientations of the  EBV-triple (right- left-handed), each with 2 different spin
orientations. This has the following consequences:
- Chirality is an absolute attribute independent of mass or reference frame.
- 2 chiral orientations times 2 spin orientations gives 4 possible states. Within this model a meson consists of two EBV-

triple components of opposite partial charge (assumed in the following toy model to be of 1/2). Thus there are 4 x 4,
i.e. 16 distinctive basic meson states, half of them with spin J z = 0, pseudoscalar mesons, half with spin Jz = 1, vector
mesons. In a naive interpretation of electron-positron annihilation results with vector mesons as intermediates and
partial charge of 1/2 the sum of charges in the scattering, Σ zi

2, would give 8 vector mesons with 2 contributions of
squared charge (1/2)2 , i.e. Σ zi

2 = 4,  in very good agreement with the experimental results in the energy range beyond
the ϒ-meson [16].

- If each particle (-component) has a well defined chirality, there would exist a forbidden transition for different chiral
particles, being a possible explanation for the unobserved transition µ -> e + γ or the stability of the proton;

- Phenomena such as “handedness” in electromagnetism, the “chirality” of the weak interaction and matter-antimatter
asymmetry might be based on a general preference for one chiral set of states.

[A2] Scalar potential Φ
The solutions for the scalar Φ depend on the complete metric used. The main problem to obtain R44 = 0 is to eliminate
the terms of lowest order in ρ, which lack coefficients in their terms enabling an easy cancellation of them. The easiest
method to get a solution of order N is to use spherical coordinates of dimension N+1. Using e.g. the line element (6.76)
for a 4D metric of [4, equ. 6.76]

ds2  = eν dt2−e λ dr 2−eµ r2(dϑ2+sin2 ϑ dφ2) (55)

and  Aα = (Ael, 0, 0, 0) gives as solution for equation (8) (cf [4, equ. 6.77], prime corresponds to derivation with respect
to r).

Φ ' '+( v '−λ ' +2 µ'
2

+ 2
r
)Φ '  - 1

2
Φ3 e−v (Ael ')

2  = 0 (56)

and can be solved with function (7) for N = 2 , giving:

 Φ2 '  = [−( ρ

r2)e ν  + ( ρ3

r4 )]eν
(57)

and

 Φ2 ' '  = [2( ρ

r3)  - 4( ρ3

r5 )  + 2( ρ5

r7 )]eν
(58)

The ρ1 terms cancel in (56), the ρ3 terms can be eliminated by appropriate choice of v', λ' and µ', a remaining factor in
the ρ5 term has to be compensated by assuming a corresponding factor in Ael. For N = 3  hyperspherical coordinates
with the line element

ds2  = eν dt2−e λ dr 2−eµ r2(d ψ2+sin2 ψ(dϑ 2+sin2ϑ dφ2)) (59)

25 Orthogonal spatial „Dreibein‟
26 This is a simplified picture neglecting the role of 4th and 5th dimension that might have an influence in attributing 
states of this model relative to states of the SM.
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may be used. A more complex metric of the kind used in [A3], [A4] may be used as well to solve equation (8). 27

[A3] Metric / simple
The following uses the metric of (9) with n= 0, i.e.

g µν  = exp(−a(ρ
r )

3

),   −exp(−b(ρ
r )

3

),   − r2 ,   − r2sin2ϑ (60)

Γ01
0 = Γ10

0 = + 3/2 a ρ3/r4 Γ00
1 = + 3/2 a ρ3/r4e (a-b)v 

Γ11
1 = + 3/2 b ρ3/r4

Γ12
2 = Γ21

2 = Γ13
3 = Γ31

3 = + 1/r1 Γ22
1 = − r e-bv   = Γ33

1/sin2 ϑ 
Γ23

3 = Γ32
3 = cot ϑ Γ33

2 = − sin ϑ cos ϑ

R00  =  e(a-b)v [(+ 6 a ρ3/r5 - 9/2 a (a-b) ρ6/r8) + 2(Γ01
0 Γ00

1)  - Γ00
1 ( Γ10

0 + Γ11
1+ 2Γ12

2)]
= e(a-b)v [+ 6a ρ3/r5  - 9/2a(a-b) ρ6/r8 - Γ00

1 ( -Γ10
0 + Γ11

1+ 2Γ12
2)]

= e(a-b)v [+ 6a ρ3/r5  - 9/2a(a-b) ρ6/r8 +  (- 3/2 a ρ3/r4) (+2/r1)]
= e(a-b)v  [+ 6a ρ3/r5 - 9/2 a(a-b) ρ6/r8 - 3aρ3/r5 ]
R00  = e(a-b)v [+ 3aρ3/r5 - 9/2a(a-b)ρ6/r8]

R11 = [- 6a ρ3/r5 - 6b ρ3/r5 - 2/r2 + 6bρ3/r5 + Γ10
0 Γ01

0 + Γ11
1Γ11

1  + 2Γ12
2 Γ21

2 - Γ11
1 ( Γ10

0 + Γ11
1+ 2Γ12

2 )]
= [-2/r2 - 6 a ρ3/r5 + Γ10

0 Γ01
0  + 2Γ12

2 Γ21
2 - Γ11

1 ( Γ10
0 + 2Γ12

2)]
= [-2/r2 - 6a ρ3/r5 + 9/4 a2 ρ6/r8 + 2/r2 +  (- 3/2 b ρ3/r4) (+2/r1 + 3/2 a ρ3/r4 ]
= [- 6a ρ3/r5 + 9/4 a2 ρ6/r8 - 9/4 ab ρ6/r8]
R11 = [- 6a ρ3/r5 + 9/4(+a2 - ab)ρ6/r8]     

R22  = - 1+  e-bv [ - 3b ρ3/r3 + 2(Γ21
2 Γ22

1)  - Γ22
1 ( Γ10

0 + Γ11
1+ Γ12

2 + Γ13
3)]

= - 1+  e-bv [ - 3b ρ3/r3  - Γ22
1 ( Γ10

0 + Γ11
1- Γ12

2 + Γ13
3)]

= - 1+  e-bv  [ - 3b ρ3/r3 + r1 (+ 3/2(a + b)ρ3/r3 ]
= - 1+  e-bv  [ - 3b ρ3/r3 + 3/2(a + b)ρ3/r3 

R22 = - 1+  e-bv  [ +3/2(+a - b)ρ3/r3]

g00R00 = e-bv [+ 3aρ3/r5  - 9/2(a2 - ab)ρ6/r8]
g11R11 = - e-bv [a- 6aρ3/r5  + 9/4(+a2 - ab)ρ6/r8]     

g22R22 + g33R33 = + 2/r2 + e-bv [(− 3(+a - b)ρ3/r5]

The solutions for R will be:
R = + 2/r2 +  e-bv [(+ 6a + 3b) ρ3/r5 - 27/4(+a2 - 3b) ρ6/r8]
G00 will be:
G00 = e(a-b)v  [+ 3aρ3/r5 – 18/4a(a-b)ρ6/r8] − eav/r2 -  e(a-b)v [(+ 3a + 3/2b) ρ3/r5  - 27/8(+ a2 - ab)ρ6/r8] 
= − eav/r2 +  e(a-b)v [- 3/4b ρ3/r5  - 9/8(+ a2 - ab)ρ6/r8]
All terms ρn/rn+2 will give the same type of results in integrals ∫ev  ρn/rn+2 d3r ≈ ∫ev  ρn/rn dr ≈ ρ  28. For illustration purpose
only the first term with n = 0, a = 1 will be chosen:

G00 ≈ − ev/r2

According to chpt 2.3 this will result in:

- e v

r2
 ≈ - w

εc

     =>     
εc ev

r2
 ≈ w     (61)

The volume integral over (61) gives the particle energy according to (using (13) with m = -1; σ neglected):

W n  = εc∫
0

r n

ev

r2  d 3r  = 4 π εc  ∫
0

r n

ev dr  = 4 π εc Γ−1/3/3  ρn  = Γ −1 /3/3  ec  α0
* 1/3α (n )* 1 /3 (62)

To yield a unique solution the same 3rd power relation for particle coefficients as in 2.7 is required to refer to a ground
state term α0* as well (with α(n)* ~ α(n)-1 and α0* = 8/27 α- 9 ≈ α0

-1 as first guess)  to reproduce the series of relative
energies. This results in a ground state / electron energy of ≈ 7.2E-12J, roughly in the order of magnitude for We .
Equ. (62) might be considered to be a representation for photon energy. 

27 Condition R44 = 0 may not have to be obeyed strictly.  Using additional terms of ΦN  for canceling of similar terms of 
other Rαβ components may increase the resources to obtain a specific solution.
28 Ignoring the solution a = b with diverging integrals.
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[A4] Metric / point charge
The following uses the metric of (9) with n = 2, i.e.

g µν  = (ρ0

r )
2

exp(−a(ρ
r )

3

) ,   −(ρ0

r )
2

exp(−b(ρ
r )

3

) ,   −/+ r2,   −/+ r2sin2ϑ (63)

Γ01
0 = Γ10

0 = - 1/r1 + 3/2 a ρ3/r4 Γ00
1 = - 1/r1 e (a-b)v + 3/2 a ρ3/r4e (a-b)v 

Γ11
1 = - 1/r1  + 3/2 b ρ3/r4

Γ12
2 = Γ21

2 = Γ13
3 = Γ31

3 = + 1/r1 Γ22
1 = −/+ r3/ρ0

2 e-bv   = Γ33
1/sin2 ϑ 

Γ23
3 = Γ32

3 = cot ϑ Γ33
2 = − sin ϑ cos ϑ

R00  =  e(a-b)v [(-1/r2 + 3 (a-b) ρ3/r5 + 6 a ρ3/r5 - 9/2 a (a-b) ρ6/r8) + 2(Γ01
0 Γ00

1)  - Γ00
1 ( Γ10

0 + Γ11
1+ 2Γ12

2)]
= e(a-b)v [(-1/r2 + (9a -3b) ρ3/r5  - 9/2a(a-b) ρ6/r8 - Γ00

1 ( -Γ10
0 + Γ11

1+ 2Γ12
2)]

= e(a-b)v [(-1/r2 + (9a -3b) ρ3/r5  - 9/2a(a-b) ρ6/r8 +  (+1/r1 - 3/2 a ρ3/r4) (+2/r1)]
= e(a-b)v  [(-1/r2 + (9a -3b) ρ3/r5 - 9/2 a(a-b) ρ6/r8 + 2/r2 - 3aρ3/r5 ]
R00  = e(a-b)v [+1/r2 + (6a -3b)ρ3/r5 - 9/2a(a-b)ρ6/r8]

R11 = [+ 1/r2 - 6a ρ3/r5 + 1/r2 - 6b ρ3/r5 - 2/r2 - 1/r2 + 6bρ3/r5 + Γ10
0 Γ01

0 + Γ11
1Γ11

1  + 2Γ12
2 Γ21

2 - Γ11
1 ( Γ10

0 + Γ11
1+ 2Γ12

2 )]
= [-1/r2 - 6 a ρ3/r5 + Γ10

0 Γ01
0  + 2Γ12

2 Γ21
2 - Γ11

1 ( Γ10
0 + 2Γ12

2)]
= [-1/r2 - 6a ρ3/r5 + 1/r2 + 9/4 a2 ρ6/r8 - 3 a ρ3/r5 + 2/r2 +  (+ 1/r1 - 3/2 b ρ3/r4) (+1/r1 + 3/2 a ρ3/r4 ]
= [+2/r2 - 9a ρ3/r5 + 9/4 a2 ρ6/r8 +1/r2 + 3/2aρ3/r5  - 3/2bρ3/r5 - 9/4 ab ρ6/r8]
R11 = [+3/r2 - (15/2a + 3/2b)ρ3/r5 + 9/4(+a2 -ab)ρ6/r8]     

R22  = - 1+  e(c-b)v [(+3 r2/ρ0
2  - 3bρ3/(rρ0

2) + 2(Γ21
2 Γ22

1)  - Γ22
1 ( Γ10

0 + Γ11
1+ Γ12

2 + Γ13
3)]

= - 1+  e(c-b)v  [(+/−3 r2/ρ0
2 - 3bρ3/(rρ0

2)  - Γ22
1 ( Γ10

0 + Γ11
1- Γ12

2 + Γ13
3)]

= - 1+  e(c-b)v  [(+/−3 r2/ρ0
2 - 3bρ3/(rρ0

2)  + r3/ρ*2 (-2/r1  + 3/2(a + b)ρ3/r4 )]
= - 1+  e(c-b)v  [(+/−3 r2/ρ0

2 - 3bρ3/(rρ0
2)  − 2r2/ρ0

2 + 3/2(a + b)ρ3/(rρ0
2)]

R22 = - 1+  e(c-b)v  [(+/− 1r2/ρ0
2  +/− 3/2(+a -b)ρ3/(rρ0

2)]

g00R00 = e-bv [+1/ρ0
2 + (6a -3b)ρ3/(r3ρ0

2) - 9/2a(a-b)ρ6/(r6ρ0
2)]

g11R11 = - e-bv [+3/ρ0
2 - (15/2a + 3/2b)ρ3/(r3ρ0

2) + 9/4(+a2 -ab)ρ6/(r6ρ0
2)]     

g22R22 + g33R33 = +/− 2/r2 −/+ e-bv [(+/− 2/ρ0
2  +/− 3(+a -b)ρ3/(r3ρ0

2)]

The two solutions for R with different sign of R22,33 will be:
R = +/− 2/r2 +  e-bv [(− 4/ρ0

2 + (+21/2a + 3/2b) ρ3/(r3ρ0
2)  - 9/4(+3a2 - 3ab)ρ6/(r6ρ0

2)]
G00 will be:
G00 =  e(a-b)v [+1/r2  + (6a -3b)ρ3/r5 - 9/8(4a2 -4ab)ρ6/r8] −/+ ρ0

2/r4  eav +  e(a-b)v  [(+ 2/r2  + (-21/4a - 3/4b) ρ3/r5  - 9/8(-3a2 +
3ab)ρ6/r8] = −/+ ρ0

2/r4 eav +  e(a-b)v [(+ 3/r2 + (+3/4a - 15/4b) ρ3/r5  - 9/8(+a2 - ab)ρ6/r8]
As in [A3] volume integrals over the ρn/rn+2 terms will yield results  ∫eav  ρn/rn+2 d3r ≈ ρ ≈ 1E-14 [m-1] compared to the
term ∫ eav ρ0

2/r4 d3r ≈ ρ0
2 ρ-1  ≈ 1E-6 [m-1] (both with electron parameter), giving negligible contributions to particle energy

within the parameter range discussed here. This leaves 
G00 = −/+ eav ρ0

2/r4  

For chpt. 2.3 a = 1 and positive sign is chosen, giving e v as exponential term corresponding to Φ being squared in the
metric (4).

[A5] Coefficient σ, differential equation
For a differential equation and its solution such as (20)f and an Euler expression such as (19) to exhibit the same
integration limits, rn and 8/σ ~ ρ’3/rn

3 of a general term ρ’, requires the coefficient σ to be part of the exponent ν in φ:
Considering a general solution of a damped oscillation type equation with two coefficients, ρ’ and ß ρ’, where ß is an
unknown coefficient,

φ  = e v/2  = exp(−( ßρ '3

2r3 +[( ßρ '3

2 r3 )
2

– 4 ρ '3

2r3 ]
0.5

)/2)       (64)

gives at the limit rn of the real solution (64):

(ßρ '3/rn
3)2

 = 8 ρ '3/r3       (65)

Since the limit of the Euler integral is defined to be 8/σ = ß ρ’3/rn
3 :

( ß ρ ' 3

rn
3 )

2

 = ( 8
σ )

2

 = 8 ρ ' 3

r3
    =>    ( 8

σ ) = ß ρ ' 3

rn
3

 = 8 σ ρ '3

8 rn
3

    =>    ß  = σ       (66)

Analyzing the components of σ0, in addition to the mandatory term for length, Γ-1/3 /3, of the integral (13) for m = -1, rn
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and σ0 contain a factor ≈ 1.524 α-1, close to the coefficient WPl/We ~ 1.513 α-1 (1.513 is in turn close to Γ-1/3 /Γ1/3 =1.516).
The latter suggests a geometrical interpretation:

1.513 α-1 Γ-1/3 /3 ≈ Γ-1/3 /Γ1/3  4π Γ-1/3 Γ1/3   Γ-1/3/3  ≈ (4 π Γ -1/3
3

3 ) =  (σ0/8)1/3        (67)

As a consequence a dimensionless volume-like term appears in the denominator of the energy expression (15), together
with the coupling constants one of several hints that aspects of this model might be reducible to geometry. 
The various expressions for spherical symmetry σ0 used within this work may be summarized as:

σ0 ≈ 8 (rn/ρn)3  ≈ (1.513 α-1 2/3 Γ-1/3)3  ≈ (α-1 Γ-1/3)3   ≈ 8(4 π Γ -1/3
3

3 )
3

   (68)

The integration limits for calculating angular momentum in z-direction, r n of Jz, (17)ff, and (Compton-)wavelength, λC,
supposed to represent the rotating E-vector and in turn total angular momentum J should be related by the factor √3 of
the ratio J/Jz

λC / rn  = (1/2(1/2 + 1))0.5 / (1/2)  = √3                  
29 (69)

[A6] Coupling constant in N dimensions
3D case:
The 3D case of  the  coupling  constant  is  easy  to  interprete,  for  the  4D-case  some assumptions  have  to  be made
concerning the integration limit. The following gives an alternative, more detailed interpretation than 2.6.
The exact value of the product of the integrals (29)f, depends on the integration limit relevant for the second integral,
i.e. the lower integration limit of the Euler integrals, which can be expressed as 3D volume with Γ-1/3 as radius (67):

ρn
3 /λC , n

3  = 8/ (31.5 σ 0)  = (30.5 4 π
3

 Γ- 1/3
3)

−3

     (70)

The additional factor 30.5 gives the ratio between rn of equ. (16) and λC,n as required in the expression for photon energy.
This gives Γ(-1/3, 8/σ0) ≈ 36π2Γ-1/3 and 

2∫
0

r

φ3(r )2r−2 d r∫
0

r

φ3(r )2dr  =2[ Γ 1 /3

3 ][2π 2π 9
Γ−1/3

3 ]  = 4 π Γ 1/3 Γ−1/3  2 π  = 2 π  α−1      30 (71)

The result of (71) yields a dimensionless constant α' = h c0 4π ε/e2  and it is a matter of choice to include 2π in the
dimensionless coupling constant. Factor 9 cancels the corresponding factors from the Euler integrals. The remaining
factor of 4π is needed to yield the correct value of α. 
A general N-dimensional version of (70) may be given as:

8 /σ N  = (30.5δ V N  (Γ (- 1/N))N )−N /( N−2 )
    (72)

VN is the coefficient for volume in N-D, coefficient 30.5 will be omitted in 4D where coordinate r is considered to be
directly related to energy via rn ~ 1/Wn and rn might be directly identified with λC,n; subscript in σN corresponds to
dimension in the following.

4D case:
Using φ4 according to the definition (7)  and (72) for 4D:

ρn
4 /rn

4  = 8/σ 4  = ( π2

2
 (Γ - 1/4)

4)
−2

= 1.232E-7   (73)

as integration limit, with (13) the non-point charge integral in 4D will be given by:

∫
0

r

φ4(r)
2 r dr  ~ Γ (−1 /2 , 8/σ 4)  = ∫

8/σ 4

∞

t−1.5e−t dt  = 5687  ≈ 16 π 4 Γ−1/2 (74)

The 4D equivalent of (71) will be:

2∫
0

r

φ4(r)
2 r−3dr∫

0

r

φ4(r)
2r dr  ≈ 2[ Γ1 /2

4 ][16 π4 Γ−1/2

4 ]  = π 2

2
Γ 1/2 Γ−1/2  4 π2  = π3 4 π2   = αweak

−1 4 π2 (75)

The interpretation is the same as in the 3D-case:
A 4π2 term originating from the second integral of equation (71) is required for turning h2 into ħ2 since the integrals in
(75) refer to ρn

2 and thus to the square of energy and h, ħ. Factor 16 cancels the corresponding factors from the Euler
integrals. The remaining factor of π2/2 is needed to yield the correct value of αweak .

While the integral  ∫φ3(r)2dr in 3D yields the wavelength of one photon,  ∫φ4(r)2 r dr may be considered as an integration

29 Alternatively: λC,n = 3ρhc0/(2b0Γ1/3) = 3π α-1 ρ/Γ1/3, rn = 3/2 α-1 ρ Γ-1/3/3  =>   λC,n/rn = 6π/(Γ1/3Γ-1/3) = 6π/(2π√3) = 30.5

30 Factor 2 from adding electric and magnetic contributions to energy
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over 1/W of all photons within the integration limits, giving a term ∫φ4(λ)2  λ dλ ~ 1/W2.

2D case: 
the 2D case is not as straightforward as the 4D case. The integral over the 1D point charge  

∫
0

r

φ2(r )2r−1 dr  = Γ (0 , ρn
2/r2

2)  /2        (76)

features Γ(0, x), with Γ(0, x) -> ∞  for x -> 0 and m = 0 in the equations above. Setting nevertheless m=1 in the 2D
equivalent of the integration limit

ρn
2 /λC , n

2  = 8/ (3σ 2)  = (30.5 π  Γ−1 /2
2)−2

 ≈ 1 / 4676      (77)

and calculating Γ(0, ρ2
2/r2

2) numerically gives ∫φ2(r)2 r-1 dr ≈ Γ(0, ρ2
2/r2

2)/2 = 7.872/2. In the 2D case the complementary
integral would be identical to the point charge integral, giving 2(∫φ2(r)2 r-1 dr)2 ≈ 4π3/4 = π3 , i.e. the same value as 4D,
maybe giving an alternate candidate for αweak .

[A7] Additional particle states
Assignment of more particle states will not be obvious. The following gives some possible approaches.
[A7.1] Partial products
Additional partial product series will have to start with higher exponents n in α^(-1/3n) giving smaller differences in
energy while density of experimentally detected states is high. There might be a tendency of particles to exhibit a lower
mean lifetime (MLT), making experimental detection of particles difficult  31.  To determine the factor yl

m of higher
angular states requires an appropriate ansatz for the differential equation yet to be found. 
One more partial product might be inferred from considering d-like-orbital equivalents with a factor of 51/3 as energy
ratio relative to η giving the start of an additional partial product series at 51/3 W(η) = 937MeV i.e.  close to  energy
values of the first particles available as starting point, η', Φ0. However, in general it is not expected that partial products
can explain all values of particle energies.

[A7.2] Linear combinations 
The first particle family that does not fit to the partial product series scheme are the kaons at ~ 495MeV. They might be
considered to be linear combination states of π-states. The π-states of the y1

0 series are assumed to exhibit one angular
node,  giving a charge  distribution of  +|+,  -|-  and +|-.  A linear  combination of  two π-states  would yield the basic
symmetry properties of the 4 kaons as:

         +         -         -          +
K+     +       + K-    -        - KS

o    +      + KL
o     +        -

         +         -         -                  -
 (+/- = charge)
providing two neutral kaons of different structure and parity, implying a decay with different parity and MLT values.
For the charged Kaons, K+, K-,  a configuration for wave function sign / chirality equal to the configuration for charge of
KS

o  and  KL
o might  be  possible,  giving  two  versions of  P+  and  P-  parity  of  otherwise  identical  particles  and

corresponding decay modes not violating parity conservation.

[A7] Fractional charge
As far as e.g. fractional charge is concerned, a simple progression {1, 2, 3 …} is expectable in any model with states of
increasing complexity. The symmetry of particles in the standard model (SM) starts with 1, 2, 3 as well, i.e. leptons,
mesons and  baryons,  though the  first  ones  are  not  part  of  QCD.  Fractional  charges  of  1/3 or  2/3 might  thus be
expectable for baryons in this work. However, there are hints that such fractional charges may play a more fundamental
role for particles of this model even starting at the electron state, such as e.g. factor ≈ 2/3 in the term for We (38), giving
ε0 ∫E(r)φ(r)2 dA = 2/3 ec at the maximum of the W(r) curve (numerical calculation), or a correspondence of Jz = 1/2 and
average fields of 2/3 from quaternion calculations (see [15], 5) in [A1]). On the other hand charge 1/2 for mesons may
be a more natural choice and may yield reasonable explanations for key experiments of particle physics as well (see 6)
in [A1]).

31  Which might explain missing particles of higher n in the y0
0 and y1

0 series as well.

17 TOE220508


