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DVR techniques for solving the Schrödinger equation

• Numerous nano-world phenomena 
are inherently quantum

• Their description and 
quantitative treatment requires 
usage of the apparatus of 
quantum mechanics.

• The Schrödinger equation (a 
“quantum analog” to the 
famous Newton’s equation in 
classical physics).

• For a stationary state of the 
system the Schrödinger equation 
has the form

෡𝐻𝜓 = 𝐸𝜓
The Hamiltonian consists of the kinetic 
energy operator (෡𝐾 𝑞 ) and the potential 
energy operator ( ෠𝑉 𝑞 ):

෡𝐻 𝑞 = ෡𝐾 𝑞 + ෠𝑉 𝑞



DVR techniques for solving the Schrödinger equation

The solution may be sought within a finite basis set of n functions (𝜑𝑖 𝑞 ), 
as in the variational approach:

• The expansion coefficients ci and the 
set of eigenenergies can be found by 
solving the matrix eigenvalue problem 

• Assuming an orthonormal set of 
basis functions

𝜑𝑖 𝜑𝑗 = න𝜑𝑖
∗ 𝑞 ∙ 𝜑𝑗 𝑞 𝑑𝑞 = 𝛿𝑖𝑗 𝐇𝐜 = 𝐸𝐜

c is the column n-vector [c1, c2,…, cn]
T, 

while H is n × n square matrix 
containing the matrix elements of the 
Hamiltonian Hij, given by

𝐻𝑖𝑗 = 𝜑𝑖 ෡𝐻 𝜑𝑗 = න𝜑𝑖
∗ 𝑞 ෡𝐻 𝜑𝑗 𝑞 𝑑𝑞

𝑞 𝜓 =෍

𝑖=1

𝑛

𝑐𝑖 ∙ 𝑞 𝜑𝑖



The finite basis representation (FBR)

• Considering a Hamiltonian of the 
form:

• ෡𝐻0 𝑞 : the harmonic oscillator 
“zeroth order” Hamiltonian

෡𝐻 𝑞 = ෡𝐻0 𝑞 + ෠𝑉′ 𝑞 ෠𝑉′ 𝑞 : the “complicated” potential 
energy part

The most complicated part of the calculation involves computation of the matrix elements:

𝑉′𝑖𝑗 = 𝜓𝑖
෠𝑉′ 𝜓𝑗 = න𝜓𝑖

∗ 𝑞 ෠𝑉′ 𝜓𝑗 𝑞 𝑑𝑞

Define an n-point quadrature such consisting of the abscissa set of values {x1, x2,…, xn} and 
the corresponding weights {w1, w2,…, wn}. Such n-point quadrature leads to:

𝑉𝑖𝑗 ≈ 𝑉𝑖𝑗
𝐹𝐵𝑅 = ෍

𝑘=1

𝑛

𝑤𝑘 𝜓𝑖
∗ 𝑥𝑘 𝑉 𝑥𝑘 𝜓𝑗 𝑥𝑘



The discrete variable representation (DVR) technique 

• Apply unitary transformation such that 
the potential energy matrix is diagonal

• Evaluate the DVR functions at the 
quadrature points

𝜙𝑘 𝑥 =෍

𝑖=1

𝑛

𝐴

𝑘𝑖

𝜓𝑖 𝑥 𝜙𝑘 𝑥𝑙 =෍

𝑖=1

𝑛

𝐴

𝑘𝑖

𝜓𝑖 𝑥𝑙 =෍

𝑖=1

𝑛

𝐴𝑘𝑖𝐴𝑙𝑖𝑤𝑙
−
1
2 = 𝛿𝑘𝑙𝑤𝑙

−
1
2

Any operator which is multiplicative in coordinate representation is diagonal in this basis

𝜙𝑖 𝑉 𝜙𝑗 = ෍

𝑘=1

𝑛

𝑤𝑘 𝜙𝑖 𝑥𝑘 𝑉 𝑥𝑘 𝜙𝑗 𝑥𝑘 = ෍

𝑘=1

𝑛

𝛿𝑖𝑘𝑉 𝑥𝑘 𝛿𝑗𝑘 = 𝑉 𝑥𝑘 𝛿𝑖𝑗



The discrete variable representation (DVR) technique 

• The kinetic energy matrix is not diagonal in DVR (the kinetic energy operator is not 
multiplicative in coordinate representation)

In the case of one-dimensional problems, the advantage of DVR over FBR is questionable

However, in multidimensional problems, the advantage of DVR becomes immediately 
evident



Schrödinger API 

Main Agenda



• RESTful web service for solving multidimensional time-independent 
Schrödinger equation using Hermite DVR approach

• solution of one-dimensional, two-dimensional and three-dimensional time-
independent Schrödinger equation based on the Gauss-Hermite Discrete Variable 
Representation (DVR) approach

Service Description - Schrödinger API  



The solution of 1D Schrödinger equation is illustrated in the case of following 
model potentials:

• Morse potential
• Simple Harmonic Oscillator (SHO) potential
• Sombrero potential (Mexican hat)
• Woods-Saxon potential

Solutions of 2D and 3D Schrödinger equations are illustrated for the following two 
model potentials: 

• 2D Morse potential
• 2D SHO potential

• 3D Morse potential

Service Description - Schrödinger API 

Agenda



Returns one-dimensional Morse potential V(x):

V(x) = D * (1 - exp(-a * (x - x0)))^2 - D

1D Morse potential

Service API 

Parameters:
npts - number of points (default value 10)
D - dissociation depth (default value 3.0)
a - inverse "width" of the potential (default value 
0.5)
x0 - equilibrium bond distance (default value 0.0)
prec - precision (default value 6)



Returns one-dimensional version of the sombrero potential and requires a < 0 
and b > 0: 

V(x) = a * x^2 + b * x^4

1D Sombrero potential

Service API

Parameters:
npts - number of points (default value 10)
D - dissociation depth(default value 3.0)
a - inverse "width" of the potential (default value 0.5)
x0 - equilibrium bond distance (default value 0.0)
prec - precision (default value 6)



Returns a Woods-Saxon potential

V(r) = - V0 / (1. + exp((r - R) / z)) where R = r0 * A^(1/3)

1D Woods-Saxon potential

Service API

Parameters:
npts - number of points (default value 5)
V0 - potential depth (default value 50.0)
z - surface thickness (default value 0.5)
r0 - rms nuclear radius (default value 1.2)
A - mass number (default value 16)
prec - precision (default value 8)



Parameters:

npts - number of points (default value 5)

D1 - dissociation depth for x (default value 3.0)

a1 - inverse "width" of the potential for x (default 
value 0.5)

x0 - equilibrium bond distance for x (default value 
0.0)

D2 - dissociation depth for y (default value 3.0)

a2 - inverse "width" of the potential for y (default 
value 0.5)

y0 - equilibrium bond distance for y (default value 
0.0)

prec - precision (default value 6)

2D Morse potential

Service API



Parameters:

npts - number of points (default value 5)

D1 - dissociation depth for x (default value 3.0), D2 - dissociation depth for y (default value 3.0), D3 - dissociation 
depth for z (default value 3.0)

a1 - inverse "width" of the potential for x(default value 0.5), a2 - inverse "width" of the potential for y(default 
value 0.5), a3 - inverse "width" of the potential for z(default value 0.5)

x0 - equilibrium bond distance for x (default value 0.0), y0 - equilibrium bond distance for y (default value 0.0), z0 -
equilibrium bond distance for z (default value 0.0)

prec - precision (default value 6)

3D Morse potential

Service API



Jupyter notebook link:

https://notebooks.finki.ukim.mk/user/user1/notebooks/SchrodingerAPI.ipynb

User: user1

Password: User1DEMO

Service DEMO

https://notebooks.finki.ukim.mk/user/user1/notebooks/SchrodingerAPI.ipynb


Practical Example

Main Agenda



• Understanding the H2 – tagging of biomolecules by theoretical anharmonic vibrational spectroscopy 
with standard and long-range corrected exchange-correlation functionals

Practical example

ሶԦ𝑟 O =
𝑚H

𝑚
∙ ሶԦ𝑟 ሶԦ𝑟 H =

𝑚O

𝑚
∙ ሶԦ𝑟 Ԧ𝑟 = Ԧ𝑟 H − Ԧ𝑟 O 𝑉 = 𝑓 𝑟OH

𝑉 𝑟OH = 𝐷 ∙ 1 − 𝑒𝑥𝑝 −𝑎 ∙ 𝑟OH − 𝑟OH,0
2
− 𝐷



• A diatomic intramolecular oscillator may be conveniently described by a Morse 
potential with the following parameters: 
• D = 0.176 (a.u.)
• a = 1.02 (a.u.)-1

• x0 = 1.4 (a.u.)

• Find the ground state energy level of this oscillator, as well as the first two excited 
levels

Practical example



• Understanding the H2 – tagging of biomolecules by theoretical anharmonic vibrational spectroscopy 
with standard and long-range corrected exchange-correlation functionals

Practical example
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• Understanding the H2 – tagging of biomolecules by theoretical anharmonic vibrational spectroscopy 
with standard and long-range corrected exchange-correlation functionals

Practical example

Static approach ADMP Exp. HCTH

(static)
B3LYP CAM-B3LYP DFTB(A) DFTB(A)

Betaine(+) 3534.6 3575.6 3486.7 3473.8 3554 3509.1

Betaine(+)OH…H2 3447.7 3483.0 3412.7 3405.2 3514 3466.0

Δv -86.9 -92.6 -74.0 -68.6 -40 -43.1

Betaine(+)CH3…H2 3551.4 3593.1 3486.9 3475.9 3558 3525.8

Δv 16.8 17.5 0.2 2.1 4 16.7



Gaussian API 

Main Agenda



Scientific Background

Main Agenda



• The advent of density functional theory (DFT) – based methods has 
revolutionized the theoretical chemistry and physics community.

• DFT enabled us to significantly extend the size range of the studied 
molecular systems with exact quantum theoretical approaches. 

• Yet another breakthrough in the field has been enabled with the 
development of the density functional tight binding (DFTB) 
approximation to DFT. 

The Density Functional Tight Binding (DFTB) 
Approach in Computational Chemistry and Physics



The Density Functional Tight Binding (DFTB) 
Approach in Computational Chemistry and Physics

• Starting from the Harris-Foulkes energy expression for the total 
energy in the framework od DFT, given by the equation (1) below, one 
can smoothly introduce the DFTB approximation thereof.

• In (1), ρ denotes the electron density, fi the orbital occupation 
numbers, VH and Vxc are the Hartree and the exchange-correlation 
potentials, while ENN is the nucleus-nucleus repulsive energy 
component.

𝐸 𝜌 = σ𝑖 𝑓𝑖𝜖𝑖 −
1

2
𝑉𝐻׬ 𝜌 𝜌 Ԧ𝑟 𝑑 Ԧ𝑟 − 𝑉𝑥𝑐׬ 𝜌 𝜌 Ԧ𝑟 𝑑 Ԧ𝑟 + 𝐸𝑥𝑐 𝜌 + 𝐸𝑁𝑁 (1)



The Density Functional Tight Binding (DFTB) 
Approach in Computational Chemistry and Physics

• The first term in (1), corresponding to the sum of single-particle 
energies is often referred to as the band-structure energy (EBS). 

• While the Harris-Foulkes energy expression becomes identical to the 
more common Kohn-Sham formula if one sets ρ as the ground state 
density (ρGS), in case when an approximate reference density is used 
(ρ0  ρGS), the two formalisms are different.

𝐸 𝜌 = σ𝑖 𝑓𝑖𝜖𝑖 −
1

2
𝑉𝐻׬ 𝜌 𝜌 Ԧ𝑟 𝑑 Ԧ𝑟 − 𝑉𝑥𝑐׬ 𝜌 𝜌 Ԧ𝑟 𝑑 Ԧ𝑟 + 𝐸𝑥𝑐 𝜌 + 𝐸𝑁𝑁 (1)



The Density Functional Tight Binding (DFTB) 
Approach in Computational Chemistry and Physics

• If ρ0 is constructed as a superposition of isolated atomic densities subject 
to a confinement potential then the first term in (1) can be computed 
using a nonempirical determination of all matrix elements in the tight-
binding approximation. 

• The repulsive part of the potential is, however, still empirical. Such 
scheme (known as the DFTB0 in the current parlance) has shown great 
success for most of the covalently bonded systems. In polar or partially 
ionic systems, on the other hand, the approximation completely breaks 
down.

𝐸 𝜌 = σ𝑖 𝑓𝑖𝜖𝑖 −
1

2
𝑉𝐻׬ 𝜌 𝜌 Ԧ𝑟 𝑑 Ԧ𝑟 − 𝑉𝑥𝑐׬ 𝜌 𝜌 Ԧ𝑟 𝑑 Ԧ𝑟 + 𝐸𝑥𝑐 𝜌 + 𝐸𝑁𝑁 (1)



The Density Functional Tight Binding (DFTB) 
Approach in Computational Chemistry and Physics

• This is due to the fact that, in the later systems, it is not possible to 
construct ρ0 from isolated neutral atomic densities. 

• To overcome this deficiency, the self-consistent charge (SCC) approach 
has been introduced, which includes the density fluctuations effects (δρ) 
to the second or third order – the two approaches are nowadays known 
under the acronyms DFTB2 and DFTB3.

• In these two approaches, the total energy is expressed in the form:

𝐸𝐷𝐹𝑇𝐵 𝜌 = 𝐸𝐵𝑆 𝜌0, 𝛿𝜌 + 𝐸𝐶𝑜𝑢𝑙 𝛿𝜌 + 𝐸𝑟𝑒𝑝 𝜌0 (2)



The Density Functional Tight Binding (DFTB) 
Approach in Computational Chemistry and Physics

• In (2), 𝐸𝐶𝑜𝑢𝑙 𝛿𝜌 is the screened Coulomb term (between partial atomic 
charges) plus a Hubbard-like energy term for partially charged atoms. 

• 𝐸𝑟𝑒𝑝 𝜌0 , on the other hand, is the repulsive energy.

• It is the key component on which we will further on focus our attention 
in the present lecture.

𝐸𝐷𝐹𝑇𝐵 𝜌 = 𝐸𝐵𝑆 𝜌0, 𝛿𝜌 + 𝐸𝐶𝑜𝑢𝑙 𝛿𝜌 + 𝐸𝑟𝑒𝑝 𝜌0 (2)



The Repulsive Potential in DFTB

• Starting from the equation (1), the repulsive potential can be derived 
by removal of the first term in parallel to including the reference 
density:

𝐸 𝜌 = σ𝑖 𝑓𝑖𝜖𝑖 −
1

2
𝑉𝐻׬ 𝜌 𝜌 Ԧ𝑟 𝑑 Ԧ𝑟 − 𝑉𝑥𝑐׬ 𝜌 𝜌 Ԧ𝑟 𝑑 Ԧ𝑟 + 𝐸𝑥𝑐 𝜌 + 𝐸𝑁𝑁 (1)

𝐸𝑟𝑒𝑝. 𝜌0 = 𝐸𝑁𝑁 −
1

2
׬׬

𝜌0 Ԧ𝑟 𝜌0 Ԧ𝑟′

Ԧ𝑟 − 𝑟′
𝑑 Ԧ𝑟 𝑑 Ԧ𝑟′ − 𝑉𝑥𝑐׬ 𝜌0 𝜌0 Ԧ𝑟 𝑑 Ԧ𝑟 + 𝐸𝑥𝑐 𝜌0 (3)

• The second term in (3)is the Hartree energy of 𝜌0. 



The Repulsive Potential in DFTB

• Equation (3),  however, is far from practical and at the same time not 
so accurate, as the exchange-correlation and Hartree potentials are 
seldom explicitly calculated.

• It is therefore much more convenient to approximate 𝐸𝑟𝑒𝑝. with 
short-range atom pairwise contributions, so that it acquires the 
following form:

𝐸𝑟𝑒𝑝. =
1

2
σ𝐼σ𝐽(≠𝐼)𝑉𝑟𝑒𝑝. 𝑅𝐼𝐽 (4)

• The summation in (4) is carried out over all atom pairs, while 𝑅𝐼𝐽 is 
the interatomic distance within the pair. 



The Repulsive Potential in DFTB

• In this manner, the short-range potential: 

a) depends only on interatomic distances;

b) has to be defined for each possible combination of elements.

𝑉𝑟𝑒𝑝. 𝑅 > 𝑅𝑐𝑢𝑡. = 0 (5)

• To enforce the short-range character of the potential defined by (4), a 
cutoff radius is defined, so that the following condition is fulfilled: 



The Repulsive Potential from Gaussian 
Process Regression (GPR) – [1]

• In reference [1], the Vrep. formulation within the Bayesian machine 
learning (ML) framework of GPR has been presented. 

• The derivation has been essentially based on the GAP approach [2].

[1]. C. Panosetti, A. Engelmann, L. Nemec, K. Reuter, J. T. Margraf, J. 
Chem. Theory Comput. 2020, 16, 2181-2191. 

[2]. A. P. Bartok, M. C. Payne, R. Kondor, G. Csanyi, Phys. Rev. Lett. 
2010, 104, 136403.



• Within the GPR framework, Vrep. can be modelled as a linear 
combination of kernel (covariance) functions:

𝑉𝑟𝑒𝑝. 𝑅 = σ𝐼,𝐽∈ 𝑋 𝛼𝐼𝐽𝑘 𝑅, 𝑅𝐼𝐽 (6)

• The sum in (6) spans over all pairs within the set of reference 
structures {X}.

• αIJ denote the regression coefficients, while k(R,RIJ) are the kernel 
functions.

The Repulsive Potential from Gaussian 
Process Regression (GPR)



• Now, Vrep. is fitted so that the differences between the DFTB model 
(repulsion-less one) and DFT energies and forces (appropriately 
normalized). Ideally:

𝐸𝑟𝑒𝑝. =
1

2
σ𝐼σ𝐽(≠𝐼)𝑉𝑟𝑒𝑝. 𝑅𝐼𝐽 = 𝐸𝐷𝐹𝑇 − 𝐸𝐷𝐹𝑇𝐵 (7)

• But what are the advantages of using GPR as compared to 
“conventional” potential fitting?

• There exist a linear algebraic expression for the coefficients αIJ in a 
closed form.

The Repulsive Potential from Gaussian 
Process Regression (GPR)



• This expression has been derived so that it minimizes the loss 
function:

𝐿 = σ𝐼,𝐽∈ 𝑋 𝑡𝐼𝐽 − 𝑉𝑟𝑒𝑝. 𝑅𝐼𝐽
2
+ 𝜎𝑛 𝛼 2 (8)

• In (8), tIJ are the reference values for the repulsive potential (i.e. the 
target ones), while the role of the parameter σn is to function as a 
reference data uncertainty measure, and at the same time, as a 
means of overfitting avoidance.

The Repulsive Potential from Gaussian 
Process Regression (GPR)



• The expression for calculation of the coefficients is:

𝛼 = K + 𝜎𝑛1
−1𝑦 (9)

• In (9), K is the covariance matrix with elements k(RIJ, RKL) for all pairs 
of atoms I,J and K,L in {X}; y, on the other hand, is the vector 
containing the target values tIJ (energies, or, in certain cases, forces).

• A notable problem in application of the GPR procedure to Vrep. is that 
one can only calculate the reference values for the overall Erep., not for 
the individual components Vrep.(RIJ).

The Repulsive Potential from Gaussian 
Process Regression (GPR)



• An elegant solution to the aforementioned issue is the GAP 
procedure, more specifically using a sparse formulation of GPR.

• The total repulsive energy Erep. is first represented as a linear 
combination of pairwise potentials Vrep.(RIJ) which are unknown.

• A set of Ns sparse training points is defined (Ns < Npairs) as a 
representative sample of the training set.

• A new covariance matrix is constructed projecting the full data set 
onto the sparse points – the fitting thus now requires inversion of 
only Ns  Ns matrix. 

The Repulsive Potential from Gaussian 
Process Regression (GPR)



• The kernel function within the GAP procedure – k(R,R’) is defined as a 
similarity measure between two inputs. The most common choice is 
the squared exponential kernel of the form:

The GAP machinery

𝑘𝑆𝐸 𝑅, 𝑅′ = 𝑒𝑥𝑝
− 𝑅−𝑅′ 2

𝜃2
(10)

• In (10),  is a length-scale parameter. It is essentially a measure of the 
“generosity” of the kernel in the course of comparing two inputs.

• To ensure a smooth decay of Vrep.(R) to zero at 𝑅 = 𝑅𝑐𝑢𝑡. the SE kernel 
is multiplied by a damping function.



• The overall dumped kernel function thus takes the form:

The GAP machinery

𝑘𝑑𝑎𝑚𝑝 𝑅, 𝑅′ = 𝑒−𝛽𝑅𝑓𝑐𝑢𝑡 𝑅 𝑘𝑆𝐸 𝑅, 𝑅′ (11)

𝑓𝑐𝑢𝑡 𝑅 =

1 𝑅 ≤ 𝑅𝑐𝑢𝑡 − 𝑑

𝑐𝑜𝑠 𝜋
𝑅−𝑅𝑐𝑢𝑡+𝑑

𝑑
+1

2
𝑅𝑐𝑢𝑡− 𝑑 < 𝑅 ≤ 𝑅𝑐𝑢𝑡

0 𝑅 > 𝑅𝑐𝑢𝑡

(12)

• where:



• It provides two methods: 
• GPrep (POST method) and 
• GPrepRemote (GET method).

• In case of GPrep, the user should provide an input file by browsing the file 
system on the local device, while in case of GPrepRemote the user should 
provide a public URL where the input file can be acessed.

• The provided URL should be a direct link to a public file 
(https://gaussian.chem-api.finki.ukim.mk/static/reference_data.xyz) or 
public Dropbox link 
(https://www.dropbox.com/s/qnk7r3ey6pkfzb9/reference_dataB.xyz?dl=0) or 
public B2DROP link (https://b2drop.eudat.eu/s/QWPRFGwYHEno99P).

Service Description - Gaussian API 

Agenda

https://gaussian.chem-api.finki.ukim.mk/static/reference_data.xyz
https://www.dropbox.com/s/qnk7r3ey6pkfzb9/reference_dataB.xyz?dl=0
https://b2drop.eudat.eu/s/QWPRFGwYHEno99P


• Secure and trusted data exchange 
service for researchers and 
scientists to keep their research 
data synchronized and up-to-date 
and to exchange with other 
researchers. 

• The output Slater-Koster files (.skf) 
with potentials will be uploaded to 
the user B2DROP account 

https://b2drop.eudat.eu/apps/files/

• The user should log in 
to B2DROP (preferably by using 
her/his institutional account) and to 
generate username and password.

B2DROP

Agenda

https://b2drop.eudat.eu/apps/files/


• file - reference data file from which the relevant forces and pair distances are extracted
• GPrep method: user should upload the file (an example file can be found here)
• GPrepRemote method: user should provide public URL of the file (default value: 

https://gaussian.chem-api.finki.ukim.mk/static/reference_data.xyz)

• sigma - data noise standard deviation (default value 0.05)

• beta - exponential damping factor (default value 3.0)

• theta - latent function length scale (default value 1.0)

• delta - latent function standard deviation (default value 1.0)

• d - cutoff transition width (default value 1.0)

• c - cutoff (default value = 5.0)

• N - number of data points (default value = 100)

• b2dropUsername - B2DROP generated username – to upload the result files

• b2dropPassword - B2DROP generated password - to upload the result files

Gaussian API  - Parameters

Agenda

https://gaussian.chem-api.finki.ukim.mk/static/reference_data.xyz
https://gaussian.chem-api.finki.ukim.mk/static/reference_data.xyz


• Upload the input file directly on the 
Gaussian API home page (an example file 
can be found here)

GPrep (POST method)

Service API 

https://gaussian.chem-api.finki.ukim.mk/static/reference_data.xyz


• B2DROP username and 
password must be entered in 
the b2dropUsername and 
b2dropPassword textboxs in 
order to receive the output 
files (to be uploaded on the 
user's B2DROP account). 

GPrepRemote (GET method)

Service API



• Other way to use this REST API method is to access it directly from the browser 
address bar.

https://gaussian.chem-api.finki.ukim.mk/GPrepRemote?b2dropUsername=YOUR_B2DROPUSERNAME 
&b2dropPassword=YOUR_B2DROPPASSWORD&file=YOUR_FILE_LOCATION

• If user preffers to change other paramerets, they can be added 
as &PARAMETER=VALUE

• Another option is to consume this method in a program source code (Python)

GPrepRemote (GET method)

Service API

https://gaussian.chem-api.finki.ukim.mk/GPrepRemote?b2dropUsername=YOUR_B2DROPUSERNAME&b2dropPassword=YOUR_B2DROPPASSWORD&file=YOUR_FILE_LOCATION


• Gaussian Swagger link: 

https://gaussian.chem-api.finki.ukim.mk/

• Jupyter notebook link: 

https://notebooks.finki.ukim.mk/user/user1/notebooks/GaussianAPI.ipynb

• User: user1

• Password: User1DEMO

The service demo videos can be seen on the next slides

Service DEMO

https://gaussian.chem-api.finki.ukim.mk/
https://notebooks.finki.ukim.mk/user/user1/notebooks/GaussianAPI.ipynb


Contact

• Bojana Koteska 
• bojana.koteska@finki.ukim.mk

• Ljupco Pejov
• ljupcop@pmf.ukim.mk

• Anastas Mishev
• anastas.mishev@finki.ukim.mk 
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