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In this paper, to automatically generate a music for the melody part by 

deep learning with training data collected from Chopin's piano piecies, 

a combining model of Residual Neural Networks(ResNet) and Long-

Short Term Memory Networks (LSTM) are proposed. First, to generate 

a music for the melody part of a piano music, a training dataset used for 

deep learning is provided. Secondly, by using each of a LSTM Model 

and a combining model of LSTM and ResNet,experiments on music 

generationare presented. Thirdly, the results of music generation by 

each model are compared and discussed. In conclusion, the principal 

results are summarized. 
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Introduction:- 
Recently, deep learning has been actively studied not only in the field of scientific and engineering information 

processing, but also in artistic fields such as music generation [1] - [4]. In deep learning for music generation, 

acoustic signals, MIDI, and musical notation are frequently used to learn musical structures [5] such as pitch, 

duration (start/end time), and velocity. Especially MIDI is widely used for learning musical data because musical 

structures such as pitch, duration (start/end time), and velocity are stored in a file, and its file size is small. In [1] and 

[2], experiments for music generation are performed by using MIDI training (or learning) data. Music generation by 

deep learning has been experimented with neural network models such as RNNs and CNNs. RNNs can predict time 

series by incorporating past hidden layers, but they cannot learn long-term time dependence because vanishing 

gradient problem occurs in the learning process. Therefore, RNNs are said to be less effective for music generation. 

In addition, Long-Short Term Memory Network (LSTM): a kind of RNN, is designed to learn both long and short 

term time dependencies, and can be more effective than RNNs in music generation [4]. Simply deepening the layers 

will not allow learning to proceed well from a certain depth, resulting in a loss of accuracy. This is said to be due to 

vanishing gradient caused by increasing the layer depth. Residual Neural Network (Res Net): a kind of RNN, is also 

designed to solve this vanishing gradient problem. By learning a residual function that takes the difference between 

the output of a layer and the input, Res Net successfully solves vanishing gradient problem that occurs when the 

layers are deepened[6], [7].This paper is organized as follows. Sect. 2 provides a training dataset used for deep 

learningwith a collection learning data of Chopin’s piano pieces, to generate a music for the melody part of a piano 

music.Sect. 3 presents the LSTM model and the model combining LSTM and ResNet, respectively. Sect. 4 

compares and discusses the results of music generation by each models.In conclusion, the principal results are 

summarised. 
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Training Detaset:- 

In this section, we providea training dataset used for deep learning to generate a music for the melody part of a piano 

music. We prepare a data set of MIDI files consisting of multiple parts such as melody and accompaniment for 

learning. The data set is collected from the Classical Piano Midi Page [8]. In this paper, we use 10 pieces of 

Chopin's piano musics. We chose 10 Chopin pieces such that each piece has similar music impression. The 

JuliaMusic package addressedin this paper is created from the MIDI.jl, MotifSequenceGenerator.jl, 

MusicManipulations.jl, and MusicVisualizations.jl packages.The MIDI.jl package decomposes notes into four 

numerical values such as the temporal position, the duration, the pitch, and the velocity [9]. Training data utilizes the 

pitch, duration and velocity of the melody part. The pitch values are obtained by converting the note names with the 

JuliaMusic package [10]. See [11] for details on converting note names to pitch values. 

 

List 1 :10 pieces of Chopin's piano musics in the Classical Piano Midi Page [8]. 

1.Piano right : Chopin Prelude No. 1, Opus 28,  

2. Piano right : Chopin Prelude No. 15, Opus 28  

3. Piano right : Chopin Prelude No. 19, Opus 28  

4. Piano right : Chopin Prelude No. 2, Opus 28 

5. Piano right : Chopin Prelude No. 21, Opus 28  

6. Piano right : Chopin Prelude No. 22, Opus 28 

7. Piano right : Chopin Prelude No. 4, Opus 28 

8. Piano right: Chopin Prelude No. 9 

9. Piano right: Etüde Opus 10 No. 5 

10. Piano right: Chopin Mazurka Opus 7 No. 1 

 

Neural Network Models, and Trained Models:- 

In this section, as neural networks for generating piano musics, we definea LSTM Model and a combining model of 

LSTM and ResNet. Further, we define trained models such that the LSTM and the combining models are trained by 

using the training dataset of 10 pieces of Chopin's piano musics of List 1 in the section 2. 

 

LSTM Model:- 

Table 1 shows the structure of LSTM Model. LSTM Models constructed with 5 layers (Fig. 1). In the first layer, 

Layer Norm is given to perform the normalization process [12], and LSTM layer is applied in the second, and third 

layers. Then, the fourth, and fifth layers represent the fully connected layers.  

 
Figure. 1:-LSTM Model. 
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Table 1:- Structure of  LSTM Model. 

 

 

 

 

 

 

 

 

Combining Model of LSTM and ResNet:- 

Table 2 shows the combining model of LSTM and ResNet. The combining models constructed with 5 layers (Fig. 2). 

In the first layer, Layer Norm is given to perform the normalization process, and LSTM Layer is applied in the 

second, and third layers. Then, the fourth, and fifth layers represent the fully connected layers. Then, the Skip 

Connection is inserted before Fully Connected Layer1, and afterLSTM Layer1. 

 
Figure. 2:-Combining model of LSTM and ResNet. 

 

Table 2:- Structure of Combining model of LSTM and ResNet. 

Layer Input nodes Outputnodes 

Layer Norm 3 3 

LSTM Layer 1 3 30 

LSTM Layer 2 30 30 

Fully connected layer 1 30 30 

Fully connected layer 2 30 3 

 

3.3 Trained Models :- 

Using JuliaMusic.jl[10], we can create a music note with the function : Note(pitch, velocity, position, duration, 

channel = 0), where pitch::UInt8 : Pitch, starting from C-1 = 0, adding one per semitone, velocity::UInt8 : Dynamic 

intensity. Cannot be higher than 127 (0x7F), position::UInt : Position in absolute time (since beginning of track), in 

ticks, duration::UInt : Duration in ticks, and channel::UInt8 = 0 : Channel of the track that the note is played on. 

Cannot be higher than 127 (0x7F).  Therefore, using the following Julia function including a Trained_Model_k, 

k=1,2 : 

{file = MIDIFile() 

track = MIDITrack() 

notes = Notes(tpq=480)  

pitch, velocity, duration = 60.0, 49.0, 80.0 

position = 300  

for i in 1:300 

Layer Input nodes Outputnodes 

Layer Norm 3 3 

LSTM layer 1 3 30 

LSTM layer 2 30 30 

Fully connected layer 1 30 30 

Fully connected layer 2 30 3 
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    pitch, velocity, duration = Trained_Model_k([pitch, velocity, duration]) 

    position = position + 300  

    notes = [Note(pitch, velocity,position, duration )] 

    addnotes!(track, notes) 

end 

addtrackname!(track, "simple track") 

push!(file.tracks, track) 

writeMIDIFile("./sample_k.mid", file)}, we can generate MIDI file with 300 notes, e.g. sample_k.mid, where 

Trained_Model_k,  k=1,2 represent  LSTM Model, and the combining model of LSTM and ResNet in the section 3 

such that these models are trained by using the training data set of 10 pieces of Chopin's piano musics of List 1 in 

the section 2 , respectively. Table 3 and Table 4 show the hyper parameters of  Trained_Model_k, k=1,2, 

respectively.  

 

Table 3:-Hyper parameters of Trained_Model_1. 

Description Value or Type 

Activation function ReLU 

Loss function Mean Absolute Error (MAE) 

Optimization algorithm Adam 

Learning rate 1e-3 

Epoch number 5000 

 

Table 4:- Hyper parameters of Trained_Model_2. 

Description Value or Type 

Activation function ReLU 

Loss function Mean Absolute Error (MAE) 

Optimization algorithm Adam 

Learning rate 1e-3 

Epoch number 5000 

 

2. Experimental results of Music Generation and Discussions:- 

In this section, we present experiments on music generation, by using each of Trained_Model_k, k=1,2.The 

following results are obtained by Flux: Julia Machine Learning Library[13], [14].Fig. 3 (or Fig. 5) and Fig. 4 (or Fig. 

6) show the scores of piano music generated by Trained_Model_k, k=1,2, respectively.In Fig. 3, or Fig. 5,the music 

generated by Trained_Model_1 is a very monotonous melody with continuously same output notes. In Fig. 4, or Fig. 

6,the music generated by Trained_Model_2 ismore dynamic and more emotional melody than the music in Fig.3 or 

Fig. 5.The music generated by Trained_Model_2 is supposed to be more successful than the music by 

Trained_Model_1. These musics by Trained_Model_k, k=1,2 are available athttps://soundcloud.com/ozawa-kazuya-

244008895/sets/music-generation-by-deep-learning-1/s-

m1DIWndD0rX?utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing. 

 

https://soundcloud.com/ozawa-kazuya-244008895/sets/music-generation-by-deep-learning-1/s-m1DIWndD0rX?utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing
https://soundcloud.com/ozawa-kazuya-244008895/sets/music-generation-by-deep-learning-1/s-m1DIWndD0rX?utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing
https://soundcloud.com/ozawa-kazuya-244008895/sets/music-generation-by-deep-learning-1/s-m1DIWndD0rX?utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing
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Figure. 3:-The first twenty measures of the score of piano music generated by Trained_Model_1. 

 
Figure. 4:-The first twenty measures of the score of piano music generated by Trained_Model_2. 

 

Conclusion:- 
The following results were obtained: 

1. We have provided the training data set for deep learning to generate a piece of music by collecting the melody 

part of Chopin's piano pieces. 

2. We have presented the LSTM model and the combining model of LSTM and ResNet for generating piano musics, 

and have provided those traind models. 

3. Compairing the results of musics generated by the trained models, we have concluded that the combining model 

of LSTM and ResNet are more effective and more excellent than LSTM modelfor generating piano musics. 

4. As future works, we will build the structure of neural networks for generating symphonies.  
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Appendix:- 
In the following, the entire musical scores of the piano musics generated by LSTM Model (Model_1), andthe 

combining model of LSTM and ResNet (Model_2) are shown in Fig. 5, and Fig.6, respectively.

 
Figure. 5:- Entire musicalscore of piano music generated by Trained_Model_1. 
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Figure. 6:- Entire musicalscore of piano music generated by Trained_Model_2. 


