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Abstract. Nowadays, human errors in working environments are among the significant causes of non-
fatal and fatal work-related accidents. Therefore, the worker’s monitoring and, in particular, the Human 
Factors (HFs) evaluation plays a crucial role in preventing work-related accidents and in increasing safety 
in working environments. The present study aimed at assessing the reliability of a specific set of wearable 
devices, the Empatica E4 and the Muse 2, in the Eye Blinks Rate (EBR), Skin Conductance Level (SCL), 
and Heart Rate (HR) estimation while performing real working-like tasks. In scientific literature, it is 
largely demonstrated the effectiveness of monitoring such HFs through specific neurophysiological 
signals’ evaluation. Still, it is also known as the traditional laboratory sensors that imply a certain grade 
of invasiveness, which could negatively interfere with the worker’s performance. The results 
demonstrated that the wearable devices are reliable as the laboratory technologies for the EBR, SCL, and 
HR estimation, especially when the time resolution is between 1 and 3 minutes, confirming the possibility 
of HFs evaluation interfering at minimum the worker’s activities. 
Keywords: Neurophysiological, Human Factor, Workers, Eye Blinks Rate, Skin Conductance Level, Heart Rate, Wearable  

Introduction 
According to several European reports, millions of non-fatal and thousands of fatal work-related 

accidents occurred in the last years (Quality of Life, quality of public services, and quality of society, 
2016). Such work-related accidents are often caused by Human Factors (HFs) (Hansen, 2006). In this 
regard, it has been largely demonstrated that high mental workload, tiredness, and stress, cause human 
errors in different working environments (Bevilacqua & Ciarapica, 2018; Jahangiri, Hoboubi, 
Rostamabadi, Keshavarzi, & Hosseini, 2016; Melchior & Zanini, 2019; Roets & Christiaens, 2019). 
These findings clearly indicate the relevance of monitoring in real-time workers’ psychophysical state in 
working operational environments (Mehta & Parasuraman, 2013). In this context, scientific literature 
largely highlighted the limitations of using subjective methodologies to evaluate such HFs (Aricò et al., 
2017; Babiloni, 2019a; Wall et al., 2004). As a potential countermeasure, in the last decades, 
neuroscientific disciplines have been dedicating a consistent effort in investigating human physiological 
correlates of user’s mental states to develop monitoring tools able to detect incoming cognitive 
impairments (e.g., mental overload) based on specific biomarkers (e.g., skin sweating fluctuations, heart 
rate variability, brain electrical activity variations in specific rhythms over particular cortical sites) 
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(Sciaraffa et al., 2017; Aricó et al., 2017; Borghini, Aricò, Di Flumeri, et al., 2017; Borghini, Astolfi, 
Vecchiato, Mattia, & Babiloni, 2014b; Fairclough, 2009). Nevertheless, the need to reduce the 
invasiveness related to monitoring methodologies during the working tasks to do not negatively interfere 
with the workers' activities and comfort (Charles & Nixon, 2019). This last consideration is very 
consistent with the concept of monitoring by the mean of wearable devices. Wearable development 
progressively increased in the industrial and scientific world (Ragot, Martin, Em, Pallamin, & Diverrez, 
2018). Such systems generally collect data and send them wirelessly to a central computation unit. 
Therefore, wearable devices are fully compatible with unobtrusive workers’ monitoring. Such sensors 
can continuously track the worker’s mental state without negatively interfering with its daily working 
activities. On the other hand, several doubts could emerge about wearable devices’ reliability and 
capability concerning Laboratory equipment. Usually, wearable devices employ dry electrodes, and they 
integrate fewer sensors than the most reliable laboratory sensors. Laboratory devices are very effective 
(Ragot et al., 2018), but they cannot be used in realistic settings in most cases. Different previous works 
already explored the comparison between wearable and laboratory devices. For example, Ragot and 
colleagues (Ragot et al., 2018) demonstrated the reliability of emotion recognition outside the laboratory 
using wearable devices. Pang and colleagues (Pang, Okubo, Sturnieks, Lord, & Brodie, 2019) showed 
the effectiveness of wearable devices support in older people to prevent physical injuries, while the 
laboratory sensors were not compatible with daily usage. Fuller and colleagues (Fuller et al., 2020) 
proved the robustness of commercial wearable devices for tracking daily activities, such as the daily 
steps and the user’s heart rate along the day. 

The present study aimed at assessing the reliability of the wearable devices with respect to the 
laboratory ones for their further use in working environments. The abovementioned works did not 
consider this field of application. In particular, in this study, specific parameters estimated from the 
Galvanic Skin Response (GSR), Photoplethysmographic (PPG), and Electrooculographic (EOG) signals 
collected by the wearable sensors were compared with the corresponding ones estimated from the GSR, 
Electrocardiographic (ECG), and EOG signals gathered by the laboratory equipment. Such 
neurophysiological signals were selected from the future perspective of characterizing specific user’s 
cognitive and emotional states while dealing with different operative tasks (Babiloni, 2019b). In 
scientific literature, it has been largely demonstrated that the abovementioned neurophysiological 
parameters play a crucial role in the mental workload, stress and tiredness evaluation (Borghini, Astolfi, 
Vecchiato, Mattia, & Babiloni, 2014a; Borghini, Ronca, et al., 2020). 

Material and Methods 

1.1 Participants 
Seventeen (17) participants from the Sapienza University of Rome, ten males and seven females 

(31.1 ± 3.7 years old), were recruited and involved voluntarily in this study. Informed consent was 
obtained from each subject after explaining the study, approved by the local institutional ethics 
committee. The experiment was conducted following the principles outlined in the Declaration of 
Helsinki of 1975, as revised in 2000. It was approved by the Sapienza University of Rome Ethical 
Committee in Charge for the Department of Molecular Medicine. The participants were instructed about 
the tasks’ and questionnaires’ execution. Then, they were asked to wear both wearable and laboratory 
devices. In particular, they wore the headband Muse 2 (InteraXon Inc., Canada) on the forehead, the 
smartband Empatica E4 (Empatica, Italy) on the wrist of their non-dominant hand, the  Shimmer3 GSR+ 
(Shimmer Sensing, Ireland) was set on their index and middle finger of the same hand, one gel-based 
Ag/AgCl electrode was set on the participant’s Fpz scalp location, and an additional gel-based electrode 
was placed on the participant’s chest, both of them were connected to the BEMicro system (EBNeuro, 
Italy) together with other EEG electrodes not employed for the purposes of the present study. These gel-
based electrodes were considered for the Heart Rate (HR) and the Eye Blink Rate (EBR) evaluation, 
respectively. A picture representing the final setting is shown in Figure 1. 
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Figure 1. The final setting of the laboratory and wearable sensors. 

 

1.2 Experimental protocol 
The experimental protocol was designed to represent three experimental tasks (Figure 2) designed 

to simulate three specific real working environments: the office, the teleworking, and the manufacturing 
use case. A detailed description of such tasks is provided below: 

 The Office-like workstation was reproduced using the n-Back task. The n-Back (NB) task is a 
well-known computer-based psychological test used to manipulate workload, or more 
specifically, working memory load (“Age differences in short-term retention of rapidly 
changing information. - PsycNET,” n.d.; Kane, Conway, Miura, & Colflesh, 2007). Memory 
load is considered a major component and reasonable approximation of workload (Berka et al., 
n.d.). Within this task, a sequence of stimuli is presented to the test person. The task is to indicate 
when the current stimulus matches the stimulus that occurred in the series n steps before. The 
factor n can be adjusted to make the task more difficult or easier. A baseline and three conditions 
of such task were tested in the proposed study, two of them with different difficulty levels and 
one stressful situation. In all conditions, 21 uppercase letters were used, which were displayed 
for 500 ms and an inter-stimulus interval randomized between 500 to 3000ms; 33% of the 
displayed letters were the target. 

 To simulate the Teleworking Use Case, two interactive web calls (WE) were performed. 
Microsoft Teams software (Microsoft, USA) was used for the interactive web calls. Three 
conditions of such task were tested: i) Baseline condition, in which the participants looked at 
the Microsoft Teams user interface without reacting; ii) Positive condition, in which the test 
persons were asked to report the happiest memory of their life; iii) Negative condition, in which 
the test persons were asked to report the saddest memory of their life. 

 The Manufacturing use case was simulated by a fine motor skills task, the children's game 
“Doctor Game (DG).” The aim of the game was to remove small objects from the board without 
touching the edges. Here too, a baseline, two difficulty levels, and one stressful condition were 
tested. In all conditions, the time required by the test subject to complete the task was measured, 
and the errors made were noted. The easy and the hard condition were performed twice each.  

Furthermore, at the beginning of the experiments, a baseline measurement was taken. The participant 
was asked to look calmly straight ahead, one minute with open eyes and one minute with closed eyes. 
The three tasks and the task conditions were randomized across the participants to avoid both habituation 
and expectation effects. After every stressful condition and also after the web call in which the negative 
experience was asked for, the test person had 4 minutes to regenerate, and relaxing music was played to 
support him/her. 

Such experimental tasks were designed to modulate the subjects’ mental workload, stress, and 
emotional state. However, this aspect will not be investigated in the proposed study. 
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The present study's primary objective consisted of evaluating the capability and reliability of the 
wearable technology in estimating the GSR, HR, and EBR features. In particular, such parameters were 
evaluated with a time resolution of 60 seconds and by averaging the features within each experimental 
condition, which had a duration from one to three minutes, to assess their robustness associated with 
these two temporal resolutions. 

Figure 2. Examples of the tasks included in the experimental protocol: the n-Back, Doctor Game, and Web call 
task. 

 

Data Collection and Data Processing 

1.3 Eyeblink signal recording and analysis 
The EOG signals were acquired simultaneously by the Fpz channel of the BeMicro and TP9 channel 

of the Muse 2 and with a sampling frequency of 256 (Hz) and 64 (Hz), respectively. Regarding Muse 2, 
the TP9 channel was selected because it features the reference electrode in Fpz scalp location. Therefore, 
to identify the eye blinks, which are generally identifiable in Fpz scalp location, we analyzed the signal 
recorded by the TP9 channel. Such a channel includes the subtraction of the signal captured by Fpz 
channel. 

The EOG analysis aimed to detect eye blinks to estimate the Eye Blinks Rate (EBR). Both the dataset 
were analyzed by using the same algorithm. Firstly, the EOG signal has been band-pass filtered using a 
201st order Butterworth filter within the frequency range of 2- 10 (Hz). The eye blinks detection method 
was performed in two main steps: 

1) Threshold calculation 

2) Pattern Matching  

In (1), the Eyes Open condition was used to identify a threshold that, when exceeded, identified a 
potential blink. The threshold was calculated as follows: 

 
ܶℎݏ݁ݎℎ݈݀ = (ܱ݊݁	ݏ݁ݕܧ	ܩܧܧ)݊ܽ݁݉ + 3 ∗  ݒ݁ܦ݀ݐܵݐݏݑܾݎ

 
where ݐ_݀ݐݏℎݏ݁ݎℎ݈݀  = 3, while ݒ݁ܦ݀ݐܵݐݏݑܾݎ  is the mean absolute deviation of the 

corresponding EOG channel. 
In (2), every time the EOG signal exceeded the computed threshold, the Pearson correlation between 

a common blink template and the EOG signal was computed within each experimental condition. If this 
value was higher than 0.9, a potential blink would be classified as a “real blink.” 

The EBR feature estimated for each participant in each condition was calculated as the mean of the 
total number of blinks in every condition per minute. 

1.4 GSR signal recording and analysis 
The GSR was recorded by both a Laboratory and Wearable device placed on the participant’s non-

dominant hand. The Shimmer3 GSR+ unit, a Laboratory device, acquired the GSR with a sampling 
frequency of 64 (Hz) using two electrodes on the index and middle fingers. The Empatica E4 acquired 
the GSR with a sampling frequency of 4 (Hz) using the two electrodes placed on the bottom part of the 
watch strap. 

The GSR was first low-pass filtered with a cut-off frequency of 1 (Hz) and then processed using the 
Ledalab suite (Bach, 2014), a specific opensource toolbox implemented within MATLAB GSR 
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processing. The continuous decomposition analysis (Benedek & Kaernbach, 2010) as applied to estimate 
the tonic (SCL) and the phasic (SCR) components (Braithwaite, Derrick, Watson, Jones, & Rowe, n.d.; 
Posada-Quintero, Florian, Orjuela-Cañón, & Chon, 2018). The SCL is the slow-changing part of the 
GSR signal, mostly related to the participant’s global arousal. The SCR is the fast-changing part of the 
GSR signal, which occurs in relation to single stimuli reactions. The GSR components (and the other 
neurophysiological parameters) were estimated with a 60 seconds time resolution and as the mean within 
each experimental condition. Finally, only the SCL component was considered for the participant's stress 
evaluation, as demonstrated by Borghini et al.(Borghini, Di Flumeri, et al., 2020). 

1.5 ECG signal recording and analysis 
The Electrocardiogram (ECG) was recorded using a Laboratory and Wearable technology for the 

abovementioned signals. In particular, the participants’ ECG was recorded using an electrode fixed on 
their chest (Laboratory device) and referred to the potential recorded at both the earlobes, with a sampling 
frequency of 256 Hz. Simultaneously, the Empatica E4 acquired the Photoplethysmography (PPG) with 
a sampling frequency of 64 (Hz) the sensors placed in the bottom part of the watch. First, the ECG and 
PPG signals were filtered using a 5th-order Butterworth band-pass filter (1 – 15 Hz, and 1 – 4 Hz, 
respectively) to reject the continuous component and the high-frequency interferences, such as that 
related to the mains power source. At the same time, the purpose of this filtering was to emphasize the 
QRS process of the ECG signal (Goovaerts, Ros, van den Akker, & Schneider, 1976; Thakor, Webster, 
& Tompkins, 1980). The following step consisted of computing the ECG (PPG) signal to the power of 3 
to emphasize the heartbeat peaks, as they generally have the higher amplitude, and at the same time, 
reduce spurious artifact peaks. Finally, we measured the distance between consecutive peaks (i.e., each 
R peak corresponds to a heartbeat) to estimate the Heart Rate (HR) values every 60 seconds. 

 
All the parameters mentioned above, i.e., the EBR, SCL, and HR, were finally normalized to obtain 

comparable distributions related to each sensor technology employed in the study. The normalization 
consisted in the subtraction of the baselines from the respective values estimated during each 
experimental condition. 

Results 

1.6 Eye blinks analysis results 
Regarding the eye blinks parameters estimation, the paired Wilcoxon signed-rank test performed on 

the normalized EBR within all the experimental tasks did not show any significant difference between 
the wearable and the laboratory technology (p = 0.4). Such aspect was also confirmed by the graph 
reported in Figure 3, where the differences in terms of EBR estimation(y-axis) between the wearable and 
laboratory technology are reported for each participant (x-axis).  

 



 13

 
Figure 3. EBR estimation differences between the values estimated respectively by the wearable and laboratory 

devices for each participant (x-axis). It can be observed that only for three subjects, the difference in EBR 
estimation was higher than 0.1. 

 
To further investigate the wearable devices' capability with respect to the laboratory ones, two 

different repeated measure correlation analyses were performed. The first analysis aimed to compare the 
estimation of the parameters every 60 seconds, while in the second one, we averaged the EBR estimations 
within each experimental condition to obtain a lower time resolution ranging between 1 and 3 minutes. 
As reported in Figure 4, the repeated measure correlation analysis (Bakdash & Marusich, 2017) 
performed between the EBR estimated by the laboratory and wearable device every 60 seconds showed 
a positive (R = 0.8) and significant (p < 10-64) correlation, a demonstration of how the two devices 
provided similar EBR estimations. 

 
Figure 4. The repeated measure correlation analysis on the EBR estimated by the laboratory and wearable 

devices every 60 seconds. 

 
Similarly, the repeated measure correlation analysis was performed on the EBR estimation within 

each experimental condition, obtaining a lower time resolution ranging between 1 and 3 minutes. The 
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results reported in Figure 5 confirmed how the estimations of the EBR provided by the wearable and 
laboratory devices were highly correlated (R = 0.9, p = < 10-123 ) . 

 
Figure 5. The repeated measure correlation analysis on the EBR estimated by the laboratory and wearable 

devices within each experimental condition. 

 

1.7 SCL analysis results 
Regarding the SCL parameter estimation, the paired Wilcoxon signed-rank test performed on the 

normalized SCL within the three experimental tasks revealed a non-significant difference between the 
wearable and the laboratory technology (p = 0.2). Such evidence can also be observed in the qualitative 
analysis performed on SCL estimations provided by the wearable and laboratory sensors. The results 
showed that the difference in SCL estimation between the values evaluated by the wearable and 
laboratory sensors was within a range of ± 3 µS for most participants (Figure 6). 

 

 
Figure 6. Differences in SCL estimation between the values estimated respectively by the wearable and 

laboratory devices for each participant (x-axis). 
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The repeated measure correlation analysis performed between the SCL estimated by the laboratory 
and wearable devices every 60 seconds did not show an overall significant correlation (R = 0.3, p = < 10-

10)  (Figure 7). For some participants, the correlation was low, whereas, for others, it was very high. 

 
Figure 7. The repeated measure correlation analysis on the SCL is estimated by the laboratory and wearable 

devices every 60 seconds. 

 
A different discussion can be done for the results from the repeated measure correlation analysis 

performed with a lower temporal resolution (Figure 8), which was computed by averaging the SCL 
values within each experimental condition. Both the analyses showed positive and significant (R = 0.5, 
p = < 10-9) correlations between the SCL estimations of the two technologies. These results demonstrated 
that with a lower time resolution, the SCLs estimated by the wearable device showed more similar 
variations to the ones estimated by the laboratory device. 

 
Figure 8. The repeated measure correlation analysis on the SCL was estimated by the laboratory and wearable 

devices within each experimental condition. 
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1.8 HR analysis results 
 
The Wilcoxon signed-rank test on the normalized HR within the three experimental tasks did not 

report any significant differences (p = 0.4) between the two technologies to demonstrate that the HR's 
absolute values were also similar. In other words, there was no difference in estimating HR via wearable 
or laboratory technology. Such evidence can also be observed in Figure 9, where all the differences in 
HR estimation provided by the wearable and laboratory devices were within ± 6 BPM. 

 

 
Figure 9. Differences in HR estimation between the values estimated respectively by the wearable and 

laboratory devices for each participant (x-axis).. 

 
As for the EBR and SCL parameters, the repeated measure correlation analysis was performed on 

the HR parameter. The results (Figure 10 and Figure 11) demonstrated that the HR values estimated by 
the wearable, either every 60 seconds or within each experimental condition, are significantly correlated 
(R = 0.5, p = < 10-15) to the one estimated by the laboratory technology. In particular, as found for the 
SCL component, when the HR was estimated with a temporal resolution ranging between 1 and 3 
minutes, the correlation between the laboratory and wearable technology (Figure 11) was overall high 
and significant (R = 0.7, p < 10-20). 
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Figure 10. The repeated measure correlation analysis on HR is estimated by the laboratory and wearable 

devices every 60 seconds. 

 
Figure 11. The repeated measure correlation analysis on HR was estimated by the laboratory and wearable 

devices within each experimental condition. 
 

 

Discussion 
The present work aimed at investigating the reliability of wearable technologies in estimating EBR, 

SCL and HR while performing working-like tasks, with respect to laboratory equipment. In this regard, 
two main aspects emerged from the results supporting the reliability of the wearable devices.  On the one 
hand, the statistics did not show any significant difference between the values estimated by the wearable 
devices and the ones evaluated through the laboratory sensors for all the three parameters considered. On 
the other hand, the correlations, particularly those performed on the parameters averaged within each 
experimental condition, by considering a lower temporal resolution, between the wearable and the 
laboratory technology were high and significant. Such two aspects confirm that, compared to the 



 18

laboratory technologies, the wearables could capture the parameters considered’ dynamics with the same 
capability offered by the laboratory devices. 

More specifically, the SCL and the HR estimated by the Empatica E4 did not differ from the ones 
evaluated through the Shimmer3 GSR+, while, the Muse 2 was able to efficiently estimate the EBR as 
done through the EOG channel. In fact, the EBR estimations of the laboratory and wearable technology 
were the same either if done every 60 seconds or by averaging the EBR values within each experimental 
condition, i.e., each time interval ranging between 1 and 3 minutes. Such results are coherent with the 
evidence proposed by the previous related works. As showed in the Ragot and colleagues’ study (Ragot 
et al., 2018), the GSR and HR measurements provided by the Empatica E4 wristband resulted robust as 
the one provided by the laboratory sensors; while the Muse 2 demonstrated the same reliability as the 
gel-based electrode placed in Fpz scalp location in terms of EBR estimation. 

Although promising and interesting results, there are some limitations to be discussed. The wearable 
devices imply specific technical constraints, such as the limited battery life since such devices operate 
wirelessly. Moreover, the correlations between the parameters evaluated through the wearable devices 
and the ones measured through the laboratory devices increased significantly (above 0.7) only when the 
indexes were evaluated every 2 – 3 minutes. This aspect could prevent the real time monitoring at high 
temporal resolution through wearable technologies. The proposed study was a preliminary exploration 
of wearable reliability. In this regard, a next experimental protocol has been planned in which the 
discrimination of mental workload, stress and emotional state through the wearable devices will be 
investigated. Moreover, such a next experimental protocol will include longer experimental condition, 
in order to investigate the wearables’ reliability with different combinations of time resolution. In 
addition, such a next experimental protocol will allow us to better investigate the influence of subject’s 
movements, in terms of typology and frequency of movements, on the wearables reliability, since we 
observed that this dry-electrode based technology could more easily lose contact with the skin compared 
with the gel-based electrode technology.  

Conclusions 
The analysis and comparison between the laboratory (the gel-based electrodes connected to the 

BEMicro system and the GSR+ Shimmer3) and wearable (the Muse 2 and the Empatica E4) technology 
demonstrated that the latter could be used for reliably estimating the participant’s EBR, HR, and SCL. 
In general, we can conclude that the wearable devices are reliable as the laboratory ones, especially when 
the time resolution is about 2 – 3 minutes. 

Besides the reliability, the wearable technologies offer the advantage that they do not require 
technical personnel for the setup. Such a feature could play a crucial role in experimental protocols 
including a large sample size simultaneously. Finally, it has to be noted that the worker’s monitor through 
wearable sensors is very promising in different applications, implying the minimum interference with 
the user’s activities, therefore paving the way for future safety-oriented applications (Aricò et al., 2015; 
Arico et al., 2018; Borghini, Arico, et al., 2020; Borghini, Ronca, et al., 2020; Di Flumeri et al., 2019), 
other mental states assessment like stress (Borghini, Di Flumeri, et al., 2020), vigilance (Sebastiani et 
al., 2020), and cognitive control behavior (Wang, Moreau, & Kao, 2019; Borghini, Aricò, DI Flumeri, 
et al., 2017; Melchior & Zanini, 2019). 
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