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This paper describes the three Fast Downward Aidos port-
folios we submitted to the Unsolvability International Plan-
ning Competition 2016. All three Aidos variants are im-
plemented in the Fast Downward planning system (Helmert
2006). We use a pool of techniques as a basis for our portfo-
lios, including various techniques already implemented Fast
Downward, as well as three newly developed techniques to
prove unsolvability.

We used automatic algorithm configuration to find a good
Fast Downward configuration for each of a set of test do-
mains and used the resulting data to select the components,
their order and their time slices for our three portfolios.

For Aidos 1 and 2 we made this selection manually, re-
sulting in two portfolios comprised mostly of the three new
techniques. Aidos 1 distributes the 30 minutes based on our
experiments, while Aidos 2 distributes the time uniformly.

Aidos 3 contains unmodified configurations from the tun-
ing process with time slices automatically optimized for the
number of solved instances per time. It is based both on the
new and existing Fast Downward components.

The remainder of this planner abstract is organized as fol-
lows. First, we describe the three newly developed tech-
niques. Second, we list the previously existing compo-
nents of Fast Downward that we have used for configura-
tion. Third, we describe the benchmarks used for training
and test sets. Fourth, we describe the algorithm configura-
tion process in more detail. Finally, we briefly describe the
resulting portfolios.

Dead-End Pattern Database
A dead-end pattern database (PDB) stores a set of partial
states that are reachable in some abstraction, and for which
no plan exists in the abstraction. Every state s encountered
during the search can be checked against the dead-end PDB:
if s is consistent with any of the stored partial states, then s
can be pruned.

Since we also submitted a stand-alone planner using only
a dead-end PDB to the IPC, we refer to its planner abstract
(Pommerening and Seipp 2016) for details on this tech-
nique.

Dead-end Potentials
Dead-end potentials can prove that there is no plan
for a state s by finding an invariant that must be

satisfied by all states reachable from s but that is
unsatisfied in every goal state. The invariants we con-
sider are based on potentials, i.e., numerical values
assigned to each state. If potentials exist such that
(1) no operator application decreases a state’s potential,

and
(2) the potential of s is higher than the potential of all

goal states,
then there cannot be a plan for s.

In order to describe the form of potentials used in our im-
plementation, we first introduce more terminology. A fea-
ture is a conjunction of facts. We say that feature F is true
in state s if all facts of F are true in s. We define a numerical
weight for each feature. The potential of a state s is defined
as the sum of all weights for the features that are true in s.

If the planning task is in transition normal form (Pom-
merening and Helmert 2015), the conditions (1) and (2) can
be expressed as linear constraints over the feature weights.
We can use an LP solver to check if there is a solution for
these constraints. A solution of the LP forms a certificate for
the unsolvability of s.

Dead-end potentials can show unsolvability using any set
of features. The default feature set we use in most configu-
rations contains all features of up to two facts.

We note that the dual of the resulting LP produces an op-
erator counting heuristic (Pommerening et al. 2014). In fact,
this is the implementation strategy we used for this method.

We use dead-end potentials to prune dead ends in every
encountered state. Since only the bounds of the LP differ
between states, the LP can be reused by adapting the bounds
instead of having to be recreated for every state.

Resource Detection
For a given planning task Π with operator cost function
cost, we check for depletable resource variables (shortly
called resource variables in the following). We call a vari-
able v a resource variable if the atomic projection Πv of Π
onto v yields, apart from self-loops, a directed acyclic graph
(DAG). Intuitively, if this is the case, the number of operator
applications that change the value of v is bounded. We use
this knowledge for pruning an optimal search in the projec-
tion of Π onto all variables except v, called Πv̄ .

Currently, our approach handles only a single resource
variable. This resource variable is computed as follows. For



Π’s variable set V , we check for each variable v in V if
the above DAG property and an additional quality criterion
hold for v. The additional quality criterion requires i) the
domain size of v to be ≥ 5, and ii) the number of operators
in Πv̄ to be at most 85% of the number of operators in Π.
If no such resource variable is found, we abort immediately
(and switch to the other configurations in our portfolios). If
there are several such resource variables, we choose the one
with the largest domain size among them. Overall, we either
end up with no resource variable found (abstaining from the
following steps), or with exactly one variable with the above
properties on acyclicity, domain size, and operator reduction
in the corresponding abstractions.

In case a resource variable v has been found, we exploit
this variable for detecting unsolvability as follows. Consider
any cost function cost′ that maps operators inducing self-
loops in Πv to 0. LetL be the cost of the most expensive path
in Πv using cost′ (L is finite because the state space of Πv

is a DAG except for edges where cost′ is 0). Every operator
sequence π = 〈o1, . . . , on〉 with cost′(π) > L cannot be
applicable in Π because its cost exceeds the highest possible
cost in the projection Πv . Thus every plan π of Π must have
cost′(π) ≤ L. The projection of these plans to V \ {v}must
be a plan in Πv̄ . We hence obtain a sufficient criterion for
checking unsolvability of Π: Perform an optimal search for
Πv̄ with an f -bound equal to L; if no plan is found in Πv̄

this way, then Π is unsolvable.
Any cost function cost′ which maps self-loops in Πv to 0

works for this technique, but some lead to more pruning in
Πv̄’s search space than others. A node is pruned in the search
for Πv̄ if its f -value exceeds L, so a good cost function max-
imizes the number of operator sequences with maximal cost
in Πv . We compute cost′ by solving a linear program. LetO
be the operator set in Π with corresponding abstract operator
set Ov̄ in Πv̄ . We maximize the weighted sum∑

ov̄∈Ov̄

cost′(ov̄) · |{o ∈ O | ov̄ is the projection of o}|,

using the constraints that the summed cost′ values are L on
every path in Πv from the source of the DAG (the initial
value of v) to an artificial sink connecting all sinks of the
DAG. In our implementation, we fix L to 1000. Every other
value of L would have correspondingly scaled solutions of
cost′ but since we round costs to integers, we have to set L
sufficiently high to avoid rounding too many different costs
to the same value.

Other Fast Downward Components
In addition to the three techniques described above, we used
the following Fast Downward components for detecting un-
solvability.

Search We implemented a simple breadth-first search that
we used for most configurations. Compared to Fast Down-
ward’s general-purpose eager best-first search, it has a con-
siderably smaller overhead. This search method is called
unsolvable search in the configurations listed in the
appendix.

Configurations using resource detection must find opti-
mal plans in the projection where the resource variable is
projected out of the task. For those configurations, we used
A∗ search.

Heuristics In addition to our new techniques, we made the
following heuristics available for configuration.

• Blind heuristic

• CEGAR (Seipp and Helmert 2013; 2014): additive and
non-additive variants

• hm (Haslum and Geffner 2000): naive implementation

• hmax (Bonet, Loerincs, and Geffner 1997; Bonet and
Geffner 1999)

• LM-cut (Helmert and Domshlak 2009)

• Merge-and-shrink (Helmert et al. 2014; Sievers, Wehrle,
and Helmert 2014)

• Operator counting heuristics (Pommerening et al. 2015).

• The canonical PDBs heuristic either combining PDBs
from systematically generated patterns (Pommerening,
Röger, and Helmert 2013) or PDBs from iPDB hill climb-
ing (Haslum et al. 2007), and the zero-one PDBs heuris-
tic combining PDBs from a genetic algorithm (Edelkamp
2006). Sievers, Ortlieb, and Helmert (2012) describe im-
plementation details.

• Potential heuristics (Pommerening et al. 2015) with dif-
ferent objective functions as described by Seipp, Pom-
merening, and Helmert (2015). We also added a variant
of the potential heuristic that maximizes the average po-
tential of all syntactic states (called unsolvable-all-states-
potential heuristic). This variant sets all operator costs to
zero, allowing to prune all states with a positive potential.

Pruning We used the following two pruning methods:

• Strong stubborn sets: the first variant instantiates strong
stubborn sets for classical planning in a straight-forward
way (Alkhazraji et al. 2012; Wehrle and Helmert 2014).
The second variant (Wehrle et al. 2013) provably domi-
nates the Expansion Core method (Chen and Yao 2009)
in terms of pruning power.
While the standard implementation of strong stubborn
sets in Fast Downward entirely precomputes the interfer-
ence relation, we enhanced the implementation by com-
puting the interference relation “on demand” during the
search, and by switching off pruning completely in case
the amount of pruned states falls below a given threshold.

• h2-mutexes (Alcázar and Torralba 2015): an operator
pruning method for Fast Downward’s preprocessor. We
use this method for all three portfolios.

Benchmarks
In this section we describe the benchmark domains we used
for evaluating our heuristics and for automatic algorithm
configuration.

We used the collection of unsolvable tasks from Hoff-
mann, Kissmann, and Torralba (2014) comprised of



the domains 3unsat, Bottleneck, Mystery, Pegsol, RCP-
NoMystery, RCP-Rovers, RCP-TPP and Tiles. Futhermore,
we used the unsolvable Maintenance (converted to STRIPS)
and Tetris instances from the IPC 2014 optimal track.

Finally, we created two new domains and modified some
existing IPC domains to contain unsolvable instances. The
following list describes these domains.

Cavediving (IPC 2014). We generated unsolvable in-
stances by limiting the maximal capacity the divers can
carry.

Childsnack (IPC 2014). We generated unsolvable in-
stances by setting the ratio of available ingredients to re-
quired servings to values less than 1.

NoMystery (IPC 2011). We generated unsolvable in-
stances by reducing the amounts of fuel available at each
location.

Parking (IPC 2011). We generated unsolvable instances
by setting the number of cars to 2l−1, where l is the number
of parking curb locations.

Sokoban (IPC 2008). We used the twelve methods de-
scribed by Zerr (2014) for generating unsolvable instances.

Spanner (IPC 2011). We generated unsolvable instances
by making the number of nuts exceed the number of span-
ners.

Pebbling (New). Consider a square n×n grid. We call the
three fields in the upper left corner (i.e., coordinates 〈0, 0〉,
〈0, 1〉 and 〈1, 0〉) the prison. The prison is initially filled
with pebbles, all other fields are empty. A pebble on position
〈x, y〉 can be moved if the fields 〈x + 1, y〉 and 〈x, y + 1〉
are empty. Moving the pebble “clones” it to the free fields,
i.e., the pebble is removed from 〈x, y〉 and new pebbles are
added to 〈x + 1, y〉 and 〈x, y + 1〉. The goal is to free all
pebbles from the prison, i.e., have no pebble on a field in the
prison. This problem is unsolvable for all values of n.

PegsolInvasion (New). This domain is related to the well-
known peg solitaire board game. Instead of peg solitaire’s
“cross” layout, PegsolInvasion tasks have a rectangular n×
m grid, where m = n + x > n. Initially, the n × n square
at the bottom of the grid is filled with pegs. The goal is to
move one peg to the middle of the top row using peg solitaire
movement rules. This problem is unsolvable for all values
of n ≥ 1 and x ≥ 5.

Algorithm Configuration
In the spirit of previous work (Vallati et al. 2011; Fawcett
et al. 2011; Seipp et al. 2012; 2015), we used algorithm
configuration to find configurations for unsolvable planning
tasks. Here, we employed SMAC v2.10.04, a state-of-the-art

model-based configuration tool (Hutter, Hoos, and Leyton-
Brown 2011).

Some of the heuristics listed above are not useful for prov-
ing unsolvability. On the other hand, all of the mentioned
heuristics are useful for our resource detection method, since
we try to solve the modified tasks. We therefore considered
two algorithm configuration scenarios for Fast Downward,
one tailored towards unsolvability detection, the other to-
wards resource detection.

Configuring for Unsolvability
Our configuration space for detecting unsolvability only in-
cludes one search algorithm, our new breadth-first search.
We include all new techniques, existing heuristics and prun-
ing methods described above, except for the following
heuristics:

• All potential heuristics other than the unsolvable-all-
states-potential heuristic. Since the other variants use
bounds on each weight, they always compute finite
heuristic values and will never prune any state.

• The canonical PDBs heuristic and the zero-one PDBs
heuristic. Both techniques can increase the heuristic
value, but will not lead to more pruning than taking the
maximum over the PDBs.

• LM-cut, because it can only detect states as unsolvable
that are also detected as unsolvable by hmax, which is
faster to compute.

• Additive variant of CEGAR.

Using several hand-crafted Fast Downward configura-
tions, we identified domains from our benchmark set con-
taining easy-non-trivial instances, i.e., instances that are not
trivially unsolvable and for which one or more of the config-
urations could prove unsolvability within 300 CPU seconds.
These domains were 3unsat, Cavediving, Mystery, NoMys-
tery, Parking, Pegsol, Tiles, RCP-NoMystery, RCP-Rovers,
RCP-TPP, and Sokoban. The three RCP domains were fur-
ther subdivided by instance difficulty into two sets each, al-
lowing algorithm configuration to find separate configura-
tions for easy and hard tasks. We used the easy-non-trivial
instances as the training sets for each problem domain, while
keeping any remaining instances from each domain for use
in a held-out test set not used during configuration.

We then performed 10 independent SMAC runs for each
of the 14 domain-specific training sets. Each SMAC run
was allocated 12 CPU hours of runtime, and each individual
run of Fast Downward was given 300 CPU seconds of run-
time and 8 GB of memory. The starting configuration was a
combination of the dead-end pattern database and operator
counting heuristics. The 10 best configurations selected by
SMAC for each considered domain were evaluated on the
corresponding test set. We selected the configuration with
the best penalized average runtime (PAR-10) as the incum-
bent configuration for that domain.

We then extended the training set for each domain by in-
cluding any instances for which unsolvability was proven
in under 300 CPU seconds by the incumbent configuration



for that domain. Then we performed an additional 10 in-
dependent runs of SMAC on the new training sets for each
domain, using the incumbent configuration for that domain
as the starting configuration. We again evaluated the 10 best
configurations for each domain on the corresponding test set,
and selected the configuration with the highest PAR-10 score
as the representative for this domain.

Configuring for Resource Detection
Our configuration space for resource detection allows only
A∗ search, but includes all other components described
above (new techniques, all listed heuristics and pruning
methods).

We chose the easy-non-trivial instances from the three
RCP domains as our benchmark set. Similar to the proce-
dure above we subdivided the tasks from the three domains
into three sets by difficulty, yielding 9 benchmark sets in to-
tal.

We employed the same procedure as above for finding
representative configurations from the resource detection
configuration space for these 9 sets. In this scenario we used
LM-cut as the starting configuration.

Portfolios
Using the representative configurations from the two config-
uration scenarios described above, we obtained a total of 23
separate Fast Downward configurations. We evaluated the
performance of each on our entire 928-instance benchmark
set with a 1800 CPU second runtime cutoff. We used the
resulting data for constructing Aidos 1 and 2 manually, and
for computing Aidos 3 automatically.

Manual portfolios: Aidos 1 and 2
Analyzing the results, we distilled three configurations that
together solve all tasks solved by any of the 23 representative
configurations. The three configurations use h2-mutexes
during preprocessing and stubborn sets to prune applica-
ble operators during search. In particular, they use the
stubborn sets variant that provably dominates EC (called
stubborn sets ec in the appendix). We adjusted the
minimum pruning threshold individually for the three tech-
niques. Techniques that can be evaluated fast on a given
state got a higher minimum pruning threshold. The three
configurations differ in the following aspects:

C1 Breadth-first search using a dead-end pattern database.

C2 Breadth-first search using dead-end potentials with fea-
tures of up to two facts.

C3 Resource detection using an A∗ search. The search uses
the CEGAR heuristic and operator counting with LM-cut
and state equation constraints.

Adding other heuristics did not increase the number of
solved tasks on our benchmark set. The three configurations
did not dominate each other, so it made sense to include all
of them in our portfolio. The only question was how to order
them and how to assign the time slices.

Both C1 and C2 prove many of our benchmark tasks un-
solvable in the initial state. On such instances the config-
urations usually take less than a second. Since the unsolv-
ability IPC uses time scores to break ties we start with two
short runs of C1 and C2. This avoids spending a lot of time
using one configuration, when another solves the task very
quickly.

Next, we run the resource detection method (C3). It will
be inactive on tasks where no resources are found and there-
fore not consume any time. Experiments showed that the
dead-end potentials use much less memory than the dead-
end PDB. To avoid a portfolio that runs out of memory while
executing the last component and therefore does not use the
full amount of time, we put the dead-end potentials (C2) last.

Results on our benchmarks showed that C3 did not solve
any additional tasks after 420 seconds. Similarly, C2 did not
solve any additional tasks after 100 seconds. Since C1 tends
to solve more tasks if given more time, we limited the times
for the other two configurations to 420 and 100 seconds and
alotted the remaining time (1275 seconds) to C1.

Aidos 2 is almost identical to Aidos 1, the only difference
being that it equally distributes the time among the three
main portfolio components.

Automatic portfolio: Aidos 3
In order to automatically select configurations and assign
both order and allocated runtime for Aidos 3, we used
the greedy schedule construction technique of Streeter and
Smith (2008). Briefly, given a set of configurations and cor-
responding runtimes for each on a benchmark set, this tech-
nique iteratively adds the configuration which maximizes n

t ,
where n is the number of additional instances solved with
a runtime cutoff of t. This can be efficiently solved for a
given benchmark set, as the runtime required for each con-
figuration on each instance is known and thus a finite set of
possible t need to be considered. Usually, this results in a
schedule beginning with many configurations and short run-
time cutoffs in order to quickly capture as much coverage
as possible. In order to avoid schedule components with ex-
tremely short runtime cutoffs, we set a minimum of 1 CPU
second for each component.

Using the performance of the 23 configurations obtained
from our two configuration scenarios configurations evalu-
ated on our entire benchmark set (i.e., all domains without
distinction of training or test set), this process resulted in the
Aidos 3 portfolio with 11 schedule components and runtime
cutoffs ranging from 2 to 1549 CPU seconds. All configura-
tions use h2-mutexes during preprocessing.

Post IPC Evaluation
Aidos achieved the first place in the IPC. Since Aidos is
composed many components we performed experiments to
explain its performance to some degree. To do so, we ran
all three versions of Aidos and its individual components on
the same hardware as in the competition. This comprises
the portfolios (denoted Aidos 1, Aidos 2, and Aidos 3 in the
following tables and figures); our simple breadth-first search
(blind); two versions of the dead-end PDBs, one with a 1s
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Coverage with h2 mutexes without h2 mutexes

bag-barman (40) 12 12 12 12 12 12 - 8 12 12 12 12 12 12 - 4
bag-gripper (30) 25 25 15 6 6 4 - 25 8 7 4 6 6 4 - 6
bag-transport (58) 28 28 25 22 22 22 - 29 25 25 22 7 7 7 - 25
bottleneck (25) 25 25 25 25 25 25 - 25 25 25 25 11 15 18 - 25
cave-diving (30) 9 7 10 8 8 8 - 7 9 8 10 8 8 8 - 7
chessboard-pebbling (23) 23 23 23 6 6 6 - 23 23 23 23 6 6 6 - 23
diagnosis (32) 6 6 6 6 8 6 - 4 5 5 6 5 7 6 - 4
document-transfer (34) 13 13 14 12 12 12 - 13 13 13 14 5 12 12 - 7
over-nomystery (29) 14 14 14 2 12 14 9 5 14 14 14 2 12 14 13 5
over-rovers (26) 13 13 12 8 9 12 1 7 14 14 12 8 9 12 9 6
over-tpp (34) 26 26 26 18 24 25 24 19 26 26 26 18 24 25 26 19
pegsol (29) 24 24 24 24 24 24 - 24 24 24 24 24 24 24 - 24
pegsol-row5 (20) 15 15 15 5 5 5 - 15 15 15 15 5 5 5 - 15
sliding-tiles (25) 10 10 10 10 10 10 - 10 10 10 10 10 10 10 - 10
tetris (20) 20 20 20 10 10 10 - 20 20 20 12 10 10 10 - 20

Sum (455) 263 261 251 174 193 195 34 234 243 241 229 137 167 173 48 200

diagnosis (with fix) 11 12 10 11 13 11 0 8

Table 1: Number of solved tasks.

limit to compute the PDB (PDBs 1s 80%) and one with a
300s limit (PDBs 300s 80%); the resource detection (re-
sources 50%); and the dead-end potentials (potentials 20%).
The percentage behind the configuration name relates to the
safety-belt we added to the stubborn-sets pruning technique:
To avoid wasting runtime when no pruning is possible, we
added a safety-belt feature to the stubborn-sets pruning tech-
nique, which switches it off if less then x% of operators are
pruned during the first 1000 expansions. This is the percent-
age included in the configuration names if the configuration
uses this technique. Finally, we ran all of the above configu-
rations without using h2 mutexes in the preprocessor.

Domain-wise Coverage
We start with a discussion of domain-wise coverage on the
benchmarks used in the IPC. Table 1 shows the number of
solved tasks by domain for the different configurations. Dur-
ing the IPC Aidos crashed for some tasks from the diagno-
sis domain because the translator created conditional effects.
Therefore Table 1 includes results for a version of the trans-
lator that works around this, shown in the last row.

Effect of Dead-end PDB Preprocessing Time Recall that
Aidos 1 was set up so that dead-end PDBs get the largest
time slice and use 50% of that time for preprocessing. In our
pre-IPC experiments adding more time often lead to a higher
coverage. In the IPC this effect was minimal: Aidos 1 solves
two more tasks than Aidos 2, which has a shorter time slice
for dead-end PDBs. Also the coverage of dead-end PDBs as
a single configuration only has a 2 task difference between

1s (PDBs 1s 80%) and 300s (PDBs 1s 80%) preprocessing
time. The domains where this makes a difference are mostly
the oversubscription domains (over-nomystery, over-rovers,
and over-tpp).

Effect of Resource Detection We only detect a depletable
resource in the oversubscription domains. Detecting that
fuel is a resource in over-nomystery leads to good results,
but dead-end PDBs solve more tasks. Using the energy level
in over-rovers as a resource is not as helpful, because there
are two rovers and projecting out the energy consumption
of only one of them means that the other one can achieve
all goal fluents for free. In over-tpp we detect money as the
resource, which works quite well, but again dead-end PDBs
perform at least as good. All in all, resource detection did
not provide an advantage in the IPC domains.

Effect of Dead-end Potentials Several domains are com-
pletely solved by this heuristic, i.e., the initial state of all
unsolvable tasks is detected as a dead end. These are bag-
gripper, bag-transport, bottleneck, chessboard-pebbling,
pegsol-row5 and tetris. Additionally, the dead-end potentials
detect some tasks from the over-tpp domain as unsolvable in
the initial state. Without using h2-mutexes in the prepro-
cessor, we no longer detect all tasks from the domains bag-
gripper and bag-transport as unsolvable in the initial state.

Effect of Pruning We performed additional experiments,
not shown here, to evaluate the impact of the stubborn-sets
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Figure 1: Number of solved tasks with different time limits
for individual Aidos components.

pruning technique with blind search. Blind search without
pruning and blind search with pruning (20% and 80% safety-
belt) showed no difference in coverage and no dramatic dif-
ference in the number of expansions. We assume that prun-
ing was switched off in most domains. The domains with
a difference in expansions are chessboard-pebbling (which
is solved completely by the dead-end potentials), diagnosis
and over-tpp (only one task where minor pruning occurs).

In our pre-IPC experiments pruning was mainly useful
for domains like 3unsat that have a lot of order-independent
choices.

Effect of Using h2 Mutexes in the Preprocessor With-
out the preprocessor, the coverage of Aidos 1 would have
been 20 tasks lower. This difference stems from the domains
bag-gripper (25 vs. 8), bag-transport (28 vs. 25), diagnosis
(6 vs. 5) and over-rovers (13 vs. 14). The domain bottle-
neck, which is completely solved by the preprocessor, is also
solved by dead-end potentials in the initial state. Similar re-
sults can be observed for all other configurations.

Effect of Resource Limits
We now turn towards an analysis of the configurations with
respect to time and memory limits. Figures 1 and 2 show
the number of tasks solved with different memory and time
bounds for the individual configurations. As expected, dead-
end PDBs and dead-end potentials solve a large number of
tasks in the initial state. The two dead-end PDB configura-
tions show a jump in the number of solved tasks when the
search starts (i.e., after 1 or 300 seconds). In these cases,
the initial state is not recognized as a dead end, but blind
search pruning states with the discovered dead ends is strong
enough to quickly exhaust the search space. Looking at Fig-
ure 2 shows that not many tasks required more than 2 GB of
memory.
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Figure 2: Number of solved tasks with different memory
limits for individual Aidos components.

Which Component is Most Useful in Which
Domain?
We tried to determine which component was responsible for
solving tasks in each domain. This is often hard to judge,
because in some domains each of many components could
be sufficient and in other domains only certain combinations
of components are able to achieve a high coverage. The fol-
lowing table lists our interpretation of the experiments.

Domain Most influential component
bag-barman dead-end PDBs
bag-gripper dead-end potentials + h2 mutexes
bag-transport dead-end potentials + h2 mutexes
bottleneck dead-end potentials or h2 mutexes

(either technique is sufficient
to solve all tasks)

cave-diving breadth-first search
(+ maybe dead-end PDBs)

chessboard-pebbling dead-end potentials
diagnosis breadth-first search
document-transfer dead-end PDBs or

dead-end potentials + h2 mutexes or
breadth-first search + h2 mutexes
(all three are similar)

over-nomystery dead-end PDBs
over-rovers dead-end PDBs
over-tpp dead-end PDBs or resource detection
pegsol breadth-first search

(almost every technique
solves every task)

pegsol-row5 dead-end potentials
sliding-tiles breadth-first search

(problems are either too easy
or too hard)

tetris dead-end potentials
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Appendix – Fast Downward Aidos Portfolios
We list the configurations forming our three portfolios. Our portfolio components have the form of pairs (time slice, con-
figuration), with the first entry reflecting the time slice allowed for the configuration, which is in turn shown below the time
slice.

Aidos 1
1,
--heuristic h_seq=operatorcounting([state_equation_constraints(),

feature_constraints(max_size=2)], cost_type=zero)
--search unsolvable_search([h_seq], pruning=stubborn_sets_ec(

min_pruning_ratio=0.20))

4,
--search unsolvable_search([deadpdbs(max_time=1)], pruning=stubborn_sets_ec(

min_pruning_ratio=0.80))

420,
--heuristic h_seq=operatorcounting([state_equation_constraints(),

lmcut_constraints()])
--heuristic h_cegar=cegar(subtasks=[original()], pick=max_hadd, max_time=relative

time 75, f_bound=compute)
--search astar(f_bound=compute, eval=max([h_cegar, h_seq]),

pruning=stubborn_sets_ec(min_pruning_ratio=0.50))

1275,
--search unsolvable_search([deadpdbs(max_time=relative time 50)],

pruning=stubborn_sets_ec(min_pruning_ratio=0.80))

100,
--heuristic h_seq=operatorcounting([state_equation_constraints(),

feature_constraints(max_size=2)], cost_type=zero)
--search unsolvable_search([h_seq], pruning=stubborn_sets_ec(

min_pruning_ratio=0.20))

Aidos 2
1,
--heuristic h_seq=operatorcounting([state_equation_constraints(),

feature_constraints(max_size=2)], cost_type=zero)
--search unsolvable_search([h_seq], pruning=stubborn_sets_ec(

min_pruning_ratio=0.20))

4,
--search unsolvable_search([deadpdbs(max_time=1)], pruning=stubborn_sets_ec(

min_pruning_ratio=0.80))

598,
--heuristic h_seq=operatorcounting([state_equation_constraints(),

lmcut_constraints()])
--heuristic h_cegar=cegar(subtasks=[original()], pick=max_hadd, max_time=relative

time 75, f_bound=compute)
--search astar(f_bound=compute, eval=max([h_cegar, h_seq]),

pruning=stubborn_sets_ec(min_pruning_ratio=0.50))

598,
--search unsolvable_search([deadpdbs(max_time=relative time 50)],

pruning=stubborn_sets_ec(min_pruning_ratio=0.80))

599,



--heuristic h_seq=operatorcounting([state_equation_constraints(),
feature_constraints(max_size=2)], cost_type=zero)

--search unsolvable_search([h_seq], pruning=stubborn_sets_ec(
min_pruning_ratio=0.20))

Aidos 3
8,
--heuristic h_blind=blind(cache_estimates=false, cost_type=one)
--heuristic h_cegar=cegar(subtasks=[original(copies=1)], max_states=10,

use_general_costs=true, cost_type=one, max_time=relative time 50,
pick=min_unwanted, cache_estimates=false)

--heuristic h_deadpdbs=deadpdbs(patterns=combo(max_states=1), cost_type=one,
max_dead_ends=290355, max_time=relative time 99, cache_estimates=false)

--heuristic h_deadpdbs_simple=deadpdbs_simple(patterns=combo(max_states=1),
cost_type=one, cache_estimates=false)

--heuristic h_hm=hm(cache_estimates=false, cost_type=one, m=1)
--heuristic h_hmax=hmax(cache_estimates=false, cost_type=one)
--heuristic h_operatorcounting=operatorcounting(cache_estimates=false,

constraint_generators=[feature_constraints(max_size=3), lmcut_constraints(),
pho_constraints(patterns=combo(max_states=1)), state_equation_constraints()],
cost_type=one)

--heuristic h_unsolvable_all_states_potential=unsolvable_all_states_potential(
cache_estimates=false, cost_type=one)

--search unsolvable_search(heuristics=[h_blind, h_cegar, h_deadpdbs,
h_deadpdbs_simple, h_hm, h_hmax, h_operatorcounting,
h_unsolvable_all_states_potential], cost_type=one, pruning=stubborn_sets_ec(
min_pruning_ratio=0.9887183754249436))

6,
--heuristic h_deadpdbs=deadpdbs(patterns=genetic(disjoint=false,

mutation_probability=0.2794745683909153, pdb_max_size=1, num_collections=40,
num_episodes=2), cost_type=normal, max_dead_ends=36389913, max_time=relative
time 52, cache_estimates=false)

--heuristic h_deadpdbs_simple=deadpdbs_simple(patterns=genetic(disjoint=false,
mutation_probability=0.2794745683909153, pdb_max_size=1, num_collections=40,
num_episodes=2), cost_type=normal, cache_estimates=false)

--heuristic h_lmcut=lmcut(cache_estimates=true, cost_type=normal)
--heuristic h_operatorcounting=operatorcounting(cache_estimates=false,

constraint_generators=[feature_constraints(max_size=2), lmcut_constraints(),
pho_constraints(patterns=genetic(disjoint=false,
mutation_probability=0.2794745683909153, pdb_max_size=1, num_collections=40,
num_episodes=2)), state_equation_constraints()], cost_type=normal)

--heuristic h_zopdbs=zopdbs(patterns=genetic(disjoint=false,
mutation_probability=0.2794745683909153, pdb_max_size=1, num_collections=40,
num_episodes=2), cost_type=normal, cache_estimates=true)

--search astar(f_bound=compute, mpd=false, pruning=stubborn_sets_ec(
min_pruning_ratio=0.2444996579070121), eval=max([h_deadpdbs,
h_deadpdbs_simple, h_lmcut, h_operatorcounting, h_zopdbs]))

2,
--heuristic h_deadpdbs_simple=deadpdbs_simple(patterns=systematic(

only_interesting_patterns=true, pattern_max_size=3), cost_type=one,
cache_estimates=false)

--search unsolvable_search(heuristics=[h_deadpdbs_simple], cost_type=one,
pruning=null())

2,
--heuristic h_deadpdbs_simple=deadpdbs_simple(patterns=genetic(disjoint=true,

mutation_probability=0.32087500872172836, num_collections=30, num_episodes=7,



pdb_max_size=1908896), cost_type=one, cache_estimates=false)
--heuristic h_hm=hm(cache_estimates=false, cost_type=one, m=3)
--heuristic h_pdb=pdb(pattern=greedy(max_states=18052), cost_type=one,

cache_estimates=false)
--search unsolvable_search(heuristics=[h_deadpdbs_simple, h_hm, h_pdb],

cost_type=one, pruning=null())

2,
--heuristic h_blind=blind(cache_estimates=false, cost_type=one)
--heuristic h_deadpdbs=deadpdbs(cache_estimates=false, cost_type=one,

max_dead_ends=4, max_time=relative time 84, patterns=systematic(
only_interesting_patterns=false, pattern_max_size=15))

--heuristic h_deadpdbs_simple=deadpdbs_simple(patterns=systematic(
only_interesting_patterns=false, pattern_max_size=15), cost_type=one,
cache_estimates=false)

--heuristic h_merge_and_shrink=merge_and_shrink(cache_estimates=false,
label_reduction=exact(before_shrinking=true, system_order=random,
method=all_transition_systems, before_merging=false), cost_type=one,
shrink_strategy=shrink_bisimulation(threshold=115,
max_states_before_merge=56521, max_states=228893, greedy=true,
at_limit=use_up), merge_strategy=merge_dfp(atomic_before_product=false,
atomic_ts_order=regular, product_ts_order=random, randomized_order=true))

--search unsolvable_search(heuristics=[h_blind, h_deadpdbs, h_deadpdbs_simple,
h_merge_and_shrink], cost_type=one, pruning=null())

4,
--heuristic h_cegar=cegar(subtasks=[original(copies=1)], max_states=114,

use_general_costs=false, cost_type=normal, max_time=relative time 1,
pick=max_hadd, cache_estimates=false)

--heuristic h_cpdbs=cpdbs(patterns=genetic(disjoint=true,
mutation_probability=0.7174375735405052, num_collections=4, num_episodes=170,
pdb_max_size=1), cost_type=normal, dominance_pruning=true,
cache_estimates=false)

--heuristic h_deadpdbs=deadpdbs(cache_estimates=true, cost_type=normal,
max_dead_ends=12006, max_time=relative time 21, patterns=genetic(
disjoint=true, mutation_probability=0.7174375735405052, num_collections=4,
num_episodes=170, pdb_max_size=1))

--heuristic h_deadpdbs_simple=deadpdbs_simple(cache_estimates=false,
cost_type=normal, patterns=genetic(disjoint=true,
mutation_probability=0.7174375735405052, num_collections=4, num_episodes=170,
pdb_max_size=1))

--heuristic h_lmcut=lmcut(cache_estimates=true, cost_type=normal)
--heuristic h_operatorcounting=operatorcounting(cache_estimates=false,

cost_type=normal, constraint_generators=[feature_constraints(max_size=2),
lmcut_constraints(), pho_constraints(patterns=genetic(disjoint=true,
mutation_probability=0.7174375735405052, num_collections=4, num_episodes=170,
pdb_max_size=1)), state_equation_constraints()])

--heuristic h_pdb=pdb(pattern=greedy(max_states=250), cost_type=normal,
cache_estimates=false)

--search astar(f_bound=compute, mpd=true, pruning=null(), eval=max([h_cegar,
h_cpdbs, h_deadpdbs, h_deadpdbs_simple, h_lmcut, h_operatorcounting,
h_pdb]))

7,
--heuristic h_blind=blind(cache_estimates=false, cost_type=one)
--heuristic h_cegar=cegar(subtasks=[original(copies=1)], max_states=5151,

use_general_costs=false, cost_type=one, max_time=relative time 44,
pick=max_hadd, cache_estimates=false)

--heuristic h_hmax=hmax(cache_estimates=false, cost_type=one)



--heuristic h_merge_and_shrink=merge_and_shrink(cache_estimates=false,
label_reduction=exact(before_shrinking=true, system_order=random,
method=all_transition_systems_with_fixpoint, before_merging=false),
cost_type=one, shrink_strategy=shrink_bisimulation(threshold=1,
max_states_before_merge=12088, max_states=100000, greedy=false,
at_limit=return), merge_strategy=merge_linear(variable_order=cg_goal_random))

--heuristic h_operatorcounting=operatorcounting(cache_estimates=false,
constraint_generators=[feature_constraints(max_size=2), lmcut_constraints(),
state_equation_constraints()], cost_type=one)

--heuristic h_unsolvable_all_states_potential=unsolvable_all_states_potential(
cache_estimates=false, cost_type=one)

--search unsolvable_search(heuristics=[h_blind, h_cegar, h_hmax,
h_merge_and_shrink, h_operatorcounting, h_unsolvable_all_states_potential],
cost_type=one, pruning=null())

37,
--heuristic h_hmax=hmax(cache_estimates=false, cost_type=one)
--heuristic h_operatorcounting=operatorcounting(cache_estimates=false,

constraint_generators=[feature_constraints(max_size=10),
state_equation_constraints()], cost_type=zero)

--search unsolvable_search(heuristics=[h_hmax, h_operatorcounting],
cost_type=one, pruning=stubborn_sets_ec(min_pruning_ratio=0.4567602354825518))

33,
--heuristic h_all_states_potential=all_states_potential(max_potential=1e8,

cache_estimates=true, cost_type=normal)
--heuristic h_blind=blind(cache_estimates=false, cost_type=normal)
--heuristic h_cegar=cegar(subtasks=[goals(order=hadd_down), landmarks(

order=original, combine_facts=true), original(copies=1)], max_states=601,
use_general_costs=false, cost_type=normal, max_time=relative time 88,
pick=min_unwanted, cache_estimates=true)

--heuristic h_deadpdbs_simple=deadpdbs_simple(cache_estimates=true,
cost_type=normal, patterns=hillclimbing(min_improvement=2,
pdb_max_size=7349527, collection_max_size=233, max_time=relative time 32,
num_samples=28))

--heuristic h_initial_state_potential=initial_state_potential(max_potential=1e8,
cache_estimates=false, cost_type=normal)

--heuristic h_operatorcounting=operatorcounting(cache_estimates=false,
cost_type=normal, constraint_generators=[feature_constraints(max_size=10),
lmcut_constraints(), pho_constraints(patterns=hillclimbing(min_improvement=2,
pdb_max_size=7349527, collection_max_size=233, max_time=relative time 32,
num_samples=28)), state_equation_constraints()])

--heuristic h_pdb=pdb(pattern=greedy(max_states=6), cost_type=normal,
cache_estimates=true)

--heuristic h_zopdbs=zopdbs(patterns=hillclimbing(min_improvement=2,
pdb_max_size=7349527, collection_max_size=233, max_time=relative time 32,
num_samples=28), cost_type=normal, cache_estimates=false)

--search astar(f_bound=compute, mpd=true, pruning=stubborn_sets_ec(
min_pruning_ratio=0.0927145675045078), eval=max([h_all_states_potential,
h_blind, h_cegar, h_deadpdbs_simple, h_initial_state_potential,
h_operatorcounting, h_pdb, h_zopdbs]))

150,
--heuristic h_deadpdbs=deadpdbs(cache_estimates=false, cost_type=one,

max_dead_ends=6, max_time=relative time 75, patterns=systematic(
only_interesting_patterns=true, pattern_max_size=1))

--search unsolvable_search(heuristics=[h_deadpdbs], cost_type=one,
pruning=stubborn_sets_ec(min_pruning_ratio=0.3918701752094733))



1549,
--heuristic h_deadpdbs=deadpdbs(cache_estimates=false, cost_type=one,

max_dead_ends=63156737, max_time=relative time 4, patterns=ordered_systematic(
pattern_max_size=869))

--heuristic h_merge_and_shrink=merge_and_shrink(cache_estimates=false,
label_reduction=exact(before_shrinking=true, system_order=random,
method=all_transition_systems_with_fixpoint, before_merging=false),
cost_type=one, shrink_strategy=shrink_bisimulation(threshold=23,
max_states_before_merge=29143, max_states=995640, greedy=false,
at_limit=return), merge_strategy=merge_dfp(atomic_before_product=false,
atomic_ts_order=regular, product_ts_order=new_to_old, randomized_order=false))

--search unsolvable_search(heuristics=[h_deadpdbs, h_merge_and_shrink],
cost_type=one, pruning=null())


