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ABSTRACT 
 

While diamond electrodes have been commonly used to generate •OH to treat a variety of persistent water 

and wastewater micropollutants, mass transfer limitations and the non-selective, short-lived nature of the 

•OH restrict the degradation to the solution at, or near, the electrode surface. However, diamond electrodes 

can generate oxidizing species that facilitate micropollutant degradation in the bulk water solution. These 

include persulfate, sulfate radicals, peroxodiphosphate, ferrate, permanganate, reactive chlorine species, 

hydrogen peroxide, and ozone, which have been reported during electrochemical treatment of water with 

diamond electrodes. Although still restricted to specialized applications, recent studies, summarized in this 

review, have proven the electrogeneration of these additional oxidant species to be effective. They have 

shown the adaptability and potential of diamond electrode-based water treatment to mitigate the presence 

of micropollutants in water.  
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Introduction  

Electrochemical technologies present a promising alternative to conventional water and wastewater 

treatment processes for niche applications, such as small, remote, and decentralised systems. Their 

attractiveness towards these applications is partly due to their ability to eliminate the chemical supply chain 

associated with conventional treatment processes, whereby treatment chemicals are electrochemically 

generated on-site and on-demand. Two electrochemical processes have received much research attention: 

electro-oxidation (EO) and electro-reduction (ER). One of the most promising and widely investigated 

electrode materials for EO applications is boron-doped diamond (BDD), which has been shown to 

effectively treat several common and recalcitrant raw water and wastewater pollutants [1–3]. Direct ER at 

the cathode, including with the use of BDD, is also a promising water treatment process for the abatement 

of various common pollutants, such as halogenated compounds like per- and polyfluoroalkyl substances 

[4].  
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BDD EO can occur by various mechanisms, including direct oxidation at the electrode surface and 

through the generation of reactive oxygen species (ROS), most notably hydroxyl radicals (•OH) [5,6]. •OH 

oxidation has been observed to be the primary mechanism for pollutant degradation during BDD EO, 

particularly for the most common water and wastewater organic micropollutants [1–3]. Although •OH is 

highly effective at pollutant degradation, it is a high reduction potential oxidant but non-selective in terms 

of reactivity.  Thus, electrochemically generated hydroxyl radicals are often limited to reactions occurring 

on the electrode surface or within the electrical double layer.  Furthermore, EO and ER are often mass 

transport limited, which limits electrochemical treatment exclusively to the electrode surface. However, 

BDD electrodes can be used either for EO or ER for generation of secondary chemical oxidants for 

downstream oxidation or disinfection during transport in water distribution systems [7,8]. Given these 

prospects, many research groups are exploring a wide variety of applications employing diamond electrodes 

for anodic and cathodic electrochemical water or wastewater treatment, for the efficient generation of 

alternative high reduction potential oxidants that include persulfate, sulfate radical, peroxodiphosphate, 

ferrate, permanganate, reactive chlorine species, hydrogen peroxide, and ozone.  

 

Anodic Electrosynthesis Processes  

Synthetic diamond electrodes have been used for the generation of alternative oxidants from bromide 

[9], nitrate, carbonate [10–17], phosphate [9,18,19], sulphate [20–22] and chloride [9,14,23–34]. In most 

instances, the generation of these oxidants is a by-product due to the parasitic side reactions involving 

electrolyte species during a water/wastewater EO process. However, the targeted electrosynthesis of 

oxidant species during EO is being explored to increase pollutant transformation at the electrode surface 

via direct- and •OH-mediated oxidation and in the bulk-phase water. In particular, oxidants such as 

persulfate (S2O8
2-, E0=+1.96 VSHE) [35], sulfate radical anion (SO4

•-, E0=+2.44 VSHE) [36], 

peroxodiphosphate (P2O8
4-, E0=+2.07 VSHE) [37], ferrate (FeO4

2-, E0=+2.2 VSHE) [38], permanganate (MnO4
-

, E0=+1.51 VSHE) [39], and reactive chlorine species (RCS) [40,41] during EO on BDD have been reported 

to increase micropollutant degradation rates [42].  

Research has been focused on the generation of phosphate and sulphate radical anions since the parent 

ions are common constituents in water and wastewater. The BDD electrosynthesis of peroxodiphosphate, 

P2O8
4-,  has been studied as functions of applied potential, current density, pH, and temperature [18,43]. 

Sánchez et al. electrochemically synthesized peroxodiphosphate under optimized conditions using a thin 

diamond layer (1.05 μm), high boron content (8000 ppm), with a high sp3/sp2 (diamond/graphite) carbon 

ratio of 80:1exhibited both direct electron transfer and •OH-mediated oxidation at the BDD surface [37]. 

Similar factors have been explored during the electrosynthesis of persulfate (S2O8
2-) and sulfate radicals 

(SO4
•-) [36]. For example, Martínez-Huitle et al. observed that lower sp3/sp2 ratios favored the synthesis of 
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S2O8
2- due to the increased adsorption sites on graphite for sulfate, whereby SO4

•- is formed and reacts (with 

other adsorbed SO4
•-) to form S2O8

2- [44]. The role of •OH on sp3 sites in the oxidation of SO4
•- to S2O8

2- has 

also been noted [35].  

The electrochemical generation of RCS has been widely investigated using mixed metal oxide 

electrodes [45], as well as with BDD for the synthesis of chloramines [41], and the volatile chlorine species 

Cl2, ClO2, and Cl2O [40]. Chloramines were observed to be efficiently synthesized via electro-oxidation of 

chloride anions to chlorine radicals and the subsequent chlorination of ammonia. The electrochemical 

production of ClO2 and Cl2O during BDD electro-oxidation may explain observed increases in 

performances during electrochemical production of RCS  to conventional chlorination systems [40]. The 

role of sp3/sp2 on RCS generation has also been investigated. Electrodes containing a greater diamond 

content yielded greater generation of desirable active chlorine species, like Cl2 and ClO2, while higher 

graphite content lead to active chlorine conversion to undesirable specie, such as perchlorate (ClO4
-) [46]. 

The electrochemical synthesis of high valence state iron and manganese oxidants such as ferrate (VI)  

(FeO4
2-) and permanganate (MnO4

-) is currently of interest [47]. Ferrate has been observed to be generated 

from several different iron precursor species including Fe2O3, FeO, and FeCl3 [47,48] during oxidation of 

BDD electrodes even at very low initial iron concentrations (9 μM FeCl2) [38],  The production mechanism 

involves both direct electron transfer to BDD and a •OH-mediated oxidation at the anode surface [49]. The 

electrochemical synthesis of permanganate from low initial [Mn2+] = 39 μM has recently been reported 

[39]. Permanganate synthesis was observed to progress less readily than ferrate under similar conditions, 

as the electro-oxidation of Mn2+ proceeded principally to intermediate oxidation state species of insoluble 

manganese in the +3, +4, and +5 valence states. However, even low levels of ferrate and permanganate 

generation were observed to increase the degradation of water pollutants such as atrazine [50,51] and 

perfluorooctane sulfonate [52] during electro-oxidation processes. However, the roles of the boron content, 

sp3/sp2 carbon ratio and other BDD modifiers or co-dopants are still largely unknown.  

The anodic production of H2O2 using BDD electrodes has been demonstrated, with Faradaic 

efficiencies increasing from 12 to 32% and production rates increasing from 0.27 to 3.9 μmol min-1 cm-2 

between 2.57 and 2.9 VRHE [53]. A similar trend in H2O2 anodic electrosynthesis was observed by Mavrikis 

et al. [54]. Their research found higher production rates and current efficiencies at higher anodic potentials. 

When operating between 2.67-3.47 VRHE, an H2O2 concentration and Faradaic efficiency of  29 mmol dm-3 

and 28% were achieved at 3.47 and 3.17 VRHE, with corresponding production rates of  19.6 and 10.6 μmol 

min-1 cm-2, respectively [54]. In a related study, H2O2 concentrations of 0.79, 1.57, 3.5 and 4.34 mg L-1 and 

Coulomb efficiencies of 19, 18, 15 and 6.3% after 30 min of electrolysis were reported for potentials of 2.0, 

2.5, 3.0 and 3.5 VAg/AgCl, respectively [55]. In addition, the generation of ozone using BDD electrodes has 

also been reported.  For example, ozone concentrations as high as 5.6 mg L-1 were achieved with current 
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densities of 20 and 40 mA cm-2 (pH = 3, [Na2SO4] = 0.05 M, T = 23 °C and Q = 4.7 L min-1) [56]. In 

contrast, at 60 mA cm-2, the O3 concentration decreased from 5.6 mg L-1 at 60 min down to 2.9 mg L-1 at 

360 min of electrolysis [56]. 

 

Cathodic Electrosynthesis Processes 

While the generation of H2O2 by a BDD anode was reported in the previous section, it has more 

commonly been explored during the cathodic reduction of oxygen. Even though simple carbon materials 

have been extensively used for H2O2 generation via O2 reduction at the cathode, BDD has also been used 

successfully. Santana-Martínez et al. reported H2O2 concentrations of 0.72, 0.52 and 0.33 mg L-1 after 360 

min of electrolysis at current densities of 20, 40 and 60 mA cm-2 (pH = 3, [Na2SO4] = 0.05 M, T = 23 °C 

and Q = 4.7 L min-1), respectively [56]. Furthermore, the electrogenerated H2O2 can be oxidized to O2 and 

H+, which can subsequently react with the electrogenerated O3 to produce ROS, such as •OH and •O2
-, as 

well as O2. This can also be facilitated by the recombination of •OH generated at the anode. These processes 

explain why the measured concentration of H2O2 is, roughly, one order of magnitude lower than that of O3. 

A similar difference in oxidant concentrations was also observed when electrolysis was conducted at pH 7. 

Similarly, Thostenson et al. reported H2O2 concentrations of 0.24, 1.35 and 5.0 mg L-1 and Coulombic 

efficiencies of 47, 53 and 19 % after 30 min of electrolysis at potentials of -1.0, -1.5 and -2.0 VAg/AgCl, 

respectively [55]. 

For the electrosynthesis processes herein reviewed, further efforts should consider the improvement 

of reactor design, aimed to reduce mass transfer limitations in the electrochemical cell, to increase the 

electrosynthesis efficiency and micropollutant degradation. Moreover, current efficiencies can be further 

improved with increased oxidation and/or reduction selectivity, through the modifications and addition of 

co-dopants to diamond electrode materials [57].  

 

Applications 

 Commercial EO and ER operations using diamond electrodes are still limited to niche applications on 

a relatively small scale. The versatility and tunability of EO and ER provide tailored solutions to specific 

wastewater treatment needs, such as the on-site removal of non-biodegradable toxic compounds in 

industrial wastewaters, or systems with small space requirements [58]. Like other electrochemical devices 

for water and wastewater treatment [59–61], EO and ER using diamond electrodes can be used as an off-

grid solution using renewable energy sources for the generation of oxidants, where grid electricity is scarce 

or non-existent, such as rural areas of low- and middle-income countries [62]. Electrolysis cells are 

electrodes directly connected to a power supply operating in DC in a monopolar or bipolar electrochemical 

(BPE) configuration. In the BPE configuration, an electric field is generated by an extra pair of electrodes, 
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avoiding an electrical connection to the internal electrode(s). EO and ER can be separated using an ion-

specific membrane or can be together in a single chamber configuration in batch or flow-through modes. 

Different possibilities of electrochemical reactor design specifics for BDD-driven electrosynthesis are 

presented in Table 1 with examples of applications from academia and industry. More comprehensive 

reviews and analysis can be found in the literature [63–66].  

The design of electrochemical reactors is still very system-specific without standardized reactor shape 

and electrode configuration requirements for similar industrial usage [65], and often require extensive 

modelling and evaluation work and laboratory studies to identify the optimal configuration and operating 

conditions [67,68].  

 

Table 1. Examples of design-specific reactor configurations used in the electrochemical synthesis of 

oxidants in water and wastewater treatment and their specific advantages and challenges.  

Sub-system Configuration Advantages Challenges 
Recent examples of 

application 

BDD 

electrode 

configuration 

Monopolar 

High current density 

Low electrical 

potential requirement 

Higher surface area 

Can be run in 

galvanostatic mode 

“Dead zones” 

can be present in 

large scale 

reactors 

Most electrode 

configurations used in 

laboratory studies are 

monopolar 

Bipolar 
Easy assembly 

 

Low current 

density 

High electrical 

potential 

requirement 

Diamox advanced 

electrochemical reactor 

(commercially available) 

[69] 

Electrochemical 

reactor 

Single chamber 

(e.g., batch or 

CSTR) 

Easy to operate 

Less susceptible to 

fast changes in 

wastewater load 

Mass transport 

can be a 

challenge 

Most electrochemical 

reactors used in laboratory 

studies are single chambers. 

Flow-through 

(e.g., PFR) 

Small design footprint 

 

Contact time can 

be too short 

Outlet 

concentrations 

are highly 

susceptible to 

inlet variations 

Membrane-based 

electrochemical flow reactor 

for the generation of ferrates  

[70] 

Electrochemical 

cell 

Separated (e.g., 

ion-specific 

membrane) 

High residence time 

of oxidants or 

reducers 

Separated fluxes can 

have a higher added 

value 

High 

electrochemical 

resistance 

 

Electrochemical preparation 

of persulfate in a split-cell or 

dual-chamber reactor [71,72] 
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Undivided (no 

barrier between 

anodes and 

cathodes) 

Low electrochemical 

resistance,  

Combine EO and ER 

processes 

 

Low residence 

time of oxidants 

or reducers 

Treatment of Thiosalts in 

Contaminated Mine Water 

[73] 

 

At the laboratory or bench scale, the use of diamond electrodes for synthesizing oxidants species and 

their use in the subsequent degradation of various organic micropollutants has been investigated. The 

oxidation of several aromatic (phenol and naphthol) and aliphatic (2-propanol and maleic acid) organic 

species, as well as an inorganic pollutant (cyanide), was tested using electrosynthesized peroxodiphosphate 

[37]. It was observed that the chemical structure of the organic pollutants did not yield specific selectivity 

towards peroxodiphosphate oxidation, but rather was a function of oxidant concentration. Several studies 

have been published which investigated the incidental degradation of pesticides, such as propham, in 

chloride-containing waters [42]. While propham degradation was observed to increase with increasing 

chloride concentrations, due to the greater rate of RCS synthesis, the overall extent of complete pollutant 

mineralization was decreased due the formation of stable chlorinated by-products; a phenomenon that has 

been reported previously for other organic micropollutants [74,75]. Limited studies have also evaluated the 

degradation of target pollutants by electrochemically synthesized ferrate (e.g., 2,4-D [70] and microcystin-

LR [76]). Similarly, the simultaneous EO and electrochemically synthesized ferrate oxidation of pollutants 

such as blue BR dye [77], atrazine [50] and PFOS [52] were all found to significantly increase overall 

compound degradation due to the effects of ferrate. Increased degradation of atrazine was observed during 

an EO and coupled in situ permanganate synthesis [51].  

 

Conclusion 

The use of electrochemical systems to treat various water and wastewater matrices has been receiving 

much attention over the last several decades. While the development of novel and powerful electrode 

materials, like boron-doped diamond, have widened the possibilities for EO and ER technologies, mass-

transport-limited to the electrode surface haves restricted their application as oxidation and disinfection unit 

operations. However, the co-generation of powerful oxidant species, such as S2O8
2-, SO4

•-, P2O8
4-, FeO4

2-, 

MnO4
-, RCS and ROS, during EO and ER operations, allows for the simultaneous degradation of target 

pollutants at the electrode surface and in the bulk-phase water solutions. While research in this area is still 

in progress, and real-world systems are limited to niche applications, the potential use of simultaneous 

electro-degradation (EO and ER) and oxidant generation is a promising technology worthy of further 

exploration.  
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[9] P. Cañizares, C. Sáez, A. Sánchez-Carretero, M.A. Rodrigo, Synthesis of novel oxidants by 

electrochemical technology, J. Appl. Electrochem. 39 (2009) 2143–2149. 

https://doi.org/10.1007/s10800-009-9792-7. 



 8 

[10] P. Cañizares, M. Díaz, J.A. Domínguez, J. García-Gómez, M.A. Rodrigo, Electrochemical 

oxidation of aqueous phenol wastes on synthetic diamond thin-film electrodes, Ind. Eng. Chem. 

Res. 41 (2002) 4187–4194. https://doi.org/10.1021/ie0105526. 

[11] P. Cañizares, J. Lobato, R. Paz, M.A. Rodrigo, C. Sáez, Electrochemical oxidation of phenolic 
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