

Cosmic Rays Primary Energy estimation using ML and combined reconstruction

1

Diana Leon Silverio South Dakota School of Mines and Technology

1/Feb/2022 Co-authors: IceCube Collaboration, Xinhua Bai, Matthias Plum

Overview

- Introduction and Motivation
- General description of the reconstruction
- Energy estimation method using Linear fit
- Energy estimation/prediction using Random Forest Regression
- Comparison between Liner Fit and Random Forest Regression performance
- Summary

from air showers.

Introduction

There is no conventional energy estimation function (each analysis is unique; simulation, snowmodel, cuts, etc.).

• Using Random Forest Regression and a combined reconstruction to estimate cosmic rays's primary energy

• Using Monte Carlo events for proton, iron, helium and oxygen under two containment conditions (contained and uncontained).

• Investigate a possible improvement for cosmic rays' primary energy estimation

Reconstruction

- Combines the likelihoods of IceTop and InIce \equiv together for event reconstruction
- Timing Likelihood: Implementation of a flexible curvature and new timing fluctuation

Monte Carlo events for proton, helium, oxygen, and iron primaries (IC86-2012).

Events are reconstructed using a combined reconstruction (3D Reconstruction)

https://wiki.icecube.wisc.edu/index.php/RockBottom

https://arxiv.org/pdf/1908.07582.pdf

Combined Reconstruction

Events

$log_{10}(E[GeV]) = p_0 + p_1 log_{10}(S_{125}[VEM])$

Note: Calculation for Helium, Oxygen and Iron at backup

m **SOUTH DAKOTA MINES**

$log_{10}(E[GeV]) = p_0 + p_1 log_{10}(S_{125}[VEM])$

Note: Calculation for Helium, Oxygen and Iron at backup

Energy estimation/prediction using Random Forest Regression Internation Proton Iron

- Random Forest Regression prediction:
	- Consider proton, helium, oxygen and iron primaries together!!.
	- Consider contained and uncontained events together!!.
	- Zenith dependence as one feature parameter for training.
	- Give the possibility to consider InIce feature parameters.

Energy estimation/prediction using Random Forest Regression

Events Selection

- Monte Carlo events for proton, iron, helium and oxygen (IC86-2012) • Random Forest Regression (open-source Python package Scikit-Learn).
- Selection Criteria: - Contained: Core location inside of IceTop Array and InIce muon track - Uncontained: Core location outside IceTop Array and InIce muon track
- Requiring a successful reconstruction

• R^2 regression score function. 2

Machine Learning

11

Energy estimation/prediction using Random Forest Regression

https://arxiv.org/pdf/1906.04317.pdf

m **SOUTH DAKOTA MINES**

$$
LDF S(r) = S_{ref} \left(\frac{R}{R_{ref}}\right) \frac{1}{P_{ref}} k \log_{10}(R/R_{ref})
$$

- 75% for Training
- 25% for Testing

The training and testing dataset has a total 176070 events (proton, iron, helium and oxygen).

14

Contained+Uncontained

Energy estimation/prediction using Random Forest Regression

m **SOUTH DAKOTA MINES**

Comparison between Linear Fit and Random Forest Regression performance

- Preliminary comparison considering proton and iron events (contained and uncontained)
- Specific energy ranges:

 $-$ Contained: $0.95 < cos(\theta) < 1.0$

-Uncontained: $0.85 < cos(\theta) < 0.90$

Comparison between Linear Fit and Random Forest Regression performance

Comparison between Linear Fit and Random Forest Regression performance

Summary

• Two methods for primary energy estimation were implemented. ML performs a comparable results related with contained events. While for uncontained events ML approach offers a better

- events for proton, iron, helium and oxygen for IceTop and IceCube.
- performance.

In this work we implemented a combined reconstruction considering contained and uncontained

Backup

21

Flexible Curvature

$$
\sigma_t(R) = a + bR^2
$$

New Timing fluctuation

$$
\sigma_{ti} = C \frac{\sqrt{\sum_{j=1}^{2} (t_{ij} - (\frac{t_{i1} + t_{i2}}{2}))^2}}{(\sum_{j=1}^{2} Q_{ij})^a} + b
$$

Conventional

New Timing Fluctuation

Contained Events

Uncontained Events

 9.5

 9.5

