

Cosmic Rays Primary Energy estimation using ML and combined reconstruction

Diana Leon Silverio South Dakota School of Mines and Technology

Co-authors: IceCube Collaboration, Xinhua Bai, Matthias Plum 1/Feb/2022

Overview

- Introduction and Motivation
- General description of the reconstruction
- Energy estimation method using Linear fit
- Energy estimation/prediction using Random Forest Regression
- Comparison between Liner Fit and Random Forest Regression performance
- Summary

Introduction

from air showers.

There is no conventional energy estimation function (each analysis is unique; simulation, snowmodel, cuts, etc.).

Using Random Forest Regression and a combined reconstruction to estimate cosmic rays's primary energy

Using Monte Carlo events for proton, iron, helium and oxygen under two containment conditions (contained and uncontained).

Investigate a possible improvement for cosmic rays' primary energy estimation

Reconstruction

Events are reconstructed using a <u>combined reconstruction</u> (3D Reconstruction)

Combined Reconstruction

- Combines the likelihoods of IceTop and InIce______ together for event reconstruction
- Timing Likelihood: Implementation of a flexible curvature and new timing fluctuation

Events

Monte Carlo events for proton, helium, oxygen, and iron primaries (IC86-2012).

https://arxiv.org/pdf/1908.07582.pdf

https://wiki.icecube.wisc.edu/index.php/RockBottom

fit
111

Proton	lro
Oxygen	Heliu

$log_{10}(E[GeV]) = p_0 + p_1 log_{10}(S_{125}[VEM])$

Combined Reco - Contained Events			
Zenith	p_0	p_1	
$0.95 < cos(\theta) < 1.0$	6.0446	0.9824	
$0.90 < cos(\theta) < 0.95$	6.0822	0.9639	
$0.85 < cos(\theta) < 0.90$	6.1517	0.9399	

Note: Calculation for Helium, Oxygen and Iron at backup

m SOUTH DAKOTA MINES

$log_{10}(E[GeV]) = p_0 + p_1 log_{10}(S_{125}[VEM])$

Combiend Reco - Uncontained Events				
Zenith	p_0	p_1		
$0.95 < \cos(\theta) < 1.0$	5.9447	1.1413		
$0.90 < cos(\theta) < 0.95$	5.9767	1.1390		
$0.85 < cos(\theta) < 0.90$	5.9451	1.1796		
$0.80 < cos(\theta) < 0.85$	6.2266	1.0214		
$0.75 < cos(\theta) < 0.80$	5.9997	1.1487		
$0.70 < cos(\theta) < 0.75$	6.4873	0.9432		
$0.65 < cos(\theta) < 0.70$	6.8099	0.8525		
$0.60 < cos(\theta) < 0.65$	8.6340	0.1522		

Note: Calculation for Helium, Oxygen and Iron at backup

- Random Forest Regression prediction:
 - Consider proton, helium, oxygen and iron primaries <u>together</u>!!.
 - Consider contained and uncontained events <u>together</u>!!.
 - Zenith dependence as one feature parameter for training.
 - Give the possibility to consider InIce feature parameters.

Events Selection

- Monte Carlo events for proton, iron, helium Random Forest Regression (open-source and oxygen (IC86-2012) Python package Scikit-Learn).
- Selection Criteria: - <u>Contained</u>: Core location inside of IceTop Array and InIce muon track - Uncontained: Core location outside IceTop Array and InIce muon track
- Requiring a successful reconstruction

Machine Learning

 R^2 regression score function.

LDF

$$S(r) = S_{ref} \left(\frac{R}{R_{ref}}\right)^{-\beta - \kappa \log_{10}(R/R_{ref})}$$

https://arxiv.org/pdf/1906.04317.pdf

m SOUTH DAKOTA MINES

11

The training and testing dataset has a total 176070 events (proton, iron, helium and oxygen).

- 75% for Training
- 25% for Testing

m SOUTH DAKOTA MINES

14

m SOUTH DAKOTA MINES

Contained+Uncontained

Comparison between Linear Fit and Random Forest Regression performance

- Specific energy ranges:

-Contained: $0.95 < cos(\theta) < 1.0$

-Uncontained: $0.85 < cos(\theta) < 0.90$

Preliminary comparison considering proton and iron events (contained and uncontained)

Comparison between Linear Fit and Random Forest Regression performance

Comparison between Linear Fit and Random Forest Regression performance

Summary

- events for proton, iron, helium and oxygen for IceTop and IceCube.
- performance.

In this work we implemented a combined reconstruction considering contained and uncontained

Two methods for primary energy estimation were implemented. ML performs a comparable results related with contained events. While for uncontained events ML approach offers a better

Backup

Flexible Curvature

New Timing Fluctuation

Conventional

$$\sigma_t(R) = a + bR^2$$

New Timing fluctuation

$$\sigma_{ti} = C \frac{\sqrt{\sum_{j=1}^{2} (t_{ij} - (\frac{t_{i1} + t_{i2}}{2}))^2}}{(\sum_{j=1}^{2} Q_{ij})^a} + b$$

Not.	Value	Units
a	1.00	
b	1.22	ns
С	4	VEM

21

Contained Events

Uncontained Events

9.5

