Description of included data files: corrmat.dat - correlation matrix between slowness & radius perturbation coefficients; order of coefficients is (0,0), (1,-1), (1,0)....(8,8) for slowness, and then the same for radius drpowers.dat - power per degree l for radius perturbation, column 1 = l, column 2 = mean, column 3 = 5%ile, column 4 = 95%ile vppowers.dat - power per degree l for Vp perturbation, column 1 = l, column 2 = mean, column 3 = 5%ile, column 4 = 95%ile (using 13.61 km/s reference velocity) m_dr.dat - summary statistics for radius perturbation coefficients, column 1 = l, column 2 = m, column 3 = mean, column 4 = 5%ile, column 5 = 95%ile m_ds.dat - summary statistics for slowness perturbation coefficients, column 1 = l, column 2 = m, column 3 = mean, column 4 = 5%ile, column 5 = 95%ile spatialcorr.dat - spatial correlation between slowness and radius, column 1 = latitude, column 2 = longitude, column 3 = correlation tomodata.dat - summary statistics for Vp, column 1 = latitude, column 2 = longitude, column 3 = mean, column 4 = std dev topodata.dat - summary statistics for radius, column 1 = latitude, column 2 = longitude, column 3 = mean, column 4 = std dev Spherical harmonics are given by Y^m_l(phi, theta) = sqrt(2)*sqrt(((2l+1)(l-m)!)/(4pi(l+m)!)) cos(m phi) P^m_l(cos(theta)); m>0 Y^m_l(phi, theta) = sqrt(2)*sqrt(((2l+1)(l-m)!)/(4pi(l+m)!)) sin(-m phi) P^(-m)_l(cos(theta)); m<0 Y^m_l(phi, theta) = sqrt(((2l+1)(l-m)!)/(4pi(l+m)!)) P^(-m)_l(cos(theta)); m=0 where P^m_l is the associated legendre function including the Condon-Shortley phase