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Abstract 10 

The aim of paleoclimate studies resolving climate variability from noisy proxy records can in essence be 11 

reduced to a statistical problem. The challenge is to extract meaningful information about climate variability 12 

from these records by reducing measurement uncertainty through combining measurements for proxies 13 

while retaining the temporal resolution needed to assess the timing and duration of variations in climate 14 

parameters. In this study, we explore the limits of this compromise by testing different methods for 15 

combining proxy data (smoothing, binning and sample size optimization) on a particularly challenging 16 

paleoclimate problem: resolving seasonal variability in stable isotope records. We test and evaluate the 17 

effects of changes in the seasonal temperature and the hydrological cycle as well as changes in accretion 18 

rate of the archive and parameters such as sampling resolution and age model uncertainty on the reliability 19 

of seasonality reconstructions based on clumped and oxygen isotope analyses in 33 real and virtual 20 

datasets. Our results show that strategic combinations of clumped isotope analyses can significantly 21 

improve the accuracy of seasonality reconstructions compared to conventional stable oxygen isotope 22 

analyses, especially in settings where the isotopic composition of the water is poorly constrained. 23 

Smoothing data using a moving average often leads to an apparent dampening of the seasonal cycle, 24 

significantly reducing the accuracy of reconstructions. A statistical sample size optimization protocol yields 25 

more precise results than smoothing. However, the most accurate results are obtained through monthly 26 

binning of proxy data, especially in cases where growth rate or water composition cycles obscure the 27 

seasonal temperature cycle. Our analysis of a wide range of natural situations reveals that the effect of 28 

temperature seasonality on oxygen isotope records almost invariably exceeds that of changes in water 29 

composition. Thus, in most cases, oxygen isotope records allow reliable identification of growth seasonality 30 

as a basis for age modelling in the absence of independent chronological markers in the record. These 31 

specific findings allow us to formulate general recommendations for sampling and combining data in 32 

paleoclimate research and have implications beyond the reconstruction of seasonality. We briefly discuss 33 

the implications of our results for solving common problems in paleoclimatology and stratigraphy. 34 

  35 
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1. Introduction 36 

Improving the resolution of climate reconstructions is a key objective in paleoclimate studies because it 37 

allows climate variability to be studied on different timescales and sheds light on the continuum of climate 38 

variability (Huybers and Curry, 2006). However, the temporal resolution of climate records is limited by the 39 

accretion rate (growth or sedimentation rate) of the archive and the spatial resolution of sampling for climate 40 

reconstructions, which is a function of the sample size required for a given climate proxy. This tradeoff 41 

between sample size and sampling resolution is especially prevalent when using state-of-the-art climate 42 

proxies which require large sample sizes, such as the carbonate clumped isotope paleothermometer (Δ47; 43 

see applications in Rodríguez-Sanz et al., 2017; Briard et al., 2020; Caldarescu et al., 2021) or stable 44 

isotope ratios in specific compounds or of rare isotopes (e.g. phosphate-oxygen isotopes in tooth apatite, 45 

triple oxygen isotopes in speleothems or carbon isotopes of CO2 in ice cores; Jones et al., 1999; Schmitt 46 

et al., 2012; Sha et al., 2020). The challenge of sampling resolution persists on a wide range of timescales: 47 

from attempts to resolve geologically short-lived (kyr-scale) climate events from deep sea cores with low 48 

sedimentation rates (e.g. Stap et al., 2010; Rodríguez-Sanz et al., 2017) to efforts to characterize tidal or 49 

daily variability in accretionary carbonate archives (e.g. Warter and Müller, 2017; de Winter et al., 2020a). 50 

What constitutes “high-resolution” is therefore largely dependent on the specifics of the climate archive. 51 

Sample size limitations are especially important in paleoseasonality reconstructions. Reliable archives for 52 

seasonality (e.g. corals, mollusks and speleothem records) are in high demand in the paleoclimate 53 

community, because the seasonal cycle is one of the most important cycles in Earth’s climate and 54 

seasonality reconstructions complement more common long-term (kyr to Myr) records of past climate 55 

variability (e.g. Morgan and van Ommen, 1997; Tudhope et al., 2001; Steuber et al., 2005; Steffensen et 56 

al., 2008; Denton et al., 2005; Huyghe et al., 2015; Vansteenberge et al., 2019). A more detailed 57 

understanding of climate dynamics at the human timescale is increasingly relevant for improving climate 58 

projections (IPCC, 2013). Unfortunately, the growth and mineralization rates of archives that capture high-59 

resolution variability (only exceeding 10 mm/yr in rare exceptions, e.g. Johnson et al., 2019) limit the 60 

number and size of samples that can be obtained at high temporal resolutions (e.g. Mosley-Thompson et 61 

al., 1993; Passey and Cerling, 2002; Treble et al., 2003; Goodwin et al., 2003). In addition, accurate 62 
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positioning of samples within the seasonal cycle is challenging. In absence of fine-scale growth markings 63 

(e.g. daily laminae in mollusk shells; e.g. Schöne et al., 2005; de Winter et al., 2020a), this dating problem 64 

relies on modelling or interpolation of the growth of the archive, which introduces uncertainty on the age of 65 

samples (e.g. Goodwin et al., 2009; Judd et al., 2018). These problems are exacerbated by the fact that 66 

accurate methods for climate reconstructions may require comparatively large sample sizes, or rely on 67 

uncertain assumptions. A case in point is the popular carbonate stable oxygen isotope temperature proxy 68 

(δ18Oc) which relies on assumptions of the water composition (δ18Ow) that become progressively more 69 

uncertain further back in geological history (e.g. Veizer and Prokoph, 2015). In contrast, the clumped 70 

isotope proxy (∆47) does not rely on this assumption but requires larger amounts of sample (e.g. Müller et 71 

al., 2017) 72 

A promising technique for circumventing sample size limitations is to analyze larger numbers of small 73 

aliquots from the same sample or from similar parts of the climate archive. These smaller aliquots typically 74 

have poor precision but averaging multiple aliquots into one estimate while propagating the measurement 75 

uncertainty leads to a more reliable estimate of the climate variable (Dattalo, 2008; Meckler et al., 2014; 76 

Müller et al., 2017; Fernandez et al., 2017). This approach yields improved sampling flexibility since aliquots 77 

can be combined in various ways after measurement. It also allows outlier detection at the level of individual 78 

aliquots, thereby spreading the risk of instrumental failure and providing improved control on changes in 79 

measurement conditions that may bias results. 80 

Previous studies have applied several different methods for combining data from paleoclimate records to 81 

reduce analytical noise or higher order variability, and extract variability with a specific frequency (e.g. a 82 

specific orbital cycle or seasonality; e.g. Lisiecki and Raymo, 2005; Cramer et al., 2009). These data 83 

reduction approaches can in general be categorized into smoothing techniques, in which a sliding window 84 

or range of neighboring datapoints is used to smooth high resolution records (see e.g. Cramer et al., 2009) 85 

or binning techniques, in which the record is divided into equal bins in the sampling direction (e.g. time, 86 

depth or length in growth direction; e.g. Lisiecki and Raymo, 2004; Rodríguez-Sanz et al., 2017). In addition, 87 

a third approach is proposed here based on optimization of sample size for dynamic binning of data along 88 

the climate cycle using a moving window in the domain of the climate variable (as opposed to the sampling 89 
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domain) combined with a T-test routine (see section 2.1). All three approaches have advantages and 90 

caveats. 91 

In this study, we explore the (dis)advantages of these three data reduction approaches by testing their 92 

reliability in resolving seasonal variability in sea surface temperature (SST) and water stable oxygen isotope 93 

composition (δ18Ow), both highly sought-after variables in paleoclimate research. We compare 94 

reconstructions of SST and δ18Ow in real and virtual datasets from accretionary carbonate archives (e.g. 95 

shells, corals and speleothems) using the clumped isotope thermometer (Δ47) combined with stable oxygen 96 

isotope ratios of the carbonate (δ18Oc). 97 

 98 

2. Methods 99 

2.1 Reconstruction approaches 100 

Throughout the remainder of this work, the three approaches for combining data for reconstructions are 101 

defined as follows (see also Fig. 1): 102 

Smoothing refers to the reconstruction of SST and δ18Ow based on moving averages of Δ47 and δ18Oc 103 

records (Fig. 1B). For every dataset, the full possible range of moving window sizes (from 1 sample to the 104 

full length of the record) for SST and δ18Ow reconstructions was explored. The window size that resulted in 105 

the most significant difference between maximum and minimum Δ47 values (based on a student’s T-test) 106 

was applied to reconstruct SST and δ18Ow from Δ47 and δ18Oc records. SST and δ18Ow were calculated for 107 

all case studies using a combination of empirical temperature relationships by Kim and O’Neil (1997; δ18Oc- 108 

δ18Ow-temperature relationship) and Bernasconi et al. (2018; Δ47-temperature relationship). To obtain δ18Ow 109 

values, the δ18Oc- δ18Ow-temperature relationship (Kim and O’Neil, 1997) was solved for δ18Ow using the 110 

temperature reconstruction obtained from Δ47 measurements. Here and in other approaches, a typical 111 

analytical uncertainty on measurements of Δ47 (one standard deviation of 0.04‰) and δ18Oc (one standard 112 

deviation of 0.05‰) was used to include uncertainty due to measurement precision. These analytical 113 

uncertainties were chosen based on typical uncertainties reported for these measurements in the literature 114 

(e.g. Schöne et al., 2005; Huyghe et al., 2015; Vansteenberge et al., 2016) and long-term precision 115 
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uncertainties obtained by measuring in-house standards using the MAT253+ with Kiel IV setup in the 116 

clumped isotope laboratory at Utrecht University (e.g. Kocken et al., 2019). The measurement uncertainty 117 

was propagated through all calculations using a Monte Carlo simulation (N = 1000) in which Δ47 and δ18Oc 118 

records were randomly sampled from a normal distribution with the virtual Δ47 and δ18Oc values as means 119 

and analytical uncertainties as standard deviations. Resulting SST and δ18Ow values were grouped into 120 

monthly time bins using the age model of the archive. 121 

Binning refers to reconstructions of SST and δ18Ow based on binning of Δ47 and δ18Oc records into monthly 122 

time bins (Fig. 1C). The Δ47 and δ18Oc data from each case study were grouped into monthly time bins and 123 

converted to SST and δ18Ow using the Kim and O’Neil (1997) and Bernasconi et al. (2018) formulae. Here 124 

too, Monte Carlo simulation (N = 1000) was applied to propagate measurement uncertainties onto monthly 125 

SST and δ18Ow reconstructions. Note that the prerequisite for this method is that the data is aligned using 126 

a (floating) age model accurate enough to allow samples to be placed in the right bin. The age of virtual 127 

samples in this study is known so this prerequisite poses no problems in this case. However, in the fossil 128 

record this alignment might be less certain in the absence of accurate chronologies within the archive (e.g. 129 

through daily growth increments in mollusk shells; e.g. Schöne et al., 2008; Huyghe et al., 2019; see 4.1.3). 130 

Optimization refers to reconstructions of SST and δ18Ow based on sample size optimization in Δ47 records 131 

(Fig. 1D). In this approach aliquots of each dataset are ordered from warm (low δ18Oc) to cold (high δ18Oc 132 

data) samples, regardless of their position relative to the seasonal cycle. From this ordered dataset, 133 

increasingly large samples of multiple aliquots (from 2 aliquots to half the length of the record) are taken 134 

from both the warm (“summer”) and the cold (“winter”) side of the distribution. Summer and winter samples 135 

were kept equal (symmetrical grouping) to reduce the number of possible sample size combinations and 136 

allow for more efficient computation. However, asymmetrical grouping with differing sample sizes on the 137 

summer and winter ends of the δ18Oc-spectrum are possible (see 4.1.3 and 4.2.2). Sample sizes with 138 

significant difference in Δ47 value between summer and winter groups (p ≤ 0.05 based on a student’s T-139 

test) were selected as optimal sample sizes. The moving window T-test in the proxy domain ensures that 140 

an optimal compromise is reached between high precision and resolving differences between seasonal 141 

extremes. For each successful sample size, SST and δ18Ow values were calculated from Δ47 and δ18Oc data 142 
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according to Kim and O’Neil (1997) and Bernasconi et al. (2018) formulae. The relationship between SST 143 

and δ18Ow obtained from these reconstructions was used to convert all Δ47 and δ18Oc data to SST and 144 

δ18Ow, which are then grouped into monthly SST and δ18Ow reconstructions along the archive’s age model. 145 

Measurement uncertainties were propagated through the entire approach by Monte Carlo simulation (N = 146 

1000). 147 

For comparison, we also include reconstructions based solely on δ18Oc measurements with an (often 148 

inaccurate) assumption of a constant δ18Ow (equal to the modern ocean value of 0‰ VSMOW), which form 149 

the most common method for carbonate-based temperature reconstructions in paleoclimate research (see 150 

e.g. Schöne et al., 2005; Westerhold et al., 2020; Fig. 1A; hereafter: δ18O). For these reconstructions, δ18Oc 151 

records were grouped into monthly time bins with analytical uncertainties propagated using the Monte Carlo 152 

approach (N = 1000) and were directly converted to SST using the Kim and O’Neil (1997) temperature 153 

relationship. 154 

For each reconstruction, SST and δ18Ow results were aggregated into monthly averages, medians, standard 155 

deviations, and standard errors. Step by step documentation of calculations made for the three Δ47-based 156 

reconstruction approaches and the δ18Oc reconstructions are given in Supplmentary Data S7 and in the 157 

complementary R package (de Winter, 2021a). 158 

2.2 Benchmarks for accuracy and precision 159 

Accuracy and precision of reconstructions were evaluated against official USGS definitions of climate 160 

parameters (O’Donnell and Ignizio, 2012):  161 

1. mean annual SST (MAT), defined as the average of all 12 monthly temperature reconstructions. 162 

2. seasonal range in SST, defined as the temperature difference between warmest and coldest 163 

month. 164 

3. mean annual δ18Ow, defined as the average of all 12 monthly δ18Ow reconstructions. 165 

4. seasonal range in δ18Ow, defined as the δ18Ow difference between most enriched (highest δ18Ow) 166 

and most depleted (lowest δ18Ow) monthly reconstruction. 167 
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Accuracy was defined as the absolute offset of the reconstructed climate parameter from the “true” value. 168 

Precision was defined as the (relative) standard deviation of the reconstruction, as calculated from the 169 

variability within monthly time bins resulting from Monte Carlo error propagation (see 2.1). An overview of 170 

monthly SST and δ18Ow reconstructions using the four approaches in all cases is given in S4. Raw data 171 

and figures of reconstructions of all cases using all sampling resolutions are compiled in S8. 172 

 173 

Figure 1: Schematic overview of the four approaches for seasonality reconstructions: (A) δ18O-based 174 
reconstructions, assuming constant δ18Ow. (B) Reconstructions based on smoothing δ18Oc and Δ47 data 175 
using a moving average. (C) Reconstructions based on binning δ18Oc and Δ47 data in monthly time bins. 176 
(D) Reconstructions based on optimization of the sample size for combining δ18Oc and Δ47 data (see 177 
description in 2.1). Colored points represent virtual δ18Oc (blue) and Δ47 (red) series in sampling domain. 178 
Black curves represent reconstructed monthly SST and δ18Ow averages. 179 

 180 

2.3 SST and δ18Ow datasets 181 

The three reconstruction approaches were tested and compared based on three types of data. Firstly, a set 182 

of datasets based on fully artificial environmental SST and δ18Ow data (case 1-29; see Fig. 2) converted to 183 

virtual Δ47 and δ18Oc records. Secondly, data based on actual measurements of natural variability in SST 184 

and sea surface salinity (SSS; case 30-33) converted to virtual Δ47 and δ18Oc records. Thirdly, measured 185 

proxy data from a real specimen of a Pacific oyster (Crassostrea gigas, syn. Magallana gigas) compared 186 

to measured environmental (SST and δ18Ow) data reported in Ullmann et al. (2010).  187 

Figure 2: Overview of time series of all virtual test cases. Colored curves represent time series of SST 188 
(red), δ18Ow (blue) and growth rate (orange, abbreviated as “GR”). Horizontal axes in all plots are 12 years 189 
long (see legend below case 6). Vertical axis of all plots has the same scale (SST: 10 to 30°C; δ18Ow: -1 to 190 
+1‰; Growth rate: 0–50 µm/day; see legend in bottom right corner). Horizontal error bars and labels on the 191 
right side of cases 25-29 represent standard errors introduced on the age model (bars not to scale). The 192 
δ18Oc and Δ47 records resulting from these virtual datasets are provided in S6 (see also Fig. 3 for natural 193 
examples).   194 
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Sensitivity cases Natural cases Varying seasonality Varying age 
model uncertainty 

 

7. δ18Ow 
seasonality 
in phase with 
SST 

 
19. Control case with 
reduced SST 
amplitude (~5°C) 

 

1. Control 

8. δ18Ow 
seasonality 
in antiphase 
with SST 

14. Full marine case 
with ontogenetic GR 
trend 

20. Control case with 
reduced SST 
amplitude (~3°C) 

25. Case 9 with ±1 
day age model 
uncertainty 

2. Growth 
stops <12°C 

9. δ18Ow 
seasonality 
lags SST by 
¼ year 

15. Coastal case with 
spring δ18Ow decrease 
and decreasing GR 
trend 

21. Control case with 
reduced SST 
amplitude (~1°C) 

26. Case 9 with ±5 
days age model 
uncertainty 

3. Growth 
stops >28°C 

10. Negative 
δ18Ow in 
spring 

16. Lagoonal case with 
summer δ18Ow increase 

Varying record 
length 

27. Case 9 with 
±15 days age 
model uncertainty 

4. Linear 
decrease in 
GR 

11. Positive 
δ18Ow in 
summer 

17. Tropical monsoon 
case with confined SST 
seasonality and strong 
multi-annual SST cycle 

22. Control case 
shortened to 6 yr 

28. Case 9 with 
±45 days age 
model uncertainty 

5. GR 
seasonality 
in phase with 
SST 

12. Multi-
annual (5 yr) 
SST cycle 

18. Worst-case scenario 
with growth limited to 
summer half of the year 

23. Control case 
shortened to 3 yr 

29. Case 9 with 
±90 days age 
model uncertainty 

6. GR 
seasonality 
lags SST by 
¼ year 

13. Multi-
annual (5 yr) 
δ18Ow cycle 

 24. Control case 
shortened to 1 yr  

Table 1: Overview of virtual cases 1-29 used to test the reconstruction methods. Case descriptions are 195 
abbreviated. Details on the SST, growth rate and δ18Ow included in each case are described in detail in S1. 196 
SST, growth rate and δ18Ow records of all cases are shown in Fig. 2. “GR” = growth rate. 197 

 198 

2.3.1 Cases 1-29: Virtual environmental data, virtual proxy data 199 

Virtual SST and δ18Ow time series were artificially constructed to test the effect of various SST and δ18Ow 200 

scenarios on the effectivity of the reconstruction methods. The default test case (case 1) contained an ideal, 201 

12-year sinusoidal SST curve with a period of 1 year (seasonality), a mean value of 20°C and a seasonal 202 

amplitude of 10°C, a constant δ18Ow value of 0‰ and a constant growth rate of 10 mm/yr. Other cases 203 

contain various deviations from this ideal case (see also Fig. 2, Table 1 and S1): 204 

• Linear and/or seasonal changes in growth rate, including growth stops (cases 2-6, 14-18) 205 
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• Seasonal and/or multi-annual changes in δ18Ow (cases 7-11, 13-18) 206 

• Multi-annual trends in SST superimposed on the seasonality (cases 12, 15 and 17) 207 

• Variations in the seasonal SST amplitude (cases 19-21) 208 

• Change in the total length of the time series (cases 22-24). 209 

• Variation in uncertainty on the age of each virtual datapoint (cases 25-29) 210 

Comparison of the virtual time series (case 1-29; Fig. 2) with the natural variability (case 30-33; Fig. 3) 211 

shows that the virtual cases are not realistic approximations of natural variability in SST and δ18Ow. Natural 212 

SST and δ18Ow variability are not limited to the seasonal or multi-annual scale but contain a fair amount of 213 

higher order (daily to weekly scale) variability. To simulate this natural variability, we extracted the seasonal 214 

component of SST and δ18Ow variability from our highest resolution record of measured natural SST and 215 

SSS data (case 30: data from Texel, the Netherlands, see 2.3.2 and Fig. 3). The standard deviation of 216 

residual variability of this data after subtraction of the seasonal cycle was used to add random high-217 

frequency noise to the SST and δ18Ow variability in virtual cases. Note that while sub-annual environmental 218 

variability can be approximated by Gaussian noise (Wilkinson and Ivany, 2002), this representation is an 219 

oversimplification of reality. In the case of our Texel data, the SST and SSS residuals are not normally 220 

distributed (Kolmogorov-Smirnov test: D = 0.010; p = 7.2*10-14 and D = 0.039; p < 2.2*10-16 for SST and 221 

SSS residuals respectively; see S2-4). SST and δ18Ow data from cases 1-29 was converted to the sampling 222 

domain and subsampled at a range of sampling resolutions following the same procedure applied to cases 223 

30-33 (see 2.3.2). 224 

 225 

2.3.2 Cases 30-33: Measured environmental data, virtual proxy data 226 

Four test cases were based on time series of real measured SST and SSS data from four different locations, 227 

selected to capture a variety of environments with different SST and SSS variability (see Fig. 3): 228 

1. Tidal flats of the Wadden Sea near Texel, the Netherlands (case 30) 229 

2. Great Barrier Reef in Australia (case 31) 230 

3. Gulf of Aqaba between Egypt and Saudi Arabia (case 32) 231 
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4. Northern Atlantic Ocean east of Iceland (case 33). 232 

Daily measurements of SST and SSS for case 31-33 were obtained from worldwide open-access datasets 233 

of the National Oceanic and Atmospheric Administration (NOAA, 2020) and European Space Agency (ESA, 234 

2020) respectively. Hourly SST and SSS measured in situ in the Wadden Sea (case 30) were obtained 235 

from the Dutch Institute for Sea Research (NIOZ, Texel, the Netherlands). Since direct, in situ 236 

measurements of δ18Ow variability at a high temporal resolution were not available, δ18Ow was estimated 237 

from more widely available SSS data using a mass balance (equation 1 and 2; following e.g. Ullmann et 238 

al., 2010): 239 

𝛿𝛿18𝑂𝑂𝑠𝑠𝑠𝑠 = 𝛿𝛿18𝑂𝑂𝑠𝑠,𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠ℎ𝑠𝑠𝑤𝑤𝑤𝑤𝑓𝑓𝑓𝑓 ∗ 𝑓𝑓 + 𝛿𝛿18𝑂𝑂𝑠𝑠,𝑜𝑜𝑜𝑜𝑓𝑓𝑤𝑤𝑜𝑜 ∗ (1 − 𝑓𝑓) (1) 240 

𝑓𝑓 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜
𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑓𝑓𝑠𝑠𝑠𝑠ℎ𝑤𝑤𝑠𝑠𝑤𝑤𝑠𝑠𝑓𝑓−𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜

  (2) 241 

Here, we assume salinity (SSSsample) results from a mixture of a fraction (f) isotopically light and low-salinity 242 

(δ18Ow,freshwater = -8‰; SSSfreshwater = 0) freshwater and a fraction (1-f) ocean water (δ18Ow,ocean = 0‰; 243 

SSSocean = 35 ), with negative amounts of freshwater contribution (f < 0) representing net evaporation 244 

(SSSsample > SSSocean). The value for δ18Ow,freshwater was based on the δ18Ow of rain in the Netherlands (-8‰; 245 

Mook, 1970; Bowen, 2020). Applying this mass balance on the SSS record of the Wadden Sea tidal flats 246 

(case 30) results in δ18Ow values and a SSS-δ18Ow relationship in agreement with measurements in this 247 

region (Harwood et al., 2008). SST and δ18Ow time series for all cases are given in Supplementary Data 248 

S4 and natural cases are plotted in Fig. 3. 249 

For all virtual proxy datasets (cases 1-33), records of SST and δ18Ow were converted to the sampling 250 

domain (along the length of the record) by defining a virtual growth rate in the sampling direction. Adding 251 

this growth rate as a variable allowed us to test the sensitivity of approaches to changes in the extension 252 

rate of the archive, including hiatuses (growth rate = 0). This is important, because fluctuations in linear 253 

extension rate and periods in which no mineralization occurs (hiatuses or growth cessations) are common 254 

in all climate archives (e.g. Treble et al., 2003; Ivany, 2012). After conversion to the sampling domain, virtual 255 

aliquots were subsampled at equal distance from the SST and δ18Ow series of all cases using six sampling 256 

intervals: 0.1 mm, 0.2 mm, 0.45 mm, 0.75 mm, 1.55 mm and 3.25 mm. The four largest sampling intervals 257 
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were chosen such that the standard growth rate (10 mm/yr) was not an integer multiple of the sampling 258 

interval (e.g. 0.45 mm instead of 0.5 mm, and 3.25 mm instead of 3 mm). This decision prevents sampling 259 

the same parts of the seasonal cycle (e.g. same months) every year, which biases both the mean value 260 

and the precision of monthly SST and δ18Ow reconstructions. This bias towards certain parts of the seasonal 261 

cycle is much stronger at low sample sizes (large sampling intervals) and is illustrated in the 262 

Supplementary Figure S2. 263 

 264 

Figure 3: Overview of the four cases of virtual data based on natural SST and SSS measurements explored 265 
in this study. (A) Case 30: Tidal flats on the Wadden Sea, Texel, the Netherlands. (B) Case 31 Great Barrier 266 
Reef, Australia). (C) Case 32: Gulf of Aqaba between Egypt and Saudi Arabia. (D) Case 33: Atlantic Ocean 267 
east of Iceland. For all cases, graphs on top show environmental data, with SST plotted in red, δ18Ow in 268 
blue and growth rate (abbreviated as “GR”) in orange (as in Fig. 2). The graph below shows virtual δ18Oc 269 
(blue) and Δ47 (red) records created from these data series using a sampling interval of 0.45 mm and 270 
including analytical noise (see 3.3). Note that the scale of vertical axes varies between plots.  271 

 272 

2.3.3 Modern oyster: Measured environmental data, measured proxy data 273 

Environmental SST and δ18Ow data from the List Basin in Denmark (54°59.25N, 8°23.51E), where the 274 

modern oyster specimen lived, were obtained from local in situ measurements of SST and SSS described 275 

in Ullmann et al. (2010). Since direct, in situ measurements of δ18Ow variability at a high temporal resolution 276 

were not available, δ18Ow was estimated from more widely available SSS data using the mass balance 277 

described in 2.3.2. The value for δ18Ow,freshwater was based on the discharge weighted average δ18Ow of 278 

water in the nearby Elbe and Weser rivers (see Ullmann et al., 2010). All δ18Ow values throughout the text 279 

are with reference to the VSMOW scale. Contrary to the virtual datasets (cases 1-33; see 2.3.1 and 2.3.2), 280 

the Ullmann et al. (2010) data was already available in the sampling domain, hence no subsampling was 281 

required. 282 

  283 
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2.4 Conversion to δ18Oc and Δ47 data 284 

After subsampling, SST and δ18Ow series (cases 1-33) were converted to δ18Oc and Δ47 using a carbonate 285 

model based on empirical relationships between Δ47 and δ18Oc with SST and δ18Ow (equation 3 and 4; Kim 286 

and O’Neil, 1997; Kele et al., 2015; Bernasconi et al., 2018) and the conversion of δ18O values from 287 

VSMOW to VPDB scale (equation 5; Brand et al., 2014).  288 

𝛥𝛥47 = 0.0449∗106

(𝑆𝑆𝑆𝑆𝑆𝑆+273.15)2
+ 0.167 (3) 289 

1000 ∗ ln
�

𝑂𝑂18

𝑂𝑂16� �
𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶3

�
𝑂𝑂18

𝑂𝑂16� �
𝐻𝐻2𝐶𝐶

= 18.03 ∗ � 103

(𝑆𝑆𝑆𝑆𝑆𝑆+273.15)
� − 32.42 (4) 290 

𝛿𝛿18𝑂𝑂𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 0.97002 ∗ 𝛿𝛿18𝑂𝑂𝑉𝑉𝑆𝑆𝑉𝑉𝑂𝑂𝑉𝑉 − 29.98 (5) 291 

For the modern oyster data (Ullmann et al., 2010; see 2.3.3), only the Δ47 data needed to be created 292 

because δ18Oc was directly measured. As a result, each case study yielded records of Δ47 and δ18Oc in the 293 

sampling domain and corresponding “true” SST and δ18Ow records in the time domain, allowing assessment 294 

of the reliability of the reconstruction approaches in different scenarios (Fig. 4). The result of applying these 295 

steps is illustrated on case 31 (Great Barrier reef data, Fig. 5). All calculations for creating Δ47 and δ18Oc 296 

series in sampling domain were carried out using the open-source computational software R (R core team, 297 

2013), and scripts for these calculations are given in Supplementary Data S7 and compiled in the 298 

documented R package “seasonalclumped” (de Winter, 2021a). All Δ47 and δ18Oc datasets are provided in 299 

Supplementary Data S6. 300 

  301 
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 302 

Figure 4: Flow diagram showing the steps taken to create virtual data (Δ47 and δ18Oc; cases 1-33) and 303 
compare results of SST and δ18Ow reconstructions with the actual SST and δ18Ow data the record was 304 
based on (counterclockwise direction). Steps 1-3 outline the procedure for creating virtual Δ47 and δ18Oc 305 
datasets (see sections 2.3 and 2.4), step 4 shows the application of the different reconstruction methods 306 
on this virtual data (see Fig. 2 for details) and step 5 illustrates how the reconstructions are compared with 307 
the original (“true”) SST and δ18Ow data to calculate accuracy and precision of the reconstruction 308 
approaches. Note that step 1 is different for cases 1-29 (based on fully artificial SST and δ18Ow records; 309 
2.3.1) than for cases 30-33 (SST and δ18Ow records based on real SST and SSS data; see 2.3.2). 310 

 311 

Figure 5: An example of the steps highlighted in Fig. 4 using case 31 (Great Barrier Reef data) to illustrate 312 
the data processing steps. Virtual data plots include normally distributed measurement uncertainty on Δ47 313 
and δ18Oc 314 

  315 
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3. Results 316 

3.1 Real example 317 

Measured (δ18Oc) and simulated (Δ47) data from the Pacific oyster from the Danish List Basin yielded 318 

estimates of SST and δ18Ow seasonality using all reconstruction approaches (Fig. 6). While a model of shell 319 

δ18Oc based on SST and SSS data closely approximates the measured δ18Oc record (Fig. 6C), basing SST 320 

reconstructions solely on δ18Oc data without any a priori knowledge of δ18Ow variability (assuming constant 321 

δ18Ow equal to the global marine value) leads to high inaccuracy in mean annual SST (Fig. 6D). Note that, 322 

in absence of significant δ18Ow seasonality (as in this case study), seasonal temperature range 323 

reconstructions from δ18Oc measurements can be very accurate. However, assuming constant δ18Ow year-324 

round may introduce considerable bias (see Fig. 7 and 8). The in-phase relationship between SST and 325 

SSS (Fig. 6B) slightly dampens the seasonal δ18Oc cycle, causing underestimation of temperature 326 

seasonality, while a negative mean annual δ18Ow value in the List Basin biases SST reconstructions towards 327 

higher temperatures. In terms of SST reconstructions, the smoothing, binning and optimization 328 

approaches based on Δ47 and δ18Oc data yield more accurate reconstructions, albeit with a reduced 329 

seasonality and a bias towards the summer season. The latter is a result of severely reduced growth rates 330 

in the winter season, which was therefore undersampled (see Fig. 6A and 6C). Approaches including Δ47 331 

data also yield far more accurate δ18Ow estimates than the δ18O approach. However, the accuracy of δ18Ow 332 

seasonality and mean annual δ18Ow estimates is low in these approaches too, largely because of the limited 333 

sampling resolution, especially in winter. The optimization approach suffers from the strong in-phase 334 

relationship between SST and SSS, which obscures the difference between the δ18Ow effect and the 335 

temperature effect on shell carbonate. Yet, disentangling SST from δ18Ow seasonality is central to the 336 

success of the approach (see 3.4). Fig. 6D does not show the precision on SST and δ18Ow estimates, which 337 

is much lower for the smoothing approach than for the binning an optimization approaches due to the 338 

limited data in the winter seasons (see Supplementary Data S6). These results show that several 339 

properties of carbonate archives, such as growth rate variability, phase relationships between SST and 340 

δ18Ow seasonality and sampling resolution, can impact the reliability of paleoseasonality reconstructions. 341 
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The virtual and real data cases in this study were tailored to test the effects of these archive properties 342 

more thoroughly. 343 

 344 

Figure 6: (A) Plot of δ18Oc and (virtual) Δ47 data from a modern Pacific oyster (Crassostrea gigas; see 345 
Ullmann et al., 2010). (B) shows SST and δ18Ow data from the List Basin (Denmark) in which the oyster 346 
grew. (C) shows the fit between δ18Oc data and modelled δ18Oc calculated from SST and δ18Ow on which 347 
the shell age model was based. (D) Shows a summary of the results of different approaches for 348 
reconstructing SST and δ18Ow from the δ18Oc and Δ47 data. The vertical colored bars show the reconstructed 349 
seasonal variability using all methods with ticks indicating warmest month, coldest month, and annual 350 
mean. The grey horizontal bars show the actual seasonal variability in the environment. Precision standard 351 
deviation on monthly reconstructions are not shown but are given in S4. 352 

 353 

3.2 Case-specific results 354 

A case-by-case breakdown of the precision (Fig. 7) and accuracy (Fig. 8) of reconstructions using the four 355 

approaches shows that reliability of reconstructions varies significantly between approaches and is highly 356 

case-specific. In general, precision is highest in δ18O reconstructions, followed by optimization and 357 

binning, with smoothing generally yielding the worst precision. Average standard deviations of the 358 

underperforming methods (binning and smoothing) are up to 2-3 times larger than those of δ18O (e.g. 359 

respectively 3.9°C and 3.5°C vs. 1.3°C for δ18O MAT reconstructions; see also Supplementary 360 

Information). It is worth noting that precision on δ18O-based estimates is mainly driven by measurement 361 

precision (which is better for δ18Oc than for ∆47 measurements, see section 4.1.1). ∆47-based reconstructions 362 

lose precision due to the higher measurement error on ∆47 measurements and the method used for 363 

combining measurements for seasonality reconstructions. On a case-by-case basis, the hierarchy of 364 

approaches can vary, especially if strong variability in growth rate is introduced, such as in case 14, where 365 

the size of hiatuses in the record increases progressively, or in case 18, in which half of the year is missing 366 

due to growth hiatuses (see Table 1, Supplementary Data S1 and S4). Of the Δ47-based methods 367 

(smoothing, binning and optimization), optimization is rarely outcompeted in terms of precision in both 368 

SST and δ18Ow reconstructions. 369 

The comparison based on precision alone is misleading, as the most precise approach (δ18O) runs the risk 370 

of being highly inaccurate (offsets exceeding 4°C on some MAT reconstructions; see Fig. 8A), especially 371 

in cases based on natural SST and SSS measurements (case 30-33). The smoothing approach also often 372 
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yields highly inaccurate results, especially in cases with substantial variability in δ18Ow (e.g. case 9-11; Fig. 373 

8). Accuracy of optimization and binning outcompete the other methods in most circumstances. Binning 374 

outperforms optimization in reconstructions of δ18Ow seasonality, making it overall the most accurate 375 

approach. Interestingly, optimization is less accurate specifically in cases with sharp changes in growth 376 

rate in summer (e.g. cases 11, 14, 16 and 17), while binning performs better in these cases. 377 

Reconstructions of mean annual SST and δ18Ow in case 18 are especially inaccurate regardless of which 378 

method is applied. This extreme case with growth only during one half of the year combined with seasonal 379 

fluctuations in both SST and δ18Ow presents a worst-case scenario for seasonality reconstructions leading 380 

to strong biases in mean annual temperature reconstructions. In situations like case 18, the optimization 381 

approach is most accurate in MAT and SST seasonality reconstructions, but δ18Ow is more accurately 382 

reconstructed using the binning approach. Finally, it is worth noting that in natural situations (Fig. 3), 383 

variability in SST almost invariably has a larger influence on δ18Oc and ∆47 records than δ18Ow, such that 384 

fluctuations in δ18Oc records closely follow the SST seasonality even in cases with relatively large δ18Ow 385 

variability (e.g. case 30). Chronologies based on these δ18Oc fluctuations are therefore generally accurate. 386 

 387 

Figure 7: Overview of precision (propagated standard deviation of variability within reconstructions, see 388 
2.2) of reconstructions of mean annual temperature (A), seasonal temperature range (B), mean annual 389 
δ18Ow (C) and seasonal range in δ18Ow (D), with higher values (darker colors) indicating lower precision 390 
(more variability between reconstructions) based on average sampling resolution (sampling interval of 0.45 391 
mm). The different cases on the horizontal axis are color coded by their difference from the control case 392 
(case 1; see legend on the right-hand side). Grey boxes indicate cases for which reconstructions were not 393 
successful. All data on precision (standard deviation values) is provided in Supplementary Data S4. 394 

 395 

Figure 8: Overview of accuracy (absolute offset from “true” values) of reconstructions of mean annual 396 
temperature (A), seasonal temperature range (B), mean annual δ18Ow (C) and seasonal range in δ18Ow (D), 397 
with higher values (darker colors) indicating lower accuracy (higher offsets) based on average sampling 398 
resolution (sampling interval of 0.45 mm). The different cases on the horizontal axis are color coded by 399 
their difference from the control case (case 1; see legend on the right-hand side). Grey boxes indicate 400 
cases for which reconstructions were not successful. All data on accuracy (difference between 401 
reconstructed and “true” values) is provided in Supplementary Data S4. 402 

 403 

Figure 9: Effect of sampling resolution (in samples per year, see S5) on the precision (one standard 404 
deviation) of results of reconstructions of mean annual δ18Ow (A), seasonal range in δ18Ow (B), mean annual 405 
SST (C) and seasonal range in SST (D). Effect on the accuracy (absolute offset from actual value) of results 406 
of reconstructions of mean annual δ18Ow (E) and seasonal range in δ18Ow (F), mean annual SST (G) and 407 
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seasonal range in SST (H). Color coding follows the scheme in Fig. 1 and Fig. 4.3.3 Effect of sampling 408 
resolution 409 

As expected, increasing the temporal sampling resolution (i.e. number of samples per year) almost 410 

invariably increases the precision and accuracy (Fig. 9) of reconstructions using all methods. An exception 411 

to this rule is the precision of δ18O reconstructions, which decreases with increasing sampling resolution 412 

(see Fig. 9C-D). Precision standard deviations of all Δ47-based approaches eventually converge with the 413 

initially much higher precision of δ18O reconstructions when sampling resolution increases. However, the 414 

sampling resolution required for Δ47-based reconstructions to rival or outcompete the δ18O reconstructions 415 

differs, with optimization requiring lower sampling resolutions than the other methods (e.g. 20-40 416 

samples/year compared to 40-80 samples/year for smoothing and binning; Fig. 9A-D). Accuracy also 417 

improves with sampling resolution (Fig. 9E-H). When grouping all cases together, it becomes clear that 418 

δ18O reconstructions can only approach the accuracy of Δ47-based approaches for reconstructions of MAT. 419 

Seasonality in both SST and δ18Ow is most accurately reconstructed using binning, and the smoothing 420 

approach once again performs worst. 421 

 422 

Figure 10: Effect of SST seasonality range (difference between warmest and coldest month) in the record 423 
on the relative precision of SST seasonality reconstructions (“RSD”, defined as one standard deviation 424 
divided by the mean value). A shows precision results if random variability (“weather patterns”) in both SST 425 
and δ18Ow as well as measurement uncertainty is added to the records (see 2.3.3 and S1). B shows 426 
precision of records with random variability in SST and measurement uncertainty only. C shows precision 427 
if only measurement uncertainty is considered. Color coding follows the scheme in Fig. 1 and Fig. 4. 428 
Shaded dots represent results at various sampling resolutions, while bold lines are averages for all 429 
reconstruction approaches. Black circles highlight the places where curves cross the threshold of two 430 
standard deviations, which indicates the minimum SST seasonality that can be resolved within 2 standard 431 
deviations (~95% confidence level) using the reconstruction approach. 432 

 433 

3.4 Resolving SST seasonality 434 

Comparison of cases 19, 20 and 21 (SST seasonality of 9.7°C, 5.7°C and 2.1°C respectively) with control 435 

case 1 (SST seasonality of 19.3°C) shows how changes in the seasonal SST range affect the precision of 436 

measurements (Fig. 10; see also Table 1 and Supplementary Data S1). The data reconfirms that δ18O 437 

reconstructions are most precise; a deceptive statistic given the risk of highly inaccurate results this 438 

approach yields (see Fig. 8). Taking into consideration only analytical uncertainty, all approaches except 439 
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for smoothing can confidently resolve at least the highest SST seasonality within a significance level of 440 

two standard deviations (~95%) using a moderate sampling resolution (mean of all resolutions shown in 441 

Fig. 10). Increasing sampling resolution improves the precision of Δ47-based reconstructions (see Fig. 9D), 442 

so high sampling resolutions (0.1 or 0.2 mm) allow smaller seasonal differences to be resolved. When 443 

random sub-annual variability is added to the SST and δ18Ow records (see 2.3.3), the minimum seasonal 444 

SST extent that can be resolved decreases for all approaches (Fig. 10B and 10C). Nevertheless, δ18O and 445 

optimization reconstructions remain able to resolve a relatively small SST seasonality of 2-4°C. 446 

 447 

Figure 11: Effect of record length (in years) on the relative precision (one standard deviation as fraction of 448 
the mean value) of results of reconstructions of mean annual SST (A) and SST seasonality (B). Colored 449 
dots represent results for the six different sampling resolutions. Solid lines connect averages for cases 1, 450 
22, 23 and 24 for each reconstruction approach. 451 

 452 

3.5 Effect of record length 453 

The effect of variation in the length of the record was investigated by comparing cases 22, 23 and 24 (record 454 

lengths of 6 years, 3 years and 1 year, respectively) with the control case (record length of 12 years; see 455 

Fig. 11 and Table 1). Precision of MAT and SST seasonality reconstructions slightly increase in larger 456 

datasets (longer records) for optimization and binning, but not for smoothing and δ18O reconstructions. 457 

Differences between reconstruction approaches remain relatively constant regardless of the length of the 458 

record, with precision hierarchy generally remaining intact (δ18O > optimization > binning > smoothing). 459 

However, in very short records (1-2 years) smoothing generally gains an advantage over other Δ47-based 460 

methods due to its lack of sensitivity to changes in the record length, and binning reconstructions are not 461 

precise enough to resolve SST seasonality within two standard deviations (~95% confidence level). 462 

Variation in precision is largely driven by very low precision of reconstructions in records with low sampling 463 

resolutions (sampling intervals of 1.55 mm or 3.25 mm; see also Fig. 9A-D). As a result, most of the 464 

reduction in precision in shorter records can be mitigated by denser sampling. 465 

 466 

Figure 12: Effect of uncertainty in age model on the precision (standard deviation on estimate) of results 467 
of reconstructions of mean annual δ18Ow (A) and seasonal range in δ18Ow (B), mean annual SST (C) and 468 
seasonal range in SST (D). Effect of uncertainty in age model on the accuracy (offset from true value) of 469 
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results of reconstructions of mean annual δ18Ow (E) and seasonal range in δ18Ow (F), mean annual SST 470 
(G) and seasonal range in SST (H). Color coding follows the scheme in Fig. 1 and Fig. 4. 471 

 472 

3.6 Effect of age model uncertainty 473 

Uncertainty in the age model has a significant effect on both the precision and the accuracy (Fig. 12) of 474 

reconstructions using all approaches. The δ18O reconstructions are most strongly affected by uncertainties 475 

in the age model and suffer from a large decrease in precision with increasing age model uncertainty (Fig. 476 

12C-D). The high precision of the δ18O approach in comparison with the Δ47 approaches quickly disappears 477 

when age model uncertainty increases beyond 20-30 days. Accuracy of δ18Oc-based SST seasonality 478 

reconstructions initially improves with age model uncertainty (Fig. 12H). However, this observation is likely 479 

caused by the fact that age model uncertainty was compared based on conditions in case 9, which features 480 

a phase offset between SST and δ18Ow seasonality causing the δ18O method to be highly inaccurate even 481 

without age model uncertainty. The precision of smoothing and optimization approaches also decreases 482 

with increasing age model uncertainty (Fig 12A-D), and the optimization approach loses its precision 483 

advantage over the binning and smoothing approaches when age model uncertainty increases beyond 484 

30 days. The monthly binning approach is most resilient against increasing age model uncertainty. 485 

Seasonality reconstructions through both the binning and optimization approach quickly lose accuracy 486 

when age model uncertainty increases but the accuracy of the smoothing approach remains the worst of 487 

all Δ47-based approaches in regardless of age model uncertainty except in the case of δ18Ow seasonality at 488 

exceptionally high (>60 days) age uncertainty (Fig. 12E-H).  489 
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 490 

Figure 13: Overview of averages and ranges of accuracy (absolute offset from real value) and precision 491 
(one standard deviation from the mean) on mean annual δ18Ow (A) and seasonal range in δ18Ow (B), mean 492 
annual SST (C) and seasonal range in SST (D) within all cases using the four different reconstruction 493 
approaches. Color coding follows the scheme in Fig. 1 and Fig. 4. Box-whisker plots for precision and 494 
accuracy cross at their median values and outliers (colored symbols) are identified based on 2x the 495 
interquartile difference (thick lines). 496 

  497 
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4. Discussion 498 

4.1 Performance of reconstruction approaches 499 

4.1.1 δ18Oc vs Δ47-based reconstructions 500 

Figure 13 summarizes the general reliability of the four approaches. δ18O reconstructions are generally 501 

less accurate than Δ47-based reconstructions (especially binning and optimization; see also 502 

Supplementary Data S9). This is a consequence of the assumption that δ18Ow remains constant year-503 

round, and that one knows its true value. Both these assumptions are problematic in the absence of 504 

independent evidence of the value of δ18Ow, especially in deep time settings (see e.g. Veizer and Prokoph, 505 

2015; Henkes et al., 2018). The risk of this assumption is made clear when comparing cases in which δ18Ow 506 

is indeed constant year-round at the assumed value (0‰; e.g. cases 1-6 and 19-24) with cases in which 507 

shifts in δ18Ow occur, especially when these shifts are out of phase with respect to the SST seasonality (e.g. 508 

cases 9-11, 18 and 25-33; Fig. 8C-D). Cases mimicking or based on natural SST and SSS variability (cases 509 

14-18 and 30-33) as well as the modern oyster data (Fig. 6) yield stronger inaccuracies in MAT and 510 

seasonality reconstructions, showing that even in many modern natural circumstances the assumption of 511 

constant δ18Ow is problematic. 512 

It is important to consider that the value of mean annual δ18Ow remained very close to the assumed value 513 

of 0‰ (within 0.15‰) in all cases except for natural data cases 30 (-1.55‰), 32 (1.01‰; see 514 

Supplementary Data S5) and the real oyster data (-1.42‰; Fig. 5). The SST values of these cases 515 

reconstructed using δ18Oc data show large offsets from their actual values (+6.7°C, -4.7°C and +10.3°C for 516 

case 30, case 32 and the real oyster data respectively; see Fig. 6 and 8 and Supplementary Data S5). 517 

These offsets are equivalent to the temperature offset one might expect from inaccurately estimating δ18Ow 518 

(~-4.6 °C/‰; Kim and O’Neil, 1997) and are only rivaled by the offset in MAT reconstructions of case 18 519 

(+5.0°C), which has growth hiatuses obscuring the coldest half of the seasonal cycle. The fact that such 520 

differences in δ18Ow exist even in modern environments should not come as a surprise, given the available 521 

data on worldwide variability of δ18Ow (at least -3‰ to +2‰; e.g. LeGrande and Schmidt, 2006) and SSS 522 

(30 to 40; ESA, 2020) in modern ocean basins. However, it should warrant caution in using δ18Oc data for 523 

SST reconstructions even in modern settings. Implications for deep time reconstructions are even greater, 524 
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given the uncertainty on and variability in global average (let alone local) δ18Ow values (Jaffrés et al., 2007; 525 

Veizer and Prokoph, 2015). The complications of using δ18Oc as a proxy for marine temperatures in deep 526 

time are discussed in detail in O’Brien et al. (2017), and Tagliavento et al. (2019). Complications arising 527 

from variability in δ18Ow are more serious in climate records from euryhaline carbonate producers (e.g. 528 

oysters) than from stenohaline organisms (e.g. corals), as they are mainly driven by salinity fluctuations. 529 

For example, seasonal salinity variability in the North Sea in offshore sites away from freshwater sources 530 

can be as low as 0.25 (Harwood et al., 2008), compared to 3-4 in the coastal Texel site simulated in case 531 

30. Given this variability, studies using the δ18Oc proxy for SST reconstructions are recommended to either 532 

reconstruct δ18Ow through additional measurements (e.g. including clumped isotope analysis) or constrain 533 

δ18Ow variability through isotope-enabled modelling (e.g. Williams et al., 2009) 534 

The analytical uncertainty of individual δ18Oc aliquots (typically 1 S.D. of 0.05‰; e.g. de Winter et al., 2018) 535 

represents only ~1.1% of the variability in δ18Oc over the seasonal cycle (~4.3‰ for the default 20°C 536 

seasonality in case 1, following Kim and O’Neil, 1997). This is much smaller than the analytical uncertainty 537 

of Δ47 (typically 1 S.D. of 0.02-0.04‰; e.g. Fernandez et al., 2017; de Winter et al., 2020b), which equates 538 

to 25-50% of the seasonal variability in Δ47 (~0.08‰ for 20°C seasonality, following Bernasconi et al., 2018; 539 

see Supplementary Data S7). This roughly 20-fold difference in relative precision causes δ18Oc based SST 540 

reconstructions to be much more precise (see Figs 7, 9-12) than those based on Δ47, and forces the 541 

necessity for grouping Δ47 data in reconstructions. However, as discussed above, the high precision of δ18O 542 

reconstructions is a misleading statistic if they are highly inaccurate. 543 

Our results show that paleoseasonality reconstructions based on δ18Oc can only be relied upon if there is 544 

strong independent evidence of the value of δ18Ow and if significant sub-annual variability in δ18Ow (>0.3‰, 545 

equivalent to a 2-3°C SST variability; see Fig. 9-10; Kim and O’Neil, 1997) can be excluded with confidence. 546 

Examples of such cases include fully marine environments unaffected by influxes of (isotopically light) 547 

freshwater or evaporation (increasing δ18Ow; Rohling, 2013). Carbonate records from environments with 548 

more stable δ18Ow conditions include, for example, the A. islandica bivalves from considerable depth (30-549 

50m) in the open marine Northern Atlantic (e.g. Schöne et al., 2005, on which case 33 is based). However, 550 

even here variability in δ18Osw due to, for example, shifting influence of different bottom water masses 551 
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cannot be fully excluded. Previous reconstruction studies show that δ18Ow in smaller basins are heavily 552 

influenced by the processes affecting δ18Ow on smaller scales, such as local evaporation and freshwater 553 

influx from nearby rivers (e.g. Surge et al., 2001; Petersen et al., 2016). Consequently, accurate quantitative 554 

reconstructions of seasonal range in shallow marine environments with extreme seasonality may not be 555 

feasible using the δ18O approach, because these environments are invariably characterized by significant 556 

fluctuations in δ18Ow and growth rate. 557 

While variability in δ18Ow compromises accurate δ18O-based seasonality reconstructions, the compilation 558 

in Fig. 3 shows that its influence on the δ18O records is too small to affect the shape of the record to such 559 

a degree that seasonality is fully obscured. While natural situations with δ18Ow fluctuations large enough to 560 

totally counterbalance the effect of temperature seasonality on δ18O records are imaginable, these cases 561 

are likely rare. This means that chronologies based on δ18O seasonality, which are a useful tool to anchor 562 

seasonal variability in absence of independent growth markers (e.g. Judd et al., 2018; de Winter, 2021b), 563 

are reliable in most natural cases. 564 

4.1.2 Seasonality reconstructions using moving averages (smoothing) 565 

Of the three methods for combining Δ47 data, the smoothing approach clearly performs worst in all four 566 

reconstructed parameters (MAT, SST seasonality, mean annual δ18Ow and δ18Ow seasonality), both in 567 

terms of accuracy and precision (Fig. 13). While applying a moving average may be a good strategy for 568 

lowering the uncertainty of Δ47-based temperature reconstructions in a long time series (e.g. Rodríguez-569 

Sanz et al., 2017), the method underperforms in cases where baseline and amplitude of a periodic 570 

component (e.g. MAT and SST seasonality) are extracted from a record. This is likely due to the smoothing 571 

effect of the moving average, which reduces the seasonal cycle and causes highly inaccurate seasonality 572 

reconstructions (offsets mounting to >6°C; Fig. 13). This bias is especially detrimental in cases where the 573 

seasonal cycle is obscured by seasonal growth halts (e.g. case 18), multi-annual trends in growth (e.g. 574 

case 4, 14 and 17) and multi-annual trends in SST (e.g. case 15 and 17; see Fig. 7 and 8). The poor 575 

performance of the smoothing approach can be slightly mitigated by increasing sampling resolution (Fig 576 

9), but even at high sampling resolutions (every 0.1 or 0.2 mm) the method still fails to reliably resolve 577 

seasonal SST ranges below 5°C even in idealized cases (case 19-21; Fig. 10). Increasing the number of 578 
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samples by analyzing longer records does not improve the result, because smoothing of the seasonal cycle 579 

by a moving average window introduces the same dampening bias if the temporal sampling resolution 580 

(number of samples per year) remains equal (Fig. 11). 581 

More critically, employing the smoothing method may give the illusion that seasonality is more reduced, 582 

and severely bias reconstructions. This bias highlights the importance of using the official meteorological 583 

definition of seasonality as the difference between the averages of warmest and coldest month in 584 

paleoseasonality work (O’Donnell and Ignizio, 2012). This definition is much more robust than the “annual 585 

range” often cited based on maxima and minima in δ18Oc records. This “annual range” strongly depends on 586 

sampling resolution, which is typically <12 samples/yr (Goodwin et al., 2003), equivalent to the third lowest 587 

sampling interval (0.75 mm) simulated in this study. Therefore, we strongly recommend future studies to 588 

adhere to the monthly definition of seasonality to foster comparison between studies. While inter-annual 589 

variability is lost by combining data from multiple years into monthly averages, this approach increases 590 

precision, accuracy and comparability of paleoseasonality results. Inter-annual variability can still be 591 

discussed from plots of raw data plotted in time or sampling domain. 592 

4.1.3 Monthly binning, sample size optimization and age model uncertainty 593 

Overall, the most reliable paleoseasonality reconstructions can be obtained from either binning or 594 

optimization (Fig. 13). In general, optimization is slightly more precise, while binning yields more 595 

accurate estimates of seasonal range in SST and δ18Ow (Fig. 13B and D). The more flexible combination 596 

of aliquots in the optimization routine yields improved precision (especially on mean annual averages) in 597 

cases where parts of the record are undersampled or affected by hiatuses and simultaneous fluctuations 598 

in both SST and δ18Ow (e.g. case 3-6, 14-18, 30-33). The downside of this flexibility is that in the case of 599 

larger sample sizes, the seasonal variability may be dampened, like in the smoothing approach (see 4.1.2). 600 

This apparent dampening effect may be reduced by allowing the sample size of summer and winter samples 601 

to vary independently in the optimization routine, at the cost of higher computational intensity due to the 602 

larger number of sample size combinations (see 2.1 and 4.2.2). The rigid grouping of data in monthly bins 603 

in binning prevents this dampening and therefore yields slightly more accurate estimates of seasonal 604 

ranges in SST and δ18Ow. A caveat of binning is that it requires a very reliable age model of the record, at 605 



26 
 

least on a monthly scale. If the age model has a large uncertainty, there is a risk that samples are grouped 606 

in the wrong month, which compromises the accuracy of binning reconstructions, especially for 607 

reconstructions of seasonal range (Fig 12H). This problem is exacerbated by potential phase shifts between 608 

seasonality in paleoclimate variables (SST and δ18Ow) and calendar dates, which may occur in the presence 609 

of a reliable age model. 610 

Previous authors attempted to circumvent the dating problem by analyzing high-resolution δ18Oc transects 611 

and subsequently sampling the seasonal extremes for clumped isotope analyses (Keating-Bitonti et al., 612 

2011; Briard et al., 2020). While this approach does not require sub-annual age models, it has several 613 

disadvantages compared with the binning and optimization approaches: Firstly, it requires separate 614 

sampling for δ18Oc and Δ47, which may not be possible in high-resolution carbonate archives due to sample 615 

size limitations. Analyzing small aliquots for combined δ18Oc and Δ47 analyses consumes less material. 616 

Secondly, individual summer and winter temperature reconstructions require large (> 1.5 mg; e.g. 617 

Fernandez et al., 2017) Δ47 samples from seasonal extremes, which causes more time-averaging than the 618 

approaches combining small aliquots. Finally, the position of seasonal extremes estimated from the δ18Oc 619 

record may not reflect the true seasonal extent if seasonal SST and δ18Ow cycles are not in phase (as in 620 

case 9), causing the seasonal Δ47-based SST reconstructions to underestimate the temperature 621 

seasonality. In such cases, δ18Oc and Δ47 analyses on small aliquots allow the seasonality in SST and δ18Ow 622 

to be disentangled, yielding more accurate seasonality reconstructions.  623 

Techniques for establishing independent age models for climate archives range from counting of growth 624 

layers or increments (Schöne et al., 2008; Huyghe et al., 2019), modelling and extracting of rhythmic 625 

variability in climate proxies through statistical approaches (e.g. De Ridder et al., 2007; Goodwin et al., 626 

2009; Judd et al., 2018; de Winter, 2021b) and interpolation of uncertainty on absolute dates (e.g. Scholz 627 

and Hoffman, 2011; Meyers, 2019; Sinnesael et al., 2019). While propagating uncertainty in the data on 628 

which age models are based onto the age model is relatively straightforward, errors on underlying a priori 629 

assumptions such as linear growth rate between dated intervals, (quasi-)sinusoidal forcing of climate cycles 630 

and the uncertainty on human-generated data such as layer counting are very difficult to quantify (e.g. 631 

Comboul et al., 2014) and may not be normally distributed. Results of cases 25-29 show that uncertainties 632 
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in the age domain can significantly compromise reconstructions (Fig. 12). Within the scope of this study, 633 

only the effect of symmetrical, normally distributed uncertainties on an artificial case with phase decoupled 634 

SST and δ18Ow seasonality (case 9) was tested. The effects of other types of uncertainties on the 635 

reconstructions remain unknown, highlighting an unknown uncertainty in paleoseasonality and other high-636 

resolution paleoclimate studies that may introduce bias or lead to over-optimistic uncertainties on 637 

reconstructions. Future research could quantify this unknown uncertainty by propagating estimates of 638 

various types of uncertainty on depth values of samples and on the conversion from sampling to time 639 

domain in age models. 640 

4.2 Conditions influencing success of reconstructions 641 

The reliability (accuracy and precision) of SST and δ18Ow reconstructions depend on case-specific 642 

conditions. The range of case studies tested in this study allowed us to evaluate the effect of variability in 643 

SST, growth rate, δ18Ow, sampling resolution and record length relative to the control case (case 1; see 644 

Supplementary Data S1). A summary of the effects of these changes is given in Table 2. 645 

  646 
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Variable cases Metric 
Effect on reconstructions 
δ18O smoothing binning optimization 

SST 

12 
15 
17 
19-21 
30-33 

Precision 0 +++ + 0 

Accuracy + + 0 + 

Growth rate 
2-6 
14-18 
30-33 

Precision + ++ ++ + 
Accuracy + ++ 0 + 

δ18Ow 
7-11 
13-18 
30-33 

Precision + ++ 0 0 
Accuracy +++ +++ + ++ 

Sampling resolution 1-33 
Precision 0 +++ ++ ++ 
Accuracy + + +++ + 

Record length 22-24 
Precision 0 0 +++ ++ 
Accuracy + 0 ++ ++ 

Age model 
uncertainty? 25-29 

Precision +++ ++ 0 ++ 
Accuracy + + ++ ++ 

Table 2: Qualitative summary of the effects of changes in variables relative from the ideal case on 647 
reconstructions using the four approaches. The “cases” column lists cases in which the changes in the 648 
respective variable relative to the control case (case 1) were represented (see Table 1 and S1). “0” = 649 
negligible effect, “+“ = weak increase in uncertainty, “++” = moderate increase in uncertainty, “+++” = strong 650 
increase in uncertainty. Precision and accuracy of all tests is given in S9. 651 

 652 

4.2.1 SST variability 653 

Variability in water temperature most directly affects the proxies under study. By default (case 1), SST 654 

varies sinusoidally around a MAT of 20°C with an amplitude of 10°C (see 2.3.3, Fig. 2 and Supplementary 655 

Data S1). In cases in which multi-annual variability in SST is simulated (e.g. case 15 and 17), the accuracy 656 

of SST reconstructions using δ18O and optimization are reduced, while the binning approach is less 657 

strongly affected. Examples of such multi-annual cyclicity are El-Niño Southern Oscillation (ENSO; 658 

Philander, 1983) or North Atlantic Oscillation (NOA; Hurrell, 1995). The effect is especially large in case 17, 659 

which simulates a tropical environment with reduced SST seasonality and a strong multi-annual cyclicity. 660 

This type of environment is analogous to the environment of tropical shallow water corals, which are often 661 

used as archives for ENSO variability (e.g. Charles et al., 1997; Fairbanks et al., 1997) and is similar to 662 

tropical cases from the Australian Great Barrier Reef (case 31) and Red Sea (case 32; see Fig. 3). We 663 

therefore recommend using the binning approach on carbonate records where multi-annual cyclicity is 664 
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prevalent and if a reliable age model can be established for these records (as in e.g. Sato, 1999; Scourse 665 

et al., 2006; Miyaji et al., 2010). 666 

4.2.2 Growth rate variability and hiatuses 667 

Figures 7 and 8 show that variations in the growth rate of records, including the occurrence of hiatuses, 668 

have a strong effect on reconstructions, especially using the smoothing approach. In general, hiatuses 669 

and slower growth reduce precision of monthly SST and δ18Ow reconstructions by reducing mean temporal 670 

sampling resolution (samples/yr; see Fig. 9), and because parts of the record are undersampled. The effect 671 

on accuracy depends strongly on the timing of changes in growth rate or the occurrence of hiatuses. Cases 672 

2-6 simulate specific growth rate effects and can be used to test these differences. The smoothing method 673 

is especially sensitive to changes in growth rate that take place in specific seasons, such as hiatuses in 674 

winter (case 2) or summer (case 3) and growth peaks in summer (case 5) or spring (case 6). The other 675 

reconstruction approaches are less affected by this bias, because they generally do not mix samples from 676 

different seasons. The δ18O method is especially well suited to deal with changes in growth rate because 677 

it does not require combining different aliquots for accurate SST reconstructions. The binning and 678 

optimization approaches are slightly less reliable in cases where growth rate decreases linearly or 679 

seasonally along the entire record (cases 4-6; Fig. 2). Because these two methods consider all samples in 680 

the records at once, they are more sensitive to changes in temporal sampling resolution along the record. 681 

It is worth noting that optimization is especially sensitive to sharp changes in growth rate in summer (e.g. 682 

cases 11, 14, 16 and 17) because those conditions force the optimization routine to use larger sample 683 

sizes or include samples outside the warmest month for summer temperature estimates. A potential solution 684 

to this problem could be to allow sample sizes of summer and winter groups to vary independently in the 685 

optimization routine (see 2.1). This would allow sample size in the undersampled season (in this case: 686 

summer) to become larger than that at the other end of the δ18Oc spectrum, reducing uncertainty on the 687 

more densely sampled season and therefore improving the entire seasonality reconstruction. 688 

A worst-case scenario is represented by case 18, where the cold half of the year is not recorded. Such 689 

cases result in strong biases in reconstructions of mean annual and seasonal ranges in SST and δ18Ow, 690 

regardless of which method is used. In such extreme cases the record simply contains insufficient 691 
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information to reconstruct variability in growth rate, SST and δ18Ow, and it seems that no statistical method 692 

would enable this missing information to be recovered. The solution for these reconstructions would be to 693 

establish reliable age models, independent of δ18O or ∆47 data, which show that a large part of the seasonal 694 

cycle is missing. All methods used in this study rely on a conversion of SST and δ18Ow reconstructions to 695 

the time domain to define monthly time bins. This conversion breaks down in fossil examples when the 696 

seasonal cycle cannot be extracted from the archive, which happens when half of the seasonal cycle or 697 

more is obscured by growth hiatuses, as exemplified in case 18. 698 

While hiatuses encompassing half of the seasonal cycle are uncommon, changes in growth rate are 699 

common in accretionary carbonate archives because conditions for (biotic or abiotic) carbonate 700 

mineralization often vary over time. This variability is either driven by biological constraints, such as 701 

senescence (e.g. Schöne, 2008; Hendriks et al., 2012), the reproductive cycle (Gaspar et al., 1999) or 702 

stress (Surge et al., 2001; Compton et al., 2007) or by variations in the environment that promote or inhibit 703 

carbonate production, such as seasonal variations in temperature (Crossland, 1984; Bahr et al., 2017) or 704 

precipitation (Dayem et al., 2010; Van Rampelbergh et al., 2014). In general, such conditions occur more 705 

frequently in mid- to high-latitude environments than in low-latitudes, and in more coastal environments 706 

rather than in open marine settings, because these environments contain stronger variations in the factors 707 

that influence growth rates (e.g. temperature, precipitation or freshwater influx; e.g. Surge et al., 2001; 708 

Ullmann et al., 2010). This difference was simulated in the cases representing natural variability (case 14-709 

18 and 30-33). Accuracy in the coastal high-latitude settings (cases 16, 18 and 29) are indeed more strongly 710 

affected by changes in growth rate. Because in such highly variable environments growth rate variability 711 

often co-occurs with variability in δ18Ow, using δ18Oc-based reconstructions is not advised, unless δ18Ow 712 

variability can be constrained or neglected (which is rare in these environments). 713 

Additional complications include the lack of constraint on growth rate variability because of uncertainties in 714 

the record’s age model (see 4.1.3) and the effect of growth rate variability on the sampling resolution. The 715 

effect of growth rate on time-averaging within samples was not specifically tested in this study but 716 

introduces uncertainty in practice when archives with variable growth rate are sampled at a constant 717 

sampling resolution in the depth domain. In this case, parts of the archive with a lower growth rate yield 718 
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more time-averaged samples, potentially dampening one extreme of the seasonal cycle (e.g. Goodwin et 719 

al., 2003). In highly dynamic environments it is challenging to isolate all variables that introduce bias, and 720 

irregular variability in growth rate and δ18Ow will invariably introduce uncertainty in SST reconstructions, 721 

even when applying the best Δ47-based approaches (e.g. binning and optimization). In such examples, 722 

the results of natural variability cases (14-18 and 30-33) and of the real oyster data (Fig. 6) serve as 723 

benchmarks for the degree of uncertainty that may remain unexplained in these records. 724 

4.2.3 Variability in δ18Ow 725 

As discussed in 4.1.1, these variations in δ18Ow have a large effect on the accuracy of δ18Oc-based 726 

reconstructions, and their occurrence constitutes the main advantage of applying the Δ47 thermometer 727 

(Eiler, 2011). However, results of cases 7-11 in Fig. 8 and Table 2 show that δ18Ow variations can also bias 728 

Δ47-based reconstructions, especially those of seasonal ranges and those using the smoothing approach. 729 

Smoothing reconstructions are biased by these δ18Ow shifts in much the same way as they are affected 730 

by shifts in growth rate (see 4.2.2). The optimization approach is sensitive to seasonal changes in δ18Ow 731 

in antiphase with SST seasonality and by increases in δ18Ow in summer (e.g. due to excess evaporation; 732 

e.g. case 11), especially when used for reconstructions of δ18Ow seasonality. This effect arises because 733 

the optimization approach orders data based on δ18Oc and Δ47 seasonality to isolate the δ18Ow-SST 734 

relationship. Both antiphase δ18Ow seasonality and summer evaporation dampen the seasonal δ18Oc cycle 735 

and therefore influence the reconstruction of the δ18Ow-SST relationship. A good example of this is seen in 736 

the real oyster data (Fig. 6), where δ18Ow and SST vary in phase and δ18Ow dampens the SST seasonality. 737 

The binning approach is more robust against δ18Ow variability that dampens the seasonal cycle and is 738 

therefore a better choice for absolute SST reconstructions in environments where summer evaporation or 739 

other δ18Ow variability in phase with SST seasonality is expected to occur, if the age model is reliable 740 

enough to allow monthly binning of raw data (see 4.1.3). Indeed, reconstructions from the lagoonal 741 

environment (case 16) and Red Sea case (case 32 which is characterized by strong summer evaporation; 742 

e.g. Titschack et al., 2010) show that binning is the most reliable choice in these environments. 743 

4.2.4 Variability in sampling resolution and record length 744 
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Other factors influencing the effectiveness of reconstructions are the sampling resolution and the length of 745 

the record. Many of the cases discussed in this study represent idealized cases with comparatively high 746 

sampling resolutions over comparatively long (12 yr) paleoseasonality records, which yield large sample 747 

sizes. By comparison, the typical age of mollusks, which are often used as paleoseasonality archives, is 2-748 

5 years (Ivany, 2012). Records with the highest sampling resolutions (0.1 and 0.2 mm) contain up to 1200 749 

samples. Generating such records is not impossible, but it is highly unlikely to be applied in paleoclimate 750 

studies given the limitation of resources (e.g. instrument time) and the desire to analyze multiple records 751 

from different specimens, species, localities or ages to gain a better understanding of the variability in 752 

paleoseasonality (e.g. Goodwin et al., 2003; Schöne et al., 2006; Petersen et al., 2016). In some cases 753 

large datasets are meticulously collected from single carbonate records (e.g. Schöne et al., 2005; 754 

Vansteenberge et al., 2016; de Winter et al., 2020a; Shao et al., 2020). However, in such studies, the aim 755 

is often to investigate variability at a higher (e.g. daily; de Winter et al., 2020a) resolution or longer 756 

timescales (e.g. decadal to millennial; Schöne et al., 2005; Vansteenberge et al., 2016; Shao et al., 2020) 757 

in addition to the seasonal cycle, rather than to improve the reliability of reconstructing one type of variability 758 

(e.g. seasonality) alone. 759 

Fig. 9 shows that increasing temporal sampling resolution (samples/yr) improves both the accuracy and 760 

precision of all Δ47-based reconstructions. This occurs because Δ47 samples have a large analytical 761 

uncertainty (see 4.1.2) and grouping of data therefore improves reconstructions. The decrease in precision 762 

of δ18Oc-based reconstructions (Fig. 9C-D) is explained by the fact that the analytical uncertainty of δ18Oc 763 

measurements is much smaller than the variability introduced by natural sub-annual variability in SST and 764 

δ18Ow unrelated to the seasonal cycle (see Supplementary Data S4). Therefore, higher sampling 765 

resolutions allow δ18Oc records to better capture this sub-seasonal variability, which introduces more noise 766 

to the seasonal cycle (reducing precision) but causes monthly mean SST and δ18Ow to be more accurately 767 

reconstructed. Towards higher sampling resolutions, the gap in precision between δ18Oc- and Δ47-based 768 

reconstructions closes, eventually (in an ideal case) diminishing the advantage of high analytical precision 769 

in δ18Oc measurements (Fig. 9C-D). 770 
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An optimum sample resolution can be defined for each method after which improving sampling resolution 771 

does not significantly improve the reliability of the reconstruction (as in de Winter et al., 2017). Figure 9 772 

shows that this optimum varies depending on which variable (MAT, SST seasonality, mean annual δ18Ow 773 

or δ18Ow seasonality) is reconstructed. Therefore, Fig. 9 will allow future researchers to determine the 774 

sampling resolution that is tailored to their purpose. In general, the improvement after a sample size of 20-775 

30 samples per year is negligible for the binning and optimization methods if the total number of samples 776 

(depending on both sampling resolution and record length) is sufficient for monthly temperature 777 

reconstructions. Our data show that 200-250 paired δ18Oc and Δ47 measurements are in general sufficient 778 

for a standard deviation of 2-3°C on monthly SST reconstructions using the binning or optimization 779 

approach, preferably when spread over multiple growth years to eliminate the effect of short-term weather 780 

events or years with exceptional seasonality (Fig. 10; Supplementary Data S5). 781 

Record length only has a minimal influence on the optimization method but for very short records (≤2 782 

years) binning becomes very imprecise, especially at low sampling resolutions (Fig. 11). The reason is 783 

that the sample size within monthly time bins becomes too small in these cases, while the more flexible 784 

sample size window of the optimization routine circumvents this problem. The choice between these two 785 

approaches should therefore be based on a tradeoff between the length of the record (in time) and the 786 

number of samples that can be retrieved from it. As a result, shorter-lived, fast-growing climate archives, 787 

such as large or fast-growing (e.g. juvenile) mollusk shells, are best sampled using a high temporal 788 

resolution (>30 samples/yr) sampling strategy with the optimization approach. Longer lived archives with 789 

a lower mineralization rate, such as annually laminated speleothems, corals and gerontic mollusks, are 790 

best sampled using long time series at monthly resolution using the binning approach. 791 

A simplified decision tree that could guide sampling strategies for future paleoseasonality studies is shown 792 

in Figure 14. Note that choices and tradeoffs for these reconstructions may differ depending on the archive 793 

and environment in which it formed (see discussion above). 794 

 795 

Figure 15: Schematic guide to choosing the right approach for reconstructing annual mean or seasonality 796 
in SST and δ18Ow from accretionary carbonate archives. Recommendations are based on the results of 797 
testing all four approaches on the entire range of cases. Researchers can follow the six steps (questions 798 
Q1-6) to decide on the right approach for reconstructing the target variable. Guidelines are based on 799 
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maximizing both accuracy and precision (see details in Supplementary Data S9). Note that the smoothing 800 
approach is never the best choice. The choice between the two remaining Δ47-based approaches (binning 801 
and optimization) relies heavily on the situation and may be driven by a preference for more accurate or 802 
more precise results. 803 

 804 

4.3 Implications for clumped isotope sample size 805 

The optimization technique for grouping Δ47 aliquots for accurate SST and δ18Ow reconstructions allows 806 

us to assess the limitations of the clumped isotope thermometer for temperature reconstructions from high-807 

resolution carbonate archives. The optimal sample size given by the approach is different for different cases 808 

and depends on the temporal sampling resolution and the characteristics of the record (see S4). As 809 

expected, in cases more like the ideal case (case 1), optimal sample sizes are low (~14-24), while sample 810 

sizes increase in more complicated cases based on simulated natural environments (case 14-18) or cases 811 

based on actual SST and SSS data (cases 30-33). More confined SST seasonality (cases 19-21) also 812 

requires larger samples to reconstruct (up to 100 samples in some cases). This is not surprising, because 813 

variability within samples will increase in records in which the seasonality is smaller or more obscured by 814 

other environmental variability. The optimal sample size between cases and sampling resolutions is not 815 

normally distributed but tails towards high sample sizes with some extreme outliers (Shapiro Wilk test p << 816 

0.05; Supplementary Data S10). The median sample size of all our simulations is 17 aliquots. This number 817 

lies between the minimum number of 14 ~100 μg replicates of standards calculated by Fernandez et al. 818 

(2017) and the minimum of 20-40 ~100 μg aliquots required for optimal paleoseasonality reconstruction 819 

from fossil bivalves by de Winter et al. (2020b). This is to be expected since many of the cases explored in 820 

this study represent ideal cases compared with the natural situation. However, in these virtual cases a 821 

measure of random sub-annual variability in SST and δ18Ow was added (see Fig. 4 and Supplementary 822 

Data S2), simulating a more realistic environment and resulting in poorer precision than replicates of a 823 

carbonate standard (as in Fernandez et al., 2017). Our simulations show that the optimum number of 824 

samples to be combined in seasonality studies depends on both the analytical uncertainty of Δ47 825 

measurements (as represented by the estimate in Fernandez et al., 2017) and the variability between 826 

aliquots pooled within a sample that is attributed to actual variability within the record (as represented by 827 

our simulations and the estimate in de Winter et al., 2020b). The optimal sample size is therefore a good 828 
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measure for the limitations of temperature variability that can be resolved in a record and can help 829 

researchers decide which strategy to apply for combining measurements to obtain the most reliable 830 

paleoseasonality estimates, or to decide whether extra sampling is required, even if the chosen approach 831 

is not to use the optimization routine itself. Note that the optimum sample size is kept equal for summer 832 

and winter samples in this study, and that the optimization approach can likely achieve better performance 833 

by considering unequal sample sizes in opposite seasons (see 4.1.3 and 4.2.2). While this added flexibility 834 

comes at a higher computational cost due to the increased number of possible sample size combinations 835 

to be considered, future studies should investigate whether this updated optimization approach could yield 836 

more reliable seasonality reconstructions. 837 

4.4 Implications for other sample size problems 838 

While the discussion above focuses on optimizing approaches for combining samples for clumped 839 

isotope analyses in paleoseasonality reconstructions, the problem of combining samples to reduce 840 

uncertainty and isolate variation in datasets is very common (e.g. Zhang et al., 2004; Merz and Thieken, 841 

2005; Tsukakoshi, 2011). Therefore, the approaches outlined and tested in this study have applications 842 

beyond paleoseasonality reconstructions. Examples of other problems that could benefit from applying 843 

similar approaches for reducing the uncertainty of estimates of target variables while minimizing the 844 

number of analyses required to meet analytical requirements include: (1) reconstructing 845 

paleoenvironmental variability in the terrestrial realm from tooth bioapatite (e.g. Passey and Cerling, 846 

2002; Kohn, 2004; Van Dam and Reichart, 2009; de Winter et al., 2016), (2) quantitative time series 847 

analysis of orbital cycles in stratigraphic records (e.g. Lourens et al., 2010; de Vleeschouwer et al., 2017; 848 

Noorbergen et al., 2018; Westerhold et al., 2020), (3) strontium isotope dating (e.g McArthur et al., 2012; 849 

de Winter et al., 2020c), (4) reconstructing sub-seasonal variability from ultra-high-resolution records (e.g. 850 

from fast-growing mollusks and gastropods; e.g. Sano et al., 2012; Warter and Müller, 2017, de Winter et 851 

al., 2020d; Yan et al., 2020), and (5) reconstructing sea surface and deep-sea temperatures across short-852 

lived (10–100 kyr) episodes of climate change or climate shifts from deep marine archives characterized 853 

by low sedimentation rates (e.g. Lear et al., 2008; Jenkyns, 2010; Stap et al., 2010; Lauretano et al., 854 



36 
 

2018). A more detailed discussion of the implications for other sample size problems is provided in the 855 

Supplementary Information. 856 

  857 
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5. Conclusions and recommendations 858 

The performance of three Δ47-based approaches to reconstruct seasonality from accretionary carbonate 859 

archives was evaluated in comparison with conventional δ18Oc-based reconstructions in a wide range of 860 

case studies. From the results, we conclude that while δ18Oc-based reconstructions (δ18O) yield superior 861 

precision for SST reconstructions, this method runs a high risk of yielding inaccurate results due to innate 862 

assumptions about the value of δ18Ow, which must be estimated and assumed constant year-round. Unless 863 

δ18Ow can be independently constrained or variability in δ18Ow can be neglected, Δ47-based reconstructions 864 

should be the method of choice for absolute mean annual temperature and SST seasonality 865 

reconstructions. Various techniques for combining Δ47 data were evaluated. Our findings suggest that 866 

smoothing Δ47 data using a moving average almost always results in a dampening of the seasonal cycle 867 

which severely hampers recovery of seasonality. Applying the smoothing approach results in inaccuracies 868 

in reconstructions of MAT as well, especially in cases where part of the seasonal cycle is obscured by 869 

variability in growth rate or multi-annual trends. More reliable seasonality reconstructions are achieved with 870 

two approaches for combining Δ47 data using time binning (binning) or applying a flexible sample size 871 

optimization (optimization) approach. Of these two approaches, optimization achieves better precision 872 

and can resolve smaller seasonal temperature differences with confidence. However, binning is often more 873 

accurate, and outperforms optimization as the most reliable approach. This is especially true in cases with 874 

growth stops or δ18Ow changes in phase with temperature seasonality (e.g. strong seasonal evaporation or 875 

freshwater influx) and in longer multi-annual time series with a reliable age model. Optimization is the 876 

better choice for shorter (<3 years) records, especially if the sampling resolution can be increased, such as 877 

in short, fast growing climate archives. 878 

Despite the focus on the problem of resolving seasonality in carbonate archives, the findings in this study 879 

have applications for other problems in earth science where sample size and sampling resolution put limits 880 

on the ability to resolve specific trends, events, and cycles from time series. While the above-mentioned 881 

recommendations of the optimization and binning methods are likely valid for most studies aiming to 882 

quantify the mean and amplitude of a specific cycle or event (equivalent to MAT and SST seasonality), 883 
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(dynamic) moving averages (smoothing) are expected to yield the best results in studies quantifying 884 

aperiodic trends from longer data series. 885 
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 900 

Author contributions 901 

NJW designed the study, wrote the scripts for all calculations, and created a first draft of the manuscript 902 

text and figures. MZ, TA and NJW worked together from the first draft towards the final manuscript. All 903 

authors contributed to the representation of the data and methods in figures and to the discussion of the 904 

implications of the data in the discussion. 905 

 906 

Competing Interests 907 

https://cran.r-project.org/web/packages/seasonalclumped
http://www.doi.org/10.5281/zenodo.3899926
http://www.doi.org/10.5281/zenodo.3899926
https://cran.r-project.org/web/packages/seasonalclumped


39 
 

The authors have no potential conflicts of interest to declare with regards to this study. 908 

 909 

Acknowledgements 910 

The authors would like to thank editor Alberto Reyes for his helpful suggestions for improving the 911 

manuscript and for moderating the review process. Thanks to Andrew Johnson and two anonymous 912 

reviewers for their comments which helped improve the manuscript. All members of the Clumped Isotope 913 

research group of Utrecht University, most notably Ilja Kocken and dr. Inigo Müller, are acknowledged for 914 

their comments and recommendations on a presentation of the initial results of this study. 915 

 916 

Financial support 917 

NJW is funded by the European Commission through a Marie Sklodowska Curie Individual Fellowship 918 

(UNBIAS, grant # 843011) and by the Flemish Research Council (FWO) through a Junior Postdoctoral 919 

Fellowship (12ZB220N). 920 

 921 

References 922 

Bahr, K. D., Jokiel, P. L. and Rodgers, K. S.: Seasonal and annual calcification rates of the Hawaiian reef 923 
coral, Montipora capitata, under present and future climate change scenarios, ICES J Mar Sci, 74(4), 924 
1083–1091, https://doi.org/10.1093/icesjms/fsw078, 2017. 925 

Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F., Fernandez, A., Hodell, D. A., Jaggi, 926 
M., Meckler, A. N., Millan, I. and Ziegler, M.: Reducing uncertainties in carbonate clumped isotope 927 
analysis through consistent carbonate-based standardization, Geochemistry, Geophysics, Geosystems, 928 
19(9), 2895–2914, 2018. 929 

Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M. and Prohaska, T.: Assessment of international reference 930 
materials for isotope-ratio analysis (IUPAC Technical Report), Pure and Applied Chemistry, 86(3), 425–931 
467, https://doi.org/10.1515/pac-2013-1023, 2014. 932 

Briard, J., Pucéat, E., Vennin, E., Daëron, M., Chavagnac, V., Jaillet, R., Merle, D. and de Rafélis, M.: 933 
Seawater paleotemperature and paleosalinity evolution in neritic environments of the Mediterranean 934 
margin: Insights from isotope analysis of bivalve shells, Palaeogeography, Palaeoclimatology, 935 
Palaeoecology, 543, 109582, https://doi.org/10.1016/j.palaeo.2019.109582, 2020. 936 



40 
 

Bowen, G.J. WaterIsotopes.org: http://wateriso.utah.edu/waterisotopes/index.html, last access: 28 July 937 
2020. 938 

Caldarescu, D. E., Sadatzki, H., Andersson, C., Schäfer, P., Fortunato, H. and Meckler, A. N.: Clumped 939 
isotope thermometry in bivalve shells: A tool for reconstructing seasonal upwelling, Geochimica et 940 
Cosmochimica Acta, 294, 174–191, https://doi.org/10.1016/j.gca.2020.11.019, 2021. 941 

Charles, C. D., Hunter, D. E. and Fairbanks, R. G.: Interaction between the ENSO and the Asian monsoon 942 
in a coral record of tropical climate, Science, 277(5328), 925–928, 1997. 943 

Comboul, M., Emile-Geay, J., Evans, M. N., Mirnateghi, N., Cobb, K. M. and Thompson, D. M.: A 944 
probabilistic model of chronological errors in layer-counted climate proxies: applications to annually 945 
banded coral archives, Climate of the Past, 10(2), 825–841, 2014. 946 

Compton, T. J., Rijkenberg, M. J. A., Drent, J. and Piersma, T.: Thermal tolerance ranges and climate 947 
variability: A comparison between bivalves from differing climates, Journal of Experimental Marine 948 
Biology and Ecology, 352(1), 200–211, https://doi.org/10.1016/j.jembe.2007.07.010, 2007. 949 

Cook, E. R. and Kairiukstis, L. A.: Methods of dendrochronology: applications in the environmental 950 
sciences, Springer Science & Business Media., 2013. 951 

Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. and Miller, K. G.: Ocean overturning since the 952 
Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation, Paleoceanography, 953 
24(4), https://doi.org/10.1029/2008PA001683, 2009. 954 

Crossland, C.: Seasonal variations in the rates of calcification and productivity in the coral Acropora formosa 955 
on a high-latitude reef, Marine Ecology Progress Series, 15, 135–140, 956 
https://doi.org/10.3354/meps015135, 1984. 957 

Dattalo, P.: Determining Sample Size: Balancing Power, Precision, and Practicality, Oxford University 958 
Press, USA., 2008. 959 

Dayem, K. E., Molnar, P., Battisti, D. S. and Roe, G. H.: Lessons learned from oxygen isotopes in modern 960 
precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia, Earth and 961 
Planetary Science Letters, 295(1–2), 219–230, 2010. 962 

De Ridder, F., de Brauwere, A., Pintelon, R., Schoukens, J., Dehairs, F., Baeyens, W. and Wilkinson, B. 963 
H.: Comment on: Paleoclimatic inference from stable isotope profiles of accretionary biogenic hardparts—964 
a quantitative approach to the evaluation of incomplete data, by Wilkinson, B.H., Ivany, L.C., 2002. 965 
Palaeogeogr. Palaeocl. Palaeoecol. 185, 95–114, Palaeogeography, Palaeoclimatology, Palaeoecology, 966 
248(3–4), 473–476, https://doi.org/10.1016/j.palaeo.2006.08.004, 2007. 967 

De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M. and Pälike, H.: Alternating Southern and Northern 968 
Hemisphere climate response to astronomical forcing during the past 35 my, Geology, 45(4), 375–378, 969 
2017. 970 

de Winter, N. J., Snoeck, C. and Claeys, P.: Seasonal Cyclicity in Trace Elements and Stable Isotopes of 971 
Modern Horse Enamel, PloS one, 11(11), e0166678, 2016. 972 

de Winter, N., Sinnesael, M., Makarona, C., Vansteenberge, S. and Claeys, P.: Trace element analyses of 973 
carbonates using portable and micro-X-ray fluorescence: Performance and optimization of measurement 974 
parameters and strategies., Journal of Analytical Atomic Spectrometry, 32(6), 1211–1223, 975 
https://doi.org/10.1039/C6JA00361C, 2017. 976 



41 
 

de Winter, N. J., Vellekoop, J., Vorsselmans, R., Golreihan, A., Soete, J., Petersen, S. V., Meyer, K. W., 977 
Casadio, S., Speijer, R. P. and Claeys, P.: An assessment of latest Cretaceous Pycnodonte vesicularis 978 
(Lamarck, 1806) shells as records for palaeoseasonality: a multi-proxy investigation, Climate of the Past, 979 
14(6), 725–749, 2018. 980 

de Winter, N. J., Goderis, S., Malderen, S. J. M. V., Sinnesael, M., Vansteenberge, S., Snoeck, C., Belza, 981 
J., Vanhaecke, F. and Claeys, P.: Subdaily-Scale Chemical Variability in a Torreites Sanchezi Rudist 982 
Shell: Implications for Rudist Paleobiology and the Cretaceous Day-Night Cycle, Paleoceanography and 983 
Paleoclimatology, 35(2), e2019PA003723, https://doi.org/10.1029/2019PA003723, 2020a. 984 

de Winter, N. J., Müller, I. A., Kocken, I. J., Thibault, N., Ullmann, C. V., Farnsworth, A., Lunt, D. J., Claeys, 985 
P. and Ziegler, M.: First absolute seasonal temperature estimates for greenhouse climate from clumped 986 
isotopes in bivalve shells, Nature Communications, in review, https://doi.org/10.21203/rs.3.rs-39203/v1, 987 
2020b. 988 

de Winter, N. J., Ullmann, C. V., Sørensen, A. M., Thibault, N., Goderis, S., Van Malderen, S. J. M., Snoeck, 989 
C., Goolaerts, S., Vanhaecke, F. and Claeys, P.: Shell chemistry of the boreal Campanian bivalve 990 
Rastellum diluvianum; (Linnaeus, 1767) reveals temperature seasonality, growth rates and life cycle of 991 
an extinct Cretaceous oyster, Biogeosciences, 17(11), 2897–2922, https://doi.org/10.5194/bg-17-2897-992 
2020, 2020c. 993 

de Winter, N. J., Vellekoop, J., Clark, A. J., Stassen, P., Speijer, R. P. and Claeys, P.: The giant marine 994 
gastropod Campanile giganteum (Lamarck, 1804) as a high-resolution archive of seasonality in the 995 
Eocene greenhouse world, Geochemistry, Geophysics, Geosystems, 21(n/a), e2019GC008794, 996 
https://doi.org/10.1029/2019GC008794, 2020d. 997 

de Winter, N. J.: seasonalclumped: Toolbox for Clumped Isotope Seasonality Reconstructions. 998 
https://CRAN.R-project.org/package=seasonalclumped, last access: 4 February 2021, 2021a. 999 

de Winter, N. J.: ShellChron 0.2.8: A new tool for constructing chronologies in accretionary carbonate 1000 
archives from stable oxygen isotope profiles, Geoscientific Model Development Discussions, 1–37, 1001 
https://doi.org/10.5194/gmd-2020-401, 2021b. 1002 

Denton, G. H., Alley, R. B., Comer, G. C. and Broecker, W. S.: The role of seasonality in abrupt climate 1003 
change, Quaternary Science Reviews, 24(10), 1159–1182, 1004 
https://doi.org/10.1016/j.quascirev.2004.12.002, 2005. 1005 

Eiler, J. M.: Paleoclimate reconstruction using carbonate clumped isotope thermometry, 30, 3575–3588, 1006 
2011. 1007 

Fairbanks, R. G., Evans, M. N., Rubenstone, J. L., Mortlock, R. A., Broad, K., Moore, M. D. and Charles, 1008 
C. D.: Evaluating climate indices and their geochemical proxies measured in corals, Coral Reefs, 16(1), 1009 
S93–S100, https://doi.org/10.1007/s003380050245, 1997. 1010 

Fernandez, A., Müller, I. A., Rodríguez-Sanz, L., van Dijk, J., Looser, N. and Bernasconi, S. M.: A 1011 
reassessment of the precision of carbonate clumped isotope measurements: implications for calibrations 1012 
and paleoclimate reconstructions, Geochemistry, Geophysics, Geosystems, 18(12), 4375–4386, 2017. 1013 

Gaspar, M. B., Ferreira, R. and Monteiro, C. C.: Growth and reproductive cycle of Donax trunculus L., 1014 
(Mollusca: Bivalvia) off Faro, southern Portugal, Fisheries Research, 41(3), 309–316, 1015 
https://doi.org/10.1016/S0165-7836(99)00017-X, 1999. 1016 



42 
 

Goodwin, D. H., Schöne, B. R. and Dettman, D. L.: Resolution and fidelity of oxygen isotopes as 1017 
paleotemperature proxies in bivalve mollusk shells: models and observations, Palaios, 18(2), 110–125, 1018 
2003. 1019 

Goodwin, D. H., Paul, P. and Wissink, C. L.: MoGroFunGen: A numerical model for reconstructing intra-1020 
annual growth rates of bivalve molluscs, Palaeogeography, Palaeoclimatology, Palaeoecology, 276(1), 1021 
47–55, https://doi.org/10.1016/j.palaeo.2009.02.026, 2009. 1022 

Harwood, A. J. P., Dennis, P. F., Marca, A. D., Pilling, G. M. and Millner, R. S.: The oxygen isotope 1023 
composition of water masses within the North Sea, Estuarine, Coastal and Shelf Science, 78(2), 353–1024 
359, https://doi.org/10.1016/j.ecss.2007.12.010, 2008. 1025 

Hendriks, I. E., Basso, L., Deudero, S., Cabanellas-Reboredo, M. and Álvarez, E.: Relative growth rates of 1026 
the noble pen shell Pinna nobilis throughout ontogeny around the Balearic Islands (Western 1027 
Mediterranean, Spain), Journal of Shellfish Research, 31(3), 749–756, 2012. 1028 

Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Yancey, T. E. and Pérez-Huerta, A.: 1029 
Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate 1030 
clumped isotope thermometry, Earth and Planetary Science Letters, 490, 40–50, 1031 
https://doi.org/10.1016/j.epsl.2018.02.001, 2018. 1032 

Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation, 1033 
Science, 269(5224), 676–679, 1995. 1034 

Huybers, P. and Curry, W.: Links between annual, Milankovitch and continuum temperature variability, 1035 
Nature, 441(7091), 329, 2006. 1036 

Huyghe, D., Lartaud, F., Emmanuel, L., Merle, D. and Renard, M.: Palaeogene climate evolution in the 1037 
Paris Basin from oxygen stable isotope (δ18O) compositions of marine molluscs, Journal of the 1038 
Geological Society, 172(5), 576–587, 2015. 1039 

Huyghe, D., de Rafélis, M., Ropert, M., Mouchi, V., Emmanuel, L., Renard, M. and Lartaud, F.: New insights 1040 
into oyster high-resolution hinge growth patterns, Marine biology, 166(4), 48, 2019. 1041 

IPCC: IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to 1042 
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1535 pp, Cambridge 1043 
Univ. Press, Cambridge, UK, and New York., 2013. 1044 

Ivany, L. C.: Reconstructing paleoseasonality from accretionary skeletal carbonates—challenges and 1045 
opportunities, The Paleontological Society Papers, 18, 133–166, 2012. 1046 

Jaffrés, J. B. D., Shields, G. A., and Wallmann, K.: The oxygen isotope evolution of seawater: A critical 1047 
review of a long-standing controversy and an improved geological water cycle model for the past 3.4 1048 
billion years, Earth-Science Reviews, 83, 83–122, https://doi.org/10.1016/j.earscirev.2007.04.002, 2007. 1049 

Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochemistry, Geophysics, Geosystems, 11(3), 1050 
https://doi.org/10.1029/2009GC002788, 2010. 1051 

Johnson, A. L. A., Valentine, A. M., Leng, M. J., Schöne, B. R., and Sloane, H. J.: Life history, environment 1052 
and extinction of the scallop Carolinapecten eboreus (Conrad) In the Plio-Pleistocene of the U.S. eastern 1053 
seaboard, PALAIOS, 34, 49–70, https://doi.org/10.2110/palo.2018.056, 2019. 1054 



43 
 

Jones, A. M., Iacumin, P. and Young, E. D.: High-resolution d18O analysis of tooth enamel phosphate by 1055 
isotope ratio monitoring gas chromatography mass spectrometry and ultraviolet laser fluorination, , 8, 1056 
1999. 1057 

Judd, E. J., Wilkinson, B. H. and Ivany, L. C.: The life and time of clams: Derivation of intra-annual growth 1058 
rates from high-resolution oxygen isotope profiles, Palaeogeography, Palaeoclimatology, Palaeoecology, 1059 
490, 70–83, 2018. 1060 

Keating-Bitonti, C. R., Ivany, L. C., Affek, H. P., Douglas, P. and Samson, S. D.: Warm, not super-hot, 1061 
temperatures in the early Eocene subtropics, Geology, 39(8), 771–774, 1062 
https://doi.org/10.1130/G32054.1, 2011. 1063 

Kele, S., Breitenbach, S. F., Capezzuoli, E., Meckler, A. N., Ziegler, M., Millan, I. M., Kluge, T., Deák, J., 1064 
Hanselmann, K. and John, C. M.: Temperature dependence of oxygen-and clumped isotope fractionation 1065 
in carbonates: a study of travertines and tufas in the 6–95 C temperature range, Geochimica et 1066 
Cosmochimica Acta, 168, 172–192, 2015. 1067 

Kim, S.-T. and O’Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, 1068 
Geochimica et Cosmochimica Acta, 61(16), 3461–3475, https://doi.org/10.1016/S0016-7037(97)00169-1069 
5, 1997. 1070 

Kocken, I. J., Müller, I. A. and Ziegler, M.: Optimizing the Use of Carbonate Standards to Minimize 1071 
Uncertainties in Clumped Isotope Data, Geochemistry, Geophysics, Geosystems, 20(11), 5565–5577, 1072 
https://doi.org/10.1029/2019GC008545, 2019. 1073 

Kohn, M. J.: Comment: tooth enamel mineralization in ungulates: implications for recovering a primary 1074 
isotopic time-series, by BH Passey and TE Cerling (2002), Geochimica et Cosmochimica Acta, 68(2), 1075 
403–405, 2004. 1076 

Lauretano, V., Zachos, J. C. and Lourens, L. J.: Orbitally Paced Carbon and Deep-Sea Temperature 1077 
Changes at the Peak of the Early Eocene Climatic Optimum, Paleoceanography and Paleoclimatology, 1078 
33(10), 1050–1065, https://doi.org/10.1029/2018PA003422, 2018. 1079 

Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K. and Rosenthal, Y.: Cooling and ice growth across 1080 
the Eocene-Oligocene transition, Geology, 36(3), 251–254, 2008. 1081 

LeGrande, A. N. and Schmidt, G. A.: Global gridded data set of the oxygen isotopic composition in 1082 
seawater, Geophysical research letters, 33(12), 2006. 1083 

Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O 1084 
records, Paleoceanography, 20(1), https://doi.org/10.1029/2004PA001071, 2005. 1085 

Lourens, L. J., Becker, J., Bintanja, R., Hilgen, F. J., Tuenter, E., Van de Wal, R. S. and Ziegler, M.: Linear 1086 
and non-linear response of late Neogene glacial cycles to obliquity forcing and implications for the 1087 
Milankovitch theory, Quaternary Science Reviews, 29(1–2), 352–365, 2010. 1088 

McArthur, J. M., Howarth, R. J. and Shields, G. A.: Strontium isotope stratigraphy, The geologic time scale, 1089 
1, 127–144, 2012. 1090 

Meckler, A. N., Ziegler, M., Millán, M. I., Breitenbach, S. F. and Bernasconi, S. M.: Long-term performance 1091 
of the Kiel carbonate device with a new correction scheme for clumped isotope measurements, Rapid 1092 
Communications in Mass Spectrometry, 28(15), 1705–1715, 2014. 1093 



44 
 

Merz, B. and Thieken, A. H.: Separating natural and epistemic uncertainty in flood frequency analysis, 1094 
Journal of Hydrology, 309(1–4), 114–132, 2005. 1095 

Meyers, S. R.: Astrochron: An R package for astrochronology, http://cran.r-1096 
project.org/package=astrochron. 1097 
http://scholar.google.com/scholar?cluster=14876361610707754388&hl=en&oi=scholarr, last access: 30 1098 
May 2017, 2014. 1099 

Meyers, S. R.: Cyclostratigraphy and the problem of astrochronologic testing, Earth-Science Reviews, 190, 1100 
190–223, https://doi.org/10.1016/j.earscirev.2018.11.015, 2019. 1101 

Miyaji, T., Tanabe, K., Matsushima, Y., Sato, S., Yokoyama, Y. and Matsuzaki, H.: Response of daily and 1102 
annual shell growth patterns of the intertidal bivalve Phacosoma japonicum to Holocene coastal climate 1103 
change in Japan, Palaeogeography, Palaeoclimatology, Palaeoecology, 286(3), 107–120, 1104 
https://doi.org/10.1016/j.palaeo.2009.11.032, 2010. 1105 

Mook, W. G.: Stable carbon and oxygen isotopes of natural waters in the Netherlands, Isotope hydrology, 1106 
1970, 163–190, 1970. 1107 

Morgan, V. and van Ommen, T. D.: Seasonality in late-Holocene climate from ice-core records, The 1108 
Holocene, 7(3), 351–354, https://doi.org/10.1177/095968369700700312, 1997. 1109 

Mosley-Thompson, E., Thompson, L. G., Dai, J., Davis, M. and Lin, P. N.: Climate of the last 500 years: 1110 
High resolution ice core records, Quaternary Science Reviews, 12(6), 419–430, 1111 
https://doi.org/10.1016/S0277-3791(05)80006-X, 1993. 1112 

Müller, I. A., Fernandez, A., Radke, J., van Dijk, J., Bowen, D., Schwieters, J. and Bernasconi, S. M.: 1113 
Carbonate clumped isotope analyses with the long-integration dual-inlet (LIDI) workflow: scratching at 1114 
the lower sample weight boundaries: LIDI as key for more precise analyses on much less carbonate 1115 
material, Rapid Communications in Mass Spectrometry, 31(12), 1057–1066, 1116 
https://doi.org/10.1002/rcm.7878, 2017. 1117 

Noorbergen, L. J., Abels, H. A., Hilgen, F. J., Robson, B. E., Jong, E. de, Dekkers, M. J., Krijgsman, W., 1118 
Smit, J., Collinson, M. E. and Kuiper, K. F.: Conceptual models for short-eccentricity-scale climate control 1119 
on peat formation in a lower Palaeocene fluvial system, north-eastern Montana (USA), Sedimentology, 1120 
65(3), 775–808, https://doi.org/10.1111/sed.12405, 2018. 1121 

O’Brien, C. L., Robinson, S. A., Pancost, R. D., Sinninghe Damsté, J. S., Schouten, S., Lunt, D. J., Alsenz, 1122 
H., Bornemann, A., Bottini, C., Brassell, S. C., Farnsworth, A., Forster, A., Huber, B. T., Inglis, G. N., 1123 
Jenkyns, H. C., Linnert, C., Littler, K., Markwick, P., McAnena, A., Mutterlose, J., Naafs, B. D. A., 1124 
Püttmann, W., Sluijs, A., van Helmond, N. A. G. M., Vellekoop, J., Wagner, T., and Wrobel, N. E.: 1125 
Cretaceous sea-surface temperature evolution: Constraints from TEX 86 and planktonic foraminiferal 1126 
oxygen isotopes, 172, 224–247, https://doi.org/10.1016/j.earscirev.2017.07.012, 2017. 1127 

O’Donnell, M. S. and Ignizio, D. A.: Bioclimatic predictors for supporting ecological applications in the 1128 
conterminous United States, US Geological Survey Data Series, 691(10), 2012. 1129 

Passey, B. H. and Cerling, T. E.: Tooth enamel mineralization in ungulates: implications for recovering a 1130 
primary isotopic time-series, Geochimica et Cosmochimica Acta, 66(18), 3225–3234, 2002. 1131 

Petersen, S. V., Tabor, C. R., Lohmann, K. C., Poulsen, C. J., Meyer, K. W., Carpenter, S. J., Erickson, J. 1132 
M., Matsunaga, K. K., Smith, S. Y. and Sheldon, N. D.: Temperature and salinity of the Late Cretaceous 1133 
western interior seaway, Geology, 44(11), 903–906, 2016. 1134 



45 
 

Philander, S. G. H.: El Nino southern oscillation phenomena, Nature, 302(5906), 295–301, 1983. 1135 

R Core Team: R: A language and environment for statistical   computing. R Foundation for Statistical 1136 
Computing, Vienna, Austria. http://www.R-project.org/, 2013. 1137 

Rodríguez-Sanz, L., Bernasconi, S. M., Marino, G., Heslop, D., Müller, I. A., Fernandez, A., Grant, K. M. 1138 
and Rohling, E. J.: Penultimate deglacial warming across the Mediterranean Sea revealed by clumped 1139 
isotopes in foraminifera, Scientific Reports, 7(1), 1–11, https://doi.org/10.1038/s41598-017-16528-6, 1140 
2017. 1141 

Rohling, E. J.: Oxygen isotope composition of seawater, The Encyclopedia of Quaternary Science. 1142 
Amsterdam: Elsevier, 2, 915–922, 2013. 1143 

Sano, Y., Kobayashi, S., Shirai, K., Takahata, N., Matsumoto, K., Watanabe, T., Sowa, K. and Iwai, K.: 1144 
Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells, Nature 1145 
Communications, 3, 761, 2012. 1146 

Sato, S.: Temporal change of life-history traits in fossil bivalves: an example of Phacosoma japonicum from 1147 
the Pleistocene of Japan, Palaeogeography, Palaeoclimatology, Palaeoecology, 154(4), 313–323, 1148 
https://doi.org/10.1016/S0031-0182(99)00106-6, 1999. 1149 

Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A., Chappellaz, J., Kohler, P., Joos, F., 1150 
Stocker, T. F., Leuenberger, M. and Fischer, H.: Carbon Isotope Constraints on the Deglacial CO2 Rise 1151 
from Ice Cores, Science, 336(6082), 711–714, https://doi.org/10.1126/science.1217161, 2012. 1152 

Scholz, D. and Hoffmann, D. L.: StalAge–An algorithm designed for construction of speleothem age models, 1153 
Quaternary Geochronology, 6(3–4), 369–382, 2011. 1154 

Schöne, B. R.: The curse of physiology—challenges and opportunities in the interpretation of geochemical 1155 
data from mollusk shells, Geo-Marine Letters, 28(5–6), 269–285, 2008. 1156 

Schöne, B. R., Fiebig, J., Pfeiffer, M., Gleβ, R., Hickson, J., Johnson, A. L., Dreyer, W. and Oschmann, W.: 1157 
Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland), Palaeogeography, 1158 
Palaeoclimatology, Palaeoecology, 228(1–2), 130–148, 2005. 1159 

Schöne, B. R., Rodland, D. L., Fiebig, J., Oschmann, W., Goodwin, D., Flessa, K. W. and Dettman, D.: 1160 
Reliability of multitaxon, multiproxy reconstructions of environmental conditions from accretionary 1161 
biogenic skeletons, The Journal of geology, 114(3), 267–285, 2006. 1162 

Scourse, J., Richardson, C., Forsythe, G., Harris, I., Heinemeier, J., Fraser, N., Briffa, K. and Jones, P.: 1163 
First cross-matched floating chronology from the marine fossil record: data  from growth lines of the long-1164 
lived bivalve mollusc Arctica islandica, The Holocene, 16(7), 967–974, 1165 
https://doi.org/10.1177/0959683606hl987rp, 2006. 1166 

Sha, L., Mahata, S., Duan, P., Luz, B., Zhang, P., Baker, J., Zong, B., Ning, Y., Brahim, Y. A., Zhang, H., 1167 
Edwards, R. L. and Cheng, H.: A novel application of triple oxygen isotope ratios of speleothems, 1168 
Geochimica et Cosmochimica Acta, 270, 360–378, https://doi.org/10.1016/j.gca.2019.12.003, 2020. 1169 

Shao, D., Mei, Y., Yang, Z., Wang, Y., Yang, W., Gao, Y., Yang, L. and Sun, L.: Holocene ENSO variability 1170 
in the South China Sea recorded by high-resolution oxygen isotope records from the shells of Tridacna 1171 
spp., Scientific Reports, 10(1), 3921, https://doi.org/10.1038/s41598-020-61013-2, 2020. 1172 



46 
 

Sinnesael, M., De Vleeschouwer, D., Zeeden, C., Batenburg, S. J., Da Silva, A.-C., de Winter, N. J., 1173 
Dinarès-Turell, J., Drury, A. J., Gambacorta, G. and Hilgen, F. J.: The Cyclostratigraphy Intercomparison 1174 
Project (CIP): consistency, merits and pitfalls, Earth-Science Reviews, 102965, 2019. 1175 

Stap, L., Lourens, L. J., Thomas, E., Sluijs, A., Bohaty, S. and Zachos, J. C.: High-resolution deep-sea 1176 
carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2, Geology, 38(7), 607–610, 1177 
2010. 1178 

Steffensen, J. P., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Fischer, H., Goto-Azuma, 1179 
K., Hansson, M., Johnsen, S. J. and Jouzel, J.: High-resolution Greenland ice core data show abrupt 1180 
climate change happens in few years, Science, 321(5889), 680–684, 2008. 1181 

Steuber, T., Rauch, M., Masse, J.-P., Graaf, J. and Malkoč, M.: Low-latitude seasonality of Cretaceous 1182 
temperatures in warm and cold episodes, Nature, 437(7063), 1341–1344, 1183 
https://doi.org/10.1038/nature04096, 2005. 1184 

Surge, D., Lohmann, K. C. and Dettman, D. L.: Controls on isotopic chemistry of the American oyster, 1185 
Crassostrea virginica: implications for growth patterns, Palaeogeography, Palaeoclimatology, 1186 
Palaeoecology, 172(3), 283–296, 2001. 1187 

Tagliavento, M., John, C. M., and Stemmerik, L.: Tropical temperature in the Maastrichtian Danish Basin: 1188 
Data from coccolith Δ47 and δ18O, 47, 1074–1078, 2019. 1189 

Titschack, J., Zuschin, M., Spötl, C. and Baal, C.: The giant oyster Hyotissa hyotis from the northern Red 1190 
Sea as a decadal-scale archive for seasonal environmental fluctuations in coral reef habitats, Coral 1191 
Reefs, 29(4), 1061–1075, 2010. 1192 

Treble, P., Shelley, J. M. G. and Chappell, J.: Comparison of high resolution sub-annual records of trace 1193 
elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia, 1194 
Earth and Planetary Science Letters, 216(1), 141–153, https://doi.org/10.1016/S0012-821X(03)00504-1, 1195 
2003. 1196 

Tsukakoshi, Y.: Sampling variability and uncertainty in total diet studies, Analyst, 136(3), 533–539, 1197 
https://doi.org/10.1039/C0AN00397B, 2011. 1198 

Tudhope, A. W.: Variability in the El Nino-Southern Oscillation Through a Glacial-Interglacial Cycle, 1199 
Science, 291(5508), 1511–1517, https://doi.org/10.1126/science.1057969, 2001. 1200 

Ullmann, C. V., Wiechert, U. and Korte, C.: Oxygen isotope fluctuations in a modern North Sea oyster 1201 
(Crassostrea gigas) compared with annual variations in seawater temperature: Implications for 1202 
palaeoclimate studies, Chemical Geology, 277(1), 160–166, 2010. 1203 

van Dam, J. A. and Reichart, G. J.: Oxygen and carbon isotope signatures in late Neogene horse teeth 1204 
from Spain and application as temperature and seasonality proxies, Palaeogeography, 1205 
Palaeoclimatology, Palaeoecology, 274(1–2), 64–81, https://doi.org/10.1016/j.palaeo.2008.12.022, 1206 
2009. 1207 

Van Rampelbergh, M., Verheyden, S., Allan, M., Quinif, Y., Keppens, E. and Claeys, P.: Seasonal variations 1208 
recorded in cave monitoring results and a 10 year monthly resolved speleothem δ18O and δ13C record 1209 
from the Han-sur-Lesse cave, Belgium, Climate of the Past Discussions, 10, 1821–1856, 2014. 1210 



47 
 

Vansteenberge, S., Verheyden, S., Cheng, H., Edwards, R. L., Keppens, E. and Claeys, P.: Paleoclimate 1211 
in continental northwestern Europe during the Eemian and early Weichselian (125–97 ka): insights from 1212 
a Belgian speleothem, Clim. Past, 12(7), 1445–1458, https://doi.org/10.5194/cp-12-1445-2016, 2016. 1213 

Vansteenberge, S., Winter, N. de, Sinnesael, M., Verheyden, S., Goderis, S., Malderen, S. J. M. V., 1214 
Vanhaecke, F. and Claeys, P.: Reconstructing seasonality through stable isotope and trace element 1215 
analysis of the Proserpine stalagmite, Han-sur-Lesse Cave, Belgium: indications for climate-driven 1216 
changes during the last 400 years, Climate of the Past Discussions, 1–32, https://doi.org/10.5194/cp-1217 
2019-78, 2019. 1218 

Veizer, J. and Prokoph, A.: Temperatures and oxygen isotopic composition of Phanerozoic oceans, Earth-1219 
Science Reviews, 146, 92–104, https://doi.org/10.1016/j.earscirev.2015.03.008, 2015. 1220 

Vleeschouwer, D. D., Vahlenkamp, M., Crucifix, M. and Pälike, H.: Alternating Southern and Northern 1221 
Hemisphere climate response to astronomical forcing during the past 35 m.y., Geology, 45(4), 375–378, 1222 
https://doi.org/10.1130/G38663.1, 2017. 1223 

Warter, V. and Müller, W.: Daily growth and tidal rhythms in Miocene and modern giant clams revealed via 1224 
ultra-high resolution LA-ICPMS analysis—A novel methodological approach towards improved 1225 
sclerochemistry, Palaeogeography, Palaeoclimatology, Palaeoecology, 465, 362–375, 2017. 1226 

Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S., Bohaty, 1227 
S. M., De Vleeschouwer, D. and Florindo, F.: An astronomically dated record of Earth’s climate and its 1228 
predictability over the last 66 million years, Science, 369(6509), 1383–1387, 2020. 1229 

Wilkinson, B. H. and Ivany, L. C.: Paleoclimatic inference from stable isotope profiles of accretionary 1230 
biogenic hardparts – a quantitative approach to the evaluation of incomplete data, Palaeogeography, 1231 
Palaeoclimatology, Palaeoecology, 185(1), 95–114, https://doi.org/10.1016/S0031-0182(02)00279-1, 1232 
2002. 1233 

Williams, M., Haywood, A. M., Harper, E. M., Johnson, A. L. A., Knowles, T., Leng, M. J., Lunt, D. J., 1234 
Okamura, B., Taylor, P. D., and Zalasiewicz, J.: Pliocene climate and seasonality in North Atlantic shelf 1235 
seas, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering 1236 
Sciences, 367, 85–108, https://doi.org/10.1098/rsta.2008.0224, 2009. 1237 

Yan, H., Liu, C., An, Z., Yang, W., Yang, Y., Huang, P., Qiu, S., Zhou, P., Zhao, N. and Fei, H.: Extreme 1238 
weather events recorded by daily to hourly resolution biogeochemical proxies of marine giant clam shells, 1239 
Proceedings of the National Academy of Sciences, 2020.  1240 

Zhang, L., Tang Wilson H., Zhang Lulu, and Zheng Jianguo: Reducing Uncertainty of Prediction from 1241 
Empirical Correlations, Journal of Geotechnical and Geoenvironmental Engineering, 130, 526–534, 1242 
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(526), 2004. 1243 


