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Abstract
The paper presents novel resources and experiments for Buddhist Sanskrit, broadly defined here as including all the varieties of
Sanskrit in which Buddhist texts have been transmitted. We release a novel corpus of Buddhist texts, a novel corpus of general
Sanskrit and word similarity and word analogy datasets for intrinsic evaluation of Buddhist Sanskrit embeddings models. We
compare the performance of word2vec and fastText static embeddings models, with default and optimized parameter settings,
as well as contextual models BERT and GPT-2, with different training regimes (including a transfer learning approach using
the general Sanskrit corpus) and different embeddings construction regimes (given the encoder layers). The results show that
for semantic similarity the fastText embeddings yield the best results, while for word analogy tasks BERT embeddings work
the best. We also show that for contextual models the optimal layer combination for embedding construction is task dependent,
and that pretraining the contextual embeddings models on a reference corpus of general Sanskrit is beneficial, which is a
promising finding for future development of embeddings for less-resourced languages and domains.
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1. Introduction
This study presents the evaluation of the performance
of static and contextual embeddings models
trained on a small historical corpus of Buddhist
Sanskrit literature. This literature constitutes the
textual foundation of Mahāyāna, one of the main
branches of Buddhism, which flourished in India
from around the first couple of centuries BCE to
the XII century CE. Despite extensive scholarly
endeavors, much uncertainty still surrounds this
body of literature, especially regarding matters of
chronology, authorship, and compositional history.
Moreover, the lexicographic documentation of its
vocabulary remains largely outdated (Lugli, 2018).
While many world literatures and languages have
benefited from the adoption of computational methods,
the study of Buddhist Sanskrit sources still relies
almost exclusively on traditional methods, such as
close reading and philology. This is likely due to the
scarcity of language resources available for Sanskrit
in general and especially for the variety of Sanskrit
used in Buddhist texts, which is characterized by
domain-specific vocabulary, morphological patterns
heavily influenced by local vernaculars and abundant
spelling variation.1 We aim to improve on this
situation by introducing novel corpora and language
models to extend the resources available for both
general and Buddhist Sanskrit. We also seek to
contribute to the Digital Humanities debate over the
feasibility and relative advantages of using static
and contextual word embeddings with small domain-

1Note that in this study, we refer to the Sanskrit used in
Buddhist literature as ’Buddhist Sanskrit’, regardless of the
level of vernacular influence instantiated in each text.

specific historical corpora (Wevers and Koolen, 2020),
and more generally to the current developments
in natural language processing for low-resourced
languages (Wang et al., 2020; Agić and Vulić, 2019).
We conduct a comparison study on how different
static and contextual embeddings models perform in
a low-resource scenario with limited training data and
also explore several options for models’ performance
improvement. More specifically, this paper introduces
novel resources for Sanskrit, including:

• novel corpora of Buddhist and general Sanskrit
(see Section 3),

• novel static (fastText and word2vec) and
contextual pretrained (BERT and GPT-2)
embeddings models for Buddhist Sanskrit2,

• novel word similarity and analogy evaluation
datasets for Buddhist Sanskrit,

• extensive experimental evaluation of various
embeddings models, including evaluation of
different layers selection in contextual models,
and assessing transfer learning capacity from
general to Buddhist Sanskrit models.

The paper is structured as follows. After related work
2, we describe the corpora.Section 4 covers the training

2The code for experiments is publicly available under
the MIT license at https://gitlab.com/matej.
martinc/buddhist_sanskrit_embeddings
and the best performing contextual embedding
model has been uploaded to the Huggingface
library (https://huggingface.co/Matej/
bert-base-buddhist-sanskrit).

https://gitlab.com/matej.martinc/buddhist_sanskrit_embeddings
https://gitlab.com/matej.martinc/buddhist_sanskrit_embeddings
https://huggingface.co/Matej/bert-base-buddhist-sanskrit
https://huggingface.co/Matej/bert-base-buddhist-sanskrit


of static and contextual embeddings, while Section 5
provides details on the evaluation datasets, settings and
results. The paper concludes with a sketch of our plans
for future work in Section 6.

2. Background and Related work
In recent years, approaches using embeddings
representations have shown impressive performance
in various downstream tasks and have become a
crucial resource for natural language processing. In
our work, we use static and contextual models. The
basic static word embeddings model is word2vec
(Mikolov et al., 2013). The aim of the algorithm is
to map each word appearing in the training corpus
to a unique vector representation in a shared vector
space where semantically similar words are situated
closer together than semantically dissimilar words.
A drawback of the word2vec algorithm is that words
which do not appear in the training corpus do not have
their own unique representation in the vector space.
The fastText (Bojanowski et al., 2017) algorithm is
an update to the word2vec algorithm which deals
with the the out-of-vocabulary words. To this end,
fastText calculates vector representations also for
subword n-grams. If any out-of-vocabulary word
can be reconstructed from the n-grams, the algorithm
sums the representations of the subwords into a final
vector representation for the out-of-vocabulary word.
The use of fastText algorithm is very appropriate for
conducting experiments on a language with a rich
morphology. It was shown in the original study that
fastText embeddings outperform baseline word2vec
static embeddings on semantic tasks, for example
word analogy derivation, on morphologically rich
languages.
Static word embeddings have been produced for several
low-resourced languages including Khmer (Buoy et al.,
2021) and Sinhala (Lakmal et al., 2020). Michel et
al. (2020) developed static word embeddings based
on word2vec and fastText algorithms for Hiligaynon.
In their work, they produced monolingual version of
the embeddings which they then projected into the
common space with the English-language embeddings
to produce bilingual embeddings. The authors note
that the main obstacle for producing quality mono- and
bilingual embeddings was lack of training data. Several
works have also developed static word embeddings for
general Sanskrit (e.g. Sandhan et al. (2021)). Kanojia
et al. (2019) further utilized the embeddings, trained
using the fastText algorithm, to produce phylogenetic
trees for Sanskrit texts, and (Kumar et al., 2020)
developed pretrained embeddings for several Indian
languages. In Kumar et al. (2020) various embeddings
models for 14 Indian languages were trained and static
embeddings evaluated on part-of-speech and named
entity recognition tasks. To complement the previous
studies, our work focuses on developing static and
contextualized embeddings for Buddhist Sanskrit.

Static embeddings models are recently being replaced
by contextual models that can handle polysemy,
such as BERT (Devlin et al., 2019) and GPT-
2 (Radford et al., 2019). BERT and GPT-2 are
both based on the transformer architecture (Vaswani
et al., 2017) but employ a different pretraining
regime, masked language modelling and autoregressive
language, respectively. Due to their popularity, they
are being released for several languages, including
general Sanskrit (Sandhan et al., 2021) and a variety
of Indian languages (Kumar et al., 2020). The
studies that evaluate these models are abundant (Rogers
et al., 2020). For example, a systematic study
of several models has been conducted by Vulić et
al. (2020b),who tested whether pretrained language
models encode type-level knowledge, and explored
different ways of distilling this knowledge from
the contextual representation. Several models and
knowledge extraction strategies have been compared
on a set of semantic tasks, namely lexical semantic
similarity, word analogy derivation and lexical relation
prediction. They conclude that in most cases and on
most tasks contextual embedding models outperform
static embedding models and are capable of modelling
type-level lexical knowledge. Among other, their
results suggested that using an averaged subword
embeddings from multiple contexts works better than
employing embeddings from a single context. They
also show that transformers carry type-level lexical
knowledge that is distributed across multiple layers
but is nevertheless more condensed in lower encoder
layers, in contrast to the semantic knowledge, which is
encoded in upper layers.

Research that deals with training, evaluation and
employment of contextual embeddings models on low-
resource languages is scarcer. This is most likely due
to the fact, that these models are believed to require
massive textual resources for optimal training (Devlin
et al., 2019), which are harder to obtain for these
languages. Nevertheless, recently these models have
been trained on smaller corpora and the results indicate
that they still offer competitive performance when
compared to static embedding models. In the study
by Sandhan et al. (2021), they trained a transformer
based model ALBERT (Lan et al., 2019) (a lite BERT
model with less parameters) and the ELMo contextual
embeddings model (Peters et al., 2018) based on deep
bi-directional LSTM architecture on a Sanskrit corpus
containing just around 6 M tokens. The models
were tested in an intrinsic setting, on a set of four
tasks, namely similarity, analogy, relatedness, and
categorization prediction. Surprisingly, ELMo model
outperformed static embeddings models, including
fastText, word2vec and GloVe (Pennington et al., 2014)
on most tasks and ALBERT proved competitive on
some.

Another strategy for representation learning on low-
resource languages is the employment of multilingual



models. The merit of this approach is analysed in
the study by Vulić et al. (2020a). They compare
multilingual BERT (Devlin et al., 2019) and XLM
(Conneau et al., 2020) to several static embedding
models on a dataset covering 12 typologically diverse
languages, among them major languages such as
Mandarin Chinese and Spanish, as well as less-
resourced ones such as Welsh and Kiswahili. For
major languages for which monolingual pretrained
transformer based models exist, they report a big gap
in performance between multilingual and monolingual
pretrained encoders in favor of the latter, confirming
the overall uncompetitiveness of multilingual models.
Multilingual models performed especially badly on
low-resource languages, since the data for these
languages was scarce in the multilingual training sets.
We have produced evaluation datasets, which are
standardly used for embeddings evaluation (Wang et
al., 2019; Bakarov, 2018). There exists a range of word
similarity datasets, including WS353 (Finkelstein et
al., 2002) and SimLex999 (Hill et al., 2015) datasets for
English, the derivative resources for other languages,
e.g. Turkish (Ercan and Yıldız, 2018), Finnish
(Venekoski and Vankka, 2017), Polish (Mykowiecka
et al., 2018), and multilingual resources (Mrkšić et
al., 2017; Leviant and Reichart, 2015; Camacho-
Collados et al., 2017; Barzegar et al., 2018). The
largest and most consistent available multilingual
similarity judgement dataset is Multi-SimLex (Vulić
et al., 2020a), which is a large-scale lexical resource
and evaluation benchmark covering datasets for twelve
typologically diverse languages. In terms of analogy
datasets, possibly the most widely adopted analogy
dataset is the Google analogy dataset for English
language introduced by (Mikolov et al., 2013). As
part of training static word embeddings for several
languages, (Grave et al., 2018) introduced three
original analogy datasets for Polish, French and Hindi.
In terms of general Sanskrit, (Sandhan et al., 2021)
developed an original similarity and analogy datasets
for evaluating their models.

3. Corpus
A corpus of general Sanskrit of about double the size
of the Buddhist Sanskrit corpus has been prepared
to pretrain BERT and GPT-2 models for this study
(Lugli et al., 2022). This corpus comprises 267 non-
Buddhist Sanskrit texts for a total of 13.3 million
tokens (excluding punctuation). The texts have been
taken from GRETIL, SARIT and CTS e-texts and
tokenised with the compound splitter proposed in
Hellwig and Nehrdich (2018). This corpus comprises
non-Buddhist religious and secular literature from the
6th century BCE to modern times, with most texts
dating from the 6th to 12th century (see Table 2). The
language of this corpus is mostly classical Sanskrit and
presents considerably less spelling variation than the
Buddhist corpus.

The main corpus used in this study is a collection
of Sanskrit Buddhist texts that has been developed
at the Mangalam Research Center for Buddhist
Languages in California and is newly released in
this study (Lugli et al., 2022). It includes all the
Buddhist texts published in major repositories of un-
preprocessed digitized Sanskrit material3 that are not
reconstructions from other languages, as well as a
few newly digitized Buddhist Sanskrit works. All
texts have been lemmatised with the tools developed
at the Mangalam Research Center and enriched with
metadata (Lugli, 2019). The version of the corpus
used for this study comprises 311 texts for a total of
6.7 million tokens (excluding punctuation). It spans
over two millennia of Buddhist literature, with works
ranging from the 1st century BCE up to contemporary
times, but its bulk consists of Mahāyāna scriptures
(emphsūtra) dating from the first five centuries CE
and treatises (emphśāstra) from around the 6th-12th
century (see Table 1). As with much Sanskrit
literature, the texts in the corpus are difficult to
date with any certainty and several remain impossible
to categorise chronologically. The language of the
corpus lies on a cline between classical Sanskrit and
the so-called ’Buddhist Hybrid Sanskrit’, a variety
of Sanskrit heavily influenced by local vernaculars
(prakrits) (Edgerton, 1953). Most texts display some
level of morphological and orthographic deviation
from the classical language and virtually all employ
domain-specific vocabulary, either by featuring words
not attested outside of Buddhist literature, or, more
frequently, by deploying general Sanskrit words with
specialised Buddhist meanings. About one third of
the texts in this corpus contains corrupted words and
passages (emphlacunae) due to illegible portions in the
manuscripts on which the editions are based. For this
study, corrupted words have been excluded from the
corpus (about 66 thousand tokens).

4. Model training
4.1. Static embedding models
Considering a relatively small unlabeled training
corpus compared to pretraining regimes in related work
(Devlin et al., 2019; Radford et al., 2019), we first
opted to develop and benchmark static embedding
models, where every token is represented as one vector
in the shared representation space regardless of the
context in which the word appears in. We expect
the static embedding models to be competitive with
the contextual embedding models on some evaluation
settings or to at least serve as a strong lower bound for
the performance of the embedding models trained on
this particular corpus.
In this work we experiment with two algorithms for
static embeddings generation, namely the word2vec

3GRETIL, SARIT, Thesaurus Literaturae Buddhicae,
Digital Sanskrit Buddhist Canon and CTS e-texts.



Genre I BCE-V CE VI-XII CE Later Indeterminate Total
scriptures (sūtra) 1,694,429 185,507 0 94,950 1,974,886
treatises (śāstra) 395,266 2,274,198 54,971 19,991 2,744,426
religious stories (avadāna) 348,843 29,365 31,324 323,455 732,987
monastic rules (vinaya) 376,248 54,642 0 11,937 442,827
literature and hymns (kāvya, stotra) 269,301 307,534 3,933 11,554 592,322
tantric texts and formulas (tantra,sādhana,dhāran. ı̄) 3,867 256,536 0 31,736 292,139
Total 3,087,954 3,107,782 90,228 493,623 6,779,587

Table 1: Composition of the Buddhist Sanskrit corpus

Genre I BCE-V CE VI-XII CE Later Indeterminate Total
scriptures (upanis. ad, āgama, tantra) 12,052 519,259 0 17,419 548,730
treatises (śāstra) 1,171,326 6,679,420 206,736 4,712 8,062,194
religious stories (purān. a) 600,270 1,227,969 0 217,425 2,045,664
literature, hymns (kāvya, stotra) 309,918 1,521,087 0 811,113 2,642,118
Total 2,093,566 9,947,735 206,736 1,050,669 13,298,706

Table 2: Composition of the general Sanskrit corpus

(Mikolov et al., 2013) and fastText (Bojanowski et
al., 2017) algorithms. Both algorithms require to
set a number of hyperparameters in advance that
can influence the optimization process and impact
the quality of the final models. We first set the
hyperparameters for both algorithms to values which
produced quality embeddings as reported in related
work. For fastText algorithm, the embeddings were
calculated according to Vulić et al. (2020a) using
the CBOW model type with embedding dimension
set to 300, character n-grams of length 5, window
size of 5 and 10 training epochs. For word2vec
algorithms, we have set the embedding dimensions
to 300, window size to 11 and the number of
epochs to 80 as it was reported in Sandhan et
al. (2021). Since these hyperparameters are set
experimentally, we decided to additionally perform a
random search over hyperparameter space for both
algorithms. For each algorithm, we repeated the
training process 100 times, each time randomly varying
the hyperparameters. During the random search, a
slightly different set of hyperparameters was optimized
depending on the algorithm used. The following set of
hyperparameters was optimized for both word2vec and
fastText algorithms:

• model - which model, either Skip-gram or
CBOW, should be used to train the static word
embeddings.

• embedding dimensions: dimensions of the final
embedding space. The random search process was
optimising between the following set of values
for the embedding space dimensionality: 50, 100,
150, 200, 250, 300.

• context window size - the number of words in
the neighbourhood of the target word which are

used to calculate the representation of the target
word. The random search optimizes for values in
the range from 5 to 11.

• number of epochs - the number of times the
algorithm runs through the whole training dataset.
The random search optimizes for values in the
range from 3 to 16.

In addition to the above set of hyperparameters, the
following two hyperparameters were optimized for the
fastText algorithm:

• minimum subword length - the minimum length
of the subword ngrams for which a separate
representation will be calculated.

• maximum subword length - the maximum
length of the subword ngrams for which a separate
representation will be calculated.

During hyperparameter optimization, each trained
model was evaluated on the word analogy task over
a small subset of 24 verb-noun triplets (for detailed
explanation of evaluation tasks see Section 5). The
model with the highest score on the subset analogy
task was then chosen for further evaluation. Given the
evaluation dataset, our static embedding models were
trained on a lemmatized version of the training corpus,
by which we also mitigate the data sparsity problem
caused by the rich morphology and spelling variation
of Buddhist Sanskrit.

4.2. Contextual embedding models
We experiment with two distinct contextual embedding
methods, BERT (Devlin et al., 2019) and GPT-2 (Vulić
et al., 2020b). While these two models are both
based on the transformer architecture (Vaswani et al.,



2017), there are differences between the models in
terms of size and pretraining objectives. The bert-base-
uncased model4, which we employ, contains around
110 million parameters5 and employs masked language
modelling pretraining objective. With around 1.5
billion parameters, GPT-26 is more than 10 times
larger and employs autoregressive language modelling
objective during the pretraining. The initial hypothesis
is that there will be significant differences between the
performance of the models. We expect that GPT-2 will
be more sensitive to overfitting due to its large size and
due to a relatively small training corpus size. We also
expect that BERT might have a performance advantage
due to its leveraging of the right side context.
We test two training regimes. The first strategy
involves training a Byte-Pair Encoding (BPE) tokenizer
(Sennrich et al., 2016) with a vocabulary of 30,000
tokens. The BPE tokenization is conducted after a
white space pre-tokenization that splits the training
data into words and ensures that byte-pairs do not range
across words. The byte-pair tokens produced by the
tokenizer are fed to both models in sequences of 512
tokens and the models are trained on the Buddhist
Sanskrit corpus for up to 300 epochs. To tackle the
possible overfitting issue, we employ the following
early stopping strategy: 10% of the corpus is set aside
as a development set and the loss for both models
is calculated on this development set every 10,000
training steps. If the loss at a specific checkpoint
is larger than at previous checkpoint, the training is
stopped and the model at the previous checkpoint is
used for the embedding construction.
In the second training regime, we pretrain both
contextual models on the general Sanskrit corpus
described in Section 3. Since there is considerable
overlap in the vocabulary and grammar of general and
Buddhist Sanskrit, we hypothesise that models might
be able to leverage this additional textual resource to
compensate for the relatively small size of the Buddhist
corpus and learn some useful lexical, semantic, and
grammatical information. We preprocess the corpus
with the compound splitter proposed in Hellwig and
Nehrdich (2018) to obtain word tokens. For the
training of the BPE tokenizer, this tokenized corpus is
merged with the tokenized Buddhist corpus in order to
obtain a byte-pair vocabulary that covers all the training
corpora. Same as in the previous training regime, the
vocabulary size is set to 30,000 and the white space
pre-tokenization is employed. We label the models

4https://huggingface.co/
bert-base-uncased

5Note that we also tested a lighter version of the BERT
architecture, with 6 hidden layers instead of 12, which
performed worse than the bert-base-uncased architecture.
We omit the description of these experiments due to space
constraints.

6https://huggingface.co/docs/
transformers/model_doc/gpt2

trained according to this training regime as ‘pretrained’
in Tables 4 and 5.
Both models are pretrained on the general Sanskrit
corpus using the same hyperparameters as for training
on the Buddhist corpus, i.e. the input sequence length
is set to 512, the models are trained for up to 300
epochs and the same early stopping mechanism is
applied. After the pretraining, both pretrained models
are trained on the Buddhist corpus, again for up to 300
epochs, with the input sequence length of 512 and the
early stopping mechanism.
The resulting four contextual models (BERT, GPT-2
with and without pretraining) are used for embedding
construction. We experiment with three distinct
embedding generation regimes, similar to Vulić et
al. (2020b). More specifically, the final embedding
representation is created by averaging (1) first six
encoder layers , (2) last four encoder layers, or (3) all
encoder layers. The study by Vulić et al. (2020b),
which was conducted for BERT models trained on
several languages, has shown that the usage of first 6
encoder layers results in the best representation since
lexical knowledge is mostly encoded in the lower
encoder layers. Since we also employ the GPT-2
model with an autoregressive language model objective
and since models in our experiments are trained on
much smaller corpora than the models used in the
experiments by Vulić et al. (2020b), we opted to
also test two other embedding construction strategies
besides the recommended first 6 encoder layers, since
these differences in the experimental setup might result
in a different distribution of information of specific
type (e.g. lexical, semantic, etc.) in the models’
encoders. If a word is split into more than one subword
token, we take an embedding for each subword
constituting a word and average these embeddings in
order to derive a contextual representation for each
word occurence. Finally, the resulting contextual
embeddings are averaged across the corpus on the
level of word’s lemma in order to obtain a single
word-type level embedding for each word’s lemma.
This is once again motivated by the study of Vulić
et al. (2020b), where they indicated that averaging
subword embeddings from multiple contexts improves
the quality of the representation.

5. Evaluation
5.1. Evaluation datasets
Two evaluation datasets have been prepared for this
study, a set of 98 pairs of nouns manually scored for
semantic similarity (Semantic similarity dataset) and
a set of 120 morphologically related words (Analogy
dataset).
In creating the semantic similarity dataset, we tried
to conform to Vulić et al. (2020a) and annotate
a representative sample of vocabulary using a 7-
point scale (0 to 6) that focuses on purely semantic
similarity (as opposed to contextual and paradigmatic

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://huggingface.co/docs/transformers/model_doc/gpt2
https://huggingface.co/docs/transformers/model_doc/gpt2


relatedness). However, this approach is impractical for
historical languages with no remaining native speakers.
Some adaptations proved necessary. First, given
historical nature and cultural specificity of Buddhist
Sanskrit vocabulary, we opted for creating our own
word pairs, rather than translating the resource by
(Vulić et al., 2020a). Second, it is extremely difficult
for non-native speakers to gauge semantic similarity
with the delicacy required by a 7-point scale. To
facilitate the task, annotators were invited to consider
some contextual and paradigmatic relations, thus
departing from purely semantic judgment. Specifically,
scores 3 and 4 were recommended for words belonging
to the same conceptual domain and differing levels of
semantic similarity (vitarka-vicāra, 4; vitarka-manas,
3), whereas scores 1 and 2 were recommended for
words that present strong contextual similarity and
differing levels of conceptual relatedness (vikalpa-
prapañca, 2; smr. ti-āyātana, 1). Next, the need
to annotate a representative sample of Buddhist
Sanskrit vocabulary had to be balanced with the
annotators’ lexical competence. To avoid over-reliance
on dictionaries, whose semantic descriptions do not
always reflect the language of our corpus, and ensure
a scoring based on the annotators’ semantic intuition,
the word pairs to be scored were selected from among
vocabulary the annotators were most familiar with.
This led to limiting the word pairs to 196 nouns
that are either very frequent (e.g. artha) or well
researched in Buddhist studies (e.g. abhijñā). Finally,
given the paucity of scholars well versed in Buddhist
Sanskrit literature, only 4 annotators worked on the
dataset, and one had to be discarded due to low inter-
annotator agreement. Part of the difficulty of achieving
high inter-annotator agreement stems from the extreme
polysemy of much of the Sanskrit vocabulary. While a
pair of words may be similar in respect to one shared
sense, their semantic spectra may differ considerably
overall. Annotators were asked to focus on the sense a
word typically expresses in Buddhist literature, but this
does not solve all polysemy. For example, both words
in the pair gati-mārga are used to lexicalize the concept
of a road, but mārga often refers the path to liberation
from the cycle of rebirths, while gati often means
the type of existence into which one is reborn, thus
being almost antithetical to mārga. Two annotators
emphasised the similarity between these two words and
assigned a 5 score, two highlighted the difference and
rated the pair’s similarity 2. To assess the agreement
between the four annotators, each annotator’s scores
were compared with the average scores of the other
annotators using Spearman rank correlation coefficient.
The scores are presented in Table 3.

The analogy dataset consists of 24 sets of 5
morphologically related words derived from a single
root: a verb, a past participle, a noun, an action noun
in -ana and an agentive in -in (e.g. kalp kalpita
kalpa kalpana kalpin). This dataset is very small

because very few roots appear in our corpus in all 5
forms. Moreover we strove to craft sets that display
a degree of semantic regularity between the different
word forms and include at least one word typical of
Buddhist Sanskrit literature. These constraints led us to
include in the datasets some low-frequency items. Both
datasets feature words in the lemma form, as typically
given in Sanskrit dictionaries produced in Europe. This
is to reduce data sparsity due to morphological and
spelling variation (note that there is no unanimous
lexicographic consensus as to how to lemmatize verbs;
we use the stem of present active third person singular).

5.2. Evaluation setting
We evaluated the models on two intrinsic tasks
introduced above. The first task is an analogy task
where the model is given a triplet of words. In
a standard analogy task (Mikolov et al., 2013), the
first pair of words establishes a relationship and the
model has to retrieve the word which is in the same
relationship with the third word of the triplet (a:a* ::
b:x). In our case, the first pair of words represents two
word forms that stem from the same root and the model
has to retrieve the word which stems from the same
root as the third word in the triplet while respecting the
word classes of the given words. For example, given
the pair kalpita and kalpa, which are the past participle
and noun forms stemming from the root kl.p, and given
a third word smr.ta, a past participle, the model has to
return the word smr.ti, a noun form stemming from the
same root as smr.ta, smr..
We construct three versions of this task using our
Analogy dataset (see Section 5.1). In the first version,
the model has to retrieve the noun word form given the
verb word form; in the second the model is expected
to retrieve the past participle given the verb; and in
the third the model has to retrieve the noun given the
past participle. For each of these versions, each word
set from the analogy dataset is compared with every
other word set, giving us in total 552 unique triplets for
each version of the analogy task. To assess the model
performance on this task we use the accuracy at one
(Acc@1) and accuracy at ten measures (Acc@10).
In the second task the model is queried with two

Correlation p-value
Annotator A 0.9138 1.1707e-30
Annotator B 0.8660 2.4137e-39
Annotator C 0.8669 8.8789e-31
Annotator D 0.7396 3.3703e-18
Krippendorf α (Annotators A, B, C interval scale) 0.8583

Table 3: Spearman rank correlation between each
annotator’s score and the average score of other
annotators. Note that the data of Annotator D, who had
considerably lower correlation scores, was excluded
from this study. In additinon, Krippendorf α is
calculated.



words and it has to return a score of their semantic
similarity. The semantic similarity is measured using
cosine similarity, a continuous score which ranges from
0, denoting no similarity in meaning, to 1, denoting
that the words have identical meaning. The task is
performed using the Semantic similarity dataset. The
performance of the model is measured by Spearman
rank correlation between similarity scores output by the
model and the gold standard scores.

5.3. Evaluation results
The results for the analogy task are presented in
Table 4. Generally speaking, the best performance
is observed for the BERT models pretrained on the
general Sanskrit corpus, followed by BERT models
trained only on the Buddhist Sanskrit corpus, static
embedding models, pretrained GPT-2 models, and
finally GPT-2 models trained only on the Buddhist
Sanskrit corpus. When it comes to contextual
embeddings models, there is a large gap in performance
between GPT-2 and BERT models, with the best
pretrained BERT achieving scores about twice as good
(or even better) as the best pretrained GPT-2 model
according to all criteria and across all analogy tasks.
The gap is in line with our initial hypothesis, which
assumed the overfitting of the GPT-2 model due to its
large size and a small training corpus.
Pretraining the contextual embedding models on
a general reference corpus is clearly beneficial.
A pairwise comparison between pretrained models
and models trained only on the Buddhist Sanskrit
corpus employing the same embedding construction
mechanism reveals that the pretrained model always
outperforms its counterpart trained only on the
Buddhist Sanskrit corpus. The improvements are in
most cases substantial.
When it comes to comparison of three distinct
strategies for construction of embeddings, the results
are less clear. Using all encoder layers for embedding
construction seems to work the best in terms of
accuracy@10. Using last four encoder layers on the
other hand in many cases improves the accuracy@1,
at least when pretrained BERT model is used.
The accuracy@1 obtained by these embeddings are
substantially better on the analogy prediction between
past partiples and nouns. Interestingly, the embeddings
construction strategy recommended by Vulić et al.
(2020b), in a majority of cases performs the worst of
all three embedding construction possibilities for the
analogy task. Further research would be required to
confirm or deny the hypothesis that this is somehow
connected to the small size of the training corpus,
which might prevent the model to obtain encoder layers
specialized for different types of information during
training.
The results for the Simlex task are presented in Table 5.
For this task, static embeddings models outperform
contextual embeddings models. The only contextual

model that offers a somewhat comparable performance
is BERT pretrained on the general Sanskrit corpus,
especially when embeddings are constructed from
the first 6 layers, as recommended by Vulić et al.
(2020b). On the other hand, constructing embeddings
from the last 4 layers results in a substantial loss in
performance. The GPT-2 model once again performs
much worse than BERT, confirming the overfitting
hypothesis, and pretraining the contextual models on
the general Sanskrit corpus first, improves results also
for the Simlex task.
When comparing static embedding models, the results
show that models trained with hyperparameters from
related work are comparable in performance with
the best models obtained through hyperparameter
optimization. This indicates that for our setting
hyperparameter optimization might not be worth
pursuing given additional computational cost it incurs.
Additionaly, we observe that the best values for
hyperparameters obtained through optimization are
relatively similar with best parameters suggested
in the related work. Final hyperparameters for
best static embedding models obtained through
hyperparameter optimization are presented in
Appendix A. Additionally, we have conducted an
analysis of the impact of chosen hyperparameters
on the model’s performance. To this end, we
have calculated correlation coefficients between
each optimized hyperparameter and the results on
the evaluation subset using the data from the 100
hyperparameter optimization runs. We have estimated
the correlation between the model type, which is a
categorical variable with two possible values, either
CBOW or skipgram, and the evaluation results using
point biserial correlation coeffficient. For performing
the calculations we assigned the value 0 to the CBOW
model type and value 1 to the skipgram model type.
For other hyperparameters, we have calculated the
Spearman correlation coefficient. The critical value for
the significance of the results was set to α = 0.05 prior
to conducting the analysis.
Our analysis shows that the hyperparameter that
most affects the performance of a fastText model is
embedding dimension (ρ=0.5255, p-value=1.98e-08)
which is in line with the findings from the related
work. Other hyperparameters that seem to affect
the model quality to a lesser degree are model type
(ρ=-0.2276, p-value=0.0227), where using the CBOW
model seems to correlate with better results on the
evaluation subset, and minimum length of subwords
(ρ=-0.2947, p-value=0.003). This result indicates that
allowing for shorter subwords improves the final model
performance, possibly due to the ability of the model to
cover higher proportion of out-of-vocabulary words.
The most impactful hyperparameter for the word2vec
models proved to be the chosen model type, where
again the CBOW model seems to correlate with better
results (ρ=-0.6364, p-value=1.11e-12). This result



verb-noun verb-ppp ppp-noun
Model Acc@1 Acc@10 Acc@1 Acc@10 Acc@1 Acc@10
fastText (default) 0.0127 0.1685 0.0072 0.2409 0.0000 0.0743
fastText 0.0562 0.2301 0.0000 0.1993 0.00 0.0888
word2vec (default) 0.0779 0.1993 0.0616 0.2156 0.0562 0.1775
word2vec 0.0707 0.2210 0.0616 0.2047 0.0489 0.1558
BERT pretrained all layers 0.1214 0.4275 0.2464 0.5725 0.1105 0.4149
BERT pretrained first 6 layers 0.1051 0.3841 0.2065 0.5489 0.0507 0.3859
BERT pretrained last 4 layers 0.1286 0.4058 0.2301 0.5072 0.1975 0.4239
BERT all layers 0.1105 0.3533 0.1649 0.3714 0.0562 0.3134
BERT first 6 layers 0.1014 0.3460 0.1576 0.3750 0.0417 0.2953
BERT last 4 layers 0.0978 0.2880 0.1123 0.3043 0.1014 0.2772
GPT-2 pretrained all layers 0.0707 0.1993 0.0562 0.2482 0.0217 0.1830
GPT-2 pretrained first 6 layers 0.0616 0.1812 0.0652 0.2591 0.0163 0.1594
GPT-2 pretrained last 4 layers 0.0688 0.1902 0.0634 0.2228 0.0199 0.1775
GPT-2 all layers 0.0236 0.0652 0.0072 0.0399 0.0145 0.0670
GPT-2 first 6 layers 0.0308 0.0761 0.0072 0.0453 0.0163 0.0707
GPT-2 last 4 layers 0.0199 0.0670 0.0054 0.0344 0.0145 0.0580

Table 4: Results for the analogy task. (For static embeddings, we compare optimized parameters to default ones.
For contextual models, pretrained denotes pretraining on the general Sanskrit corpus and distinct embedding
construction strategies using different layers are compared.

may indicate that CBOW model is the preferred
model type for training static embeddings on low-
resourced and morphologically rich languages. The
other hyperparameter which significantly impacts the
model quality is the number of training epochs which
shows medium strong correlation with the evaluation
results (ρ=0.5596, p-value=1.43e-09). This result
could indicate that word2vec algorithm is less prone
to overfitting on the smaller training set which makes
it relatively robust for training on low-resourced
languages. Surprisingly, the embedding dimensions
do not have statistically significant correlation with the
quality of the final word2vec model (p-value=0.0875).

Model Correlation P-value
fastText (default) 0.6824 0.0000000
fastText 0.6821 0.0000000
word2vec (default) 0.6672 0.0000000
word2vec 0.6647 0.0000000
BERT pretrained all layers 0.6492 0.0000000
BERT pretrained first 6 layers 0.6644 0.0000000
BERT pretrained last 4 layers 0.5554 0.0000000
BERT all layers 0.5753 0.0000000
BERT first 6 layers 0.6313 0.0000000
BERT last 4 layers 0.4660 0.0000013
GPT-2 all layers 0.3401 0.0006114
GPT-2 first 6 layers 0.3674 0.0001979
GPT-2 last 4 layers 0.3225 0.0012023
GPT-2 pretrained all layers 0.5689 0.0000000
GPT-2 pretrained first 6 layers 0.5681 0.0000000
GPT-2 pretrained last 4 layers 0.5459 0.0000000
Average annotator correlation 0.8822 /

Table 5: Results for the Simlex task.

For full results of correlation analysis between static
embeddings hyperparameters and performance of the
trained models, see Appendix B.

6. Conclusion and future work

The results show that for semantic similarity the
fastText embeddings yield the best results, while for
word analogy tasks, BERT embeddings work the
best. We also show that for contextual models the
optimal layer combination for embedding construction
is task dependant, and that pretraining the contextual
embeddings models on a general reference corpus of
Sanskrit is beneficial, which is an interesting finding for
future development of embeddings for less-resourced
languages and domains.
There might be several reasons for better performance
of static embeddings on the SimLex task and better
performance of the contextual ones on the analogy
tasks. First, in our datasets the SimLex task consist
of more frequent words, while in the analogy dataset
several words with very low frequency appear. BERT-
based embeddings might be capable of building better
representations for rare words due to BPE encoding
and larger contextual window. Our findings are also
aligned with Sandhan et al. (2021) on general Sanskrit,
where contextual embedding performed better on the
syntactic tasks.
In future work, we will use the developed models for
synonym detection and word sense disambiguation.
We will also further investigate how different layer
combinations work for different tasks and generalise to
other languages.
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experiments and the evaluation datasets on GitLab8 and
Zenodo9, respectively, and the best performing BERT
model on Hugging Face10.

Acknowledgements
This work was funded by a NEH Digital Advancement
Grant level 2 (HAA-277246-21) and the creation of
the Buddhist Sanskrit Corpus was partly funded by the
British Academy (NF161436). We also acknowledge
the Slovenian Research Agency core programme P2-
0103. We also would like thank Bruno Galasek-Hul,
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Appendix A: Final hyperparameters for
best static embedding models

Table 6 presents hyperparameters of best static
embedding models obtained through hyperparameter
optimization.

fastText word2vec
model CBOW CBOW
embedding dimension 200 300
context window size 5 6
number of epochs 12 15
minimum subword length 3 /
maximum subword length 8 /

Table 6: Hyperparameters for best models using
fastText and word2vec algorithms as found through the
process of hyperparameter optimization.

Appendix B: Correlation between static
embeddings hyperparameters and
performance of the trained models

In Table 7 we present the full results of correlation
analysis between static embedding models
hyperparameters and the performance of the models,
trained during hyperparameter optimization. For
discussion of the results, refer to Section 5.3
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