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 

Abstract—This work proposes a novel proportional-derivative 

(PD)-type state-dependent Riccati equation (SDRE) approach 

with iterative learning control (ILC) augmentation. On the one 

hand, the PD-type control gains could adopt many useful available 

criteria and tools of conventional PD controllers. On the other 

hand, the SDRE adds nonlinear and optimality characteristics to 

the controller, i.e. increasing the stability margins. These 

advantages with the ILC correction part deliver a precise control 

law with the capability of error reduction by learning. The SDRE 

provides a symmetric-positive-definite distributed nonlinear 

suboptimal gain 𝐊(𝐱) for the control input law 𝐮 =
−𝐑−𝟏(𝐱)𝐁𝑻(𝐱)𝐊(𝐱)𝐱. The sub-blocks of the overall gain 

𝐑−𝟏(𝐱)𝐁𝑻(𝐱)𝐊(𝐱), are not necessarily symmetric positive definite. 

A new design is proposed to transform the optimal gain into two 

symmetric-positive-definite gains like PD-type controllers as 𝐮 =
−𝐊𝐒𝐏(𝐱)𝐞 − 𝐊𝐒𝐃(𝐱)𝐞̇. The new form allows us to analytically 

prove the stability of the proposed learning-based controller for 

mechanical systems; and presents guaranteed uniform 

boundedness in finite-time between learning loops. The symmetric 

PD-type controller is also developed for the state-dependent 

differential Riccati equation (SDDRE) to manipulate the final 

time. The SDDRE expresses a differential equation with a final 

boundary condition, which imposes a constraint on time that could 

be used for finite-time control. So, the availability of PD-type 

finite-time control is an asset for enhancing the conventional 

classical linear controllers with this tool. The learning rules benefit 

from the gradient descent method for both regulation and tracking 

cases. One of the advantages of this approach is a guaranteed-

stability even from the first loop of learning. A mechanical 

manipulator, as an illustrative example, was simulated for both 

regulation and tracking problems. Successful experimental 

validation was done to show the capability of the system in practice 

by the implementation of the proposed method on a variable-pitch 

rotor benchmark. 

 
Index Terms—SDRE; SDDRE; Symmetric; PD-type; Closed-

loop; Iterative Learning Control. 

I. INTRODUCTION 

HE proportional derivative (PD) control has well-

established mathematics, so many well-known tools, 

assessment and tuning methods, etc. It has been accepted by the 

industrial platforms which prefer the simplicity of the control 
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law and straightforward analysis. What if someone wants a 

finite-time PD controller? We intend to gain all the benefits of 

the PD control with the additional power of nonlinearity and 

finite-time regulation. The state-dependent Riccati equation 

(SDRE) has been defined as an optimal control design for 

nonlinear systems. Optimality, robustness, design flexibility, 

and systematic procedure are some advantages of the SDRE [1]. 

The differential form of the SDRE uses a final boundary 

condition to impose an extra penalty on final states near the end 

of time, the method is so-called the state-dependent differential 

Riccati equation (SDDRE) [2]. Both SDRE and SDDRE were 

widely used in aerospace [3], approximate dynamic 

programming framework [4], cancer treatment modeling [5], 

etc. Either of SDRE or SDDRE method provides a suboptimal-

distributed symmetric-positive-definite gain 𝐊(𝐱) for the 

standard form of Riccati control law 𝐮 = −𝐗(𝐱)𝐱 in which 

𝐗(𝐱) = 𝐑−1(𝐱)𝐁𝑇(𝐱)𝐊(𝐱). This work proposes a new control 

structure to transform the distributed gain into two symmetric-

positive-definite gains for the error vector and its derivative 

𝐮 = −𝐊SP(𝐱)𝐞 − 𝐊SD(𝐱)𝐞̇. 

The proposed structure possesses many advantages such as 

independent control of error of the system, PD shape, the 

structure of a finite-time PD controller, etc.; however, the main 

objective for the transformation is to release a new design to 

analytically guarantee the stability of a novel SDRE design, 

augmented by iterative learning control (ILC) approach. Using 

PD-like control seems more practical and widely used, and 

easier for implementation and mathematical derivation. The 

motivation for using the SDRE controller is the nonlinear 

optimal structure and finite-time characteristics of the 

controller. The optimality deviates since the symmetric 

structure changes the original gain 𝐊(𝐱); nonetheless, the 

nonlinearity and finite-time control remained as the advantages 

of the proposed method. Iterative learning control uses previous 

data to update the next control loop [6]. A proper ILC converges 

the error of a system towards zero in each control loop [7-9]. 

One of the main advantages of the ILC is a compensation of the 

modeling uncertainty by the learning process [10-12]. This is 

more critical when dynamic modeling is complex, for example, 
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the behavior of the flapping wing flying robots [13]; or 

piezoelectric actuators with hysteretic nonlinearity [14]. Shen 

and Xu presented an adaptive ILC for systems with randomly 

varying iteration lengths [15]. Robotics has been an attractive 

field for the implementation of ILC. Roveda et al. presented the 

iterative learning control approach with reinforcement peculiar 

to high-accuracy force tracking in robotics [16]. Oh et al. 

researched a regulation problem for iterative learning model 

predictive control [17]. Pan and Yu developed a composite 

learning robot control possessing guaranteed parameter 

convergence [18]. The iterative learning control improves 

trajectory tracking by several trials; Schollig and D’Andrea 

employed the learning for tracking systems with state and input 

constraints [19]. The dynamic of a brush-bot is a challenging 

topic, especially in terms of actuation; hence, one efficient way 

is to use learning methods. Barrier-certified adaptive control 

was implemented for the navigation of a brush-bot as a 

reinforcement learning method [20]. Vision-based learning was 

used for racing drones in a tracking problem with moving 

uncertain trajectories [21]. The high level of uncertainty was 

handled by a deep neural network learning tool. In 

reinforcement learning, a gradient descent method is a powerful 

approach for training the models, also capable of modification 

for computation enhancement [22]. 

The closed-loop ILCs, with PD- or PID-based structures 

were reported [23, 24]; however, the ILC was usually employed 

to skip the unknown closed-loop dynamic in feedforward 

methods [25, 26]. It was also common to consider ILC based on 

a core hypothesis that repetitiveness of task and model was 

satisfied; however, robustness with ILC was shown using a 

high-order internal model [27-29]. In other words, the learning 

process helps to deliver an ideal controller without engaging the 

design with offline dynamic modeling; and using the online 

data of each step for the performance enhancement of the next 

loop. The open-loop approach demonstrated the nature of the 

learning by showing unexpected behavior at primary loops 

might result in bad trajectories, collisions, saturations, or 

destruction of the prototypes. So, open-loop learning is 

preferable for stable systems; i.e. a quadrotor with an internal 

stable loop [26]. The closed-loop ILC could possess stable 

primary loops at the beginning. This is useful for dynamically 

unstable systems. Here in this work, the presented learning-

based controller is closed-loop, applicable for a dynamically 

unstable system. The experimental implementation of this work 

uses a propeller-type inverted pendulum that, in nature, is 

unstable at an equilibrium point. So, the PD-type SDDRE 

generates a primary input signal (stable) for the first loop and 

the ILC will update and reduce the error in consecutive learning 

loops. 

The stability of the proposed ILC is proved by a new 

Lyapunov-like candidate with a dynamic-scaling factor. From 

the control application point of view, the best qualities of the 

new controller are its PD-like structure and finite-time option. 

We propose a baseline PD controller that is redesigned to gain 

robustness via dynamic scaling. The error with this controller 

will converge to zero at infinity, and in finite-time, although 

bounded, the error might be too large for the application. Thus, 

the ILC reduces the error in each iteration based on the update 

in the previous loop. The proposed design guarantees bounded 

error, 𝜀(𝑘), at 𝑘-th iteration lim
𝑡→𝑡f

|𝑒(𝑡)| ≤ 𝜀(𝑘) as it is shown in 

Fig. 1. For an infinite-time case, the stability of the nonlinear 

PD-like controller for robot manipulators was investigated and 

it was shown that this form leads to global asymptotic stability 

[30]. The integrator part of the control also generated semi-

global stability for saturated linear PID controllers [31]. 

The current work uses a gradient descent method as a training 

rule for updating the learning feedforward control law to 

propose a symmetric gain SDRE/SDDRE control and 

combining it with the ILC to form a new finite-time iterative 

learning approach. The stability proof of the control law is 

presented. The main advantage of this learning system is to 

employ a nonlinear (suboptimal) input law besides the ILC to 

guarantee stable regulation and tracking even from the first loop 

of the learning. The proposed ILC is also implemented on a 

variable-pitch (VP) rotor benchmark for experimental 

validation. The VP platform was controlled by the SDRE [32], 

though here for the first time, the implementation of a learning-

based controller has been presented. 

 

Fig. 1. The explanation of the ILC operation in error reduction in finite-time. 

The main contributions of this work are as follows: 

C1. Presenting a nonlinear finite-time PD-like controller 

based on SDDRE with the ILC feedforward compensation to 

gain more precision. 

C2. Transforming the suboptimal-distributed symmetric-

positive-definite gain of the SDRE/SDDRE methodology 

into novel PD-like gains, which is more suitable for 

mechanical systems.  

C3. Proving the stability of the nonlinear controller with ILC. 

C4. Introducing a novel convex objective function for the 

regulation training rule of the gradient descent method. 

C5. Guaranteeing uniform boundedness in finite-time 

between learning loops allows us to use the approach for 

unstable mechanical systems. 

Notations: Let 𝜆max(∙) and 𝜆min(∙) be maximum and 

minimum eigenvalues of an arbitrary matrix, respectively. ℝ𝑛 

is denoted as the 𝑛-dimensional Euclidean space; ℝ𝑛×𝑚 is 

presented as the set of 𝑛 × 𝑚 real matrices. (∙)𝑇 shows 

transpose and diag(∙) means a diagonal matrix. 
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Section II briefly presents the SDRE/SDDRE controller 

structure. Iterative control system design has been presented for 

both regulation and tracking problems in Section III. Learning 

rules based on the gradient descent method have been expressed 

in Section IV. Simulations and experiments are presented in 

Sections V and VI, respectively, and the conclusions in Section 

VII. 

II. THE SDRE/SDDRE CONTROL DESIGN 

Consider a nonlinear system 

𝐱̇(𝑡) = 𝐀(𝐱(𝑡))𝐱(𝑡) + 𝐁(𝐱(𝑡))𝐮(𝑡), (1) 

where 𝐱(𝑡) ∈ ℝ𝑛 is a state vector, 𝐮(𝑡) ∈ ℝ𝑚 is an input vector. 

𝐀(𝐱(𝑡)): ℝ𝑛 → ℝ𝑛×𝑛 and 𝐁(𝐱(𝑡)): ℝ𝑛 → ℝ𝑛×𝑚 are state-

dependent coefficient (SDC) parameterization of a nonlinear 

system 𝐱̇(𝑡) = 𝐟(𝐱(𝑡)) + 𝐠(𝐱(𝑡), 𝐮(𝑡)) where 𝐟(𝐱(𝑡)): ℝ𝑛 →

ℝ𝑛 and 𝐠(𝐱(𝑡), 𝐮(𝑡)): ℝ𝑛 × ℝ𝑚 → ℝ𝑛 are piecewise-

continuous vector-valued functions that satisfy a local Lipschitz 

condition. The aim is to minimize the cost function [33]: 

𝐽(⋅) =
1

2
(𝐱𝑇(𝑡f)𝐅𝐱(𝑡f) + ∫{𝐱𝑇𝐐(𝐱)𝐱 + 𝐮𝑇𝐑(𝐱)𝐮}d𝑡

𝑡f

0

), (2) 

and finish a control task in a finite predefined time 𝑡 ∈ [0, 𝑡f]. 

𝐐(𝐱(𝑡)): ℝ𝑛 → ℝ𝑛×𝑛 and 𝐅 ∈ ℝ𝑛×𝑛 penalize the states in 𝑡 ∈

[0, 𝑡f) and at 𝑡f, respectively (both symmetric positive semi-

definite); 𝐑(𝐱(𝑡)): ℝ𝑛 → ℝ𝑚×𝑚 penalizes the inputs 

(symmetric positive definite). 

Assumption 1. (Controllability). The nonlinear pair of 

[𝐀(𝐱(𝑡)), 𝐁(𝐱(𝑡))] must form a completely controllable 

parameterization of the original system (1) with the mentioned 

conditions [1]. 

Assumption 2. (Observability). The nonlinear pair of 

[𝐀(𝐱(𝑡)), 𝐐1 2⁄ (𝐱(𝑡))] must form a completely observable 

parameterization of the original system (1) with the mentioned 

conditions [1]. 

Satisfying Assumptions 1 and 2 was discussed and for more 

details on checking those conditions, please visit Refs. [34, 35]. 

The control law representing the SDRE/SDDRE is: 

𝐮(𝑡) = −𝐑−1(𝐱(𝑡))𝐁𝑇(𝐱(𝑡))𝐊(𝐱(𝑡))𝐱(𝑡), (3) 

where the symmetric positive-definite suboptimal gain 

[𝐊(𝐱(𝑡))]
2𝑛×2𝑛

, is a solution to the state-dependent Riccati 

equation [1]: 

𝐀𝑇(𝐱)𝐊ss(𝐱) + 𝐊ss(𝐱)𝐀(𝐱)

− 𝐊ss(𝐱)𝐁(𝐱)𝐑−1(𝐱)𝐁𝑇(𝐱)𝐊ss(𝐱)

+ 𝐐(𝐱) = 𝟎, (4) 

or the state-dependent differential Riccati equation [1]: 

𝐊̇(𝐱) = −{𝐀𝑇(𝐱)𝐊(𝐱) + 𝐊(𝐱)𝐀(𝐱)

− 𝐊(𝐱)𝐁(𝐱)𝐑−1(𝐱)𝐁𝑇(𝐱)𝐊(𝐱)

+ 𝐐(𝐱)}, 𝐊(𝑡f) = 𝐅. (5) 

In LQR design for linear system or an open-loop two-point 

boundary value problem, there exists optimality; however, in 

the SDRE or SDDRE, which is the extension of LQR for 

nonlinear systems, the following terms appear in the derivation 

such as (
𝜕𝐀(𝐱)

𝜕𝐱
𝐱)

𝑇

, (
𝜕𝐁(𝐱)

𝜕𝐱
𝐱)

𝑇

, etc., for more details Refs. [36-

39] could be visited. Therefore, the SDRE is so-called, a 

suboptimal closed-loop control design. In the LQR, since the 

𝐀, 𝐁, 𝐐 and 𝐑 are linear and constant, those derivative terms do 

not exist and the resultant gain 𝐊 is the optimal answer to the 

linear system. 

An SDRE controller is suitable for cases that need an optimal 

design when the finishing time is unimportant and the steady-

state behavior of the system is more demanded. An SDDRE 

controller penalizes the states at a final time which is usually 

less than the conventional time of operation (when the user 

requires a faster response). The final time is a function of 

control effort that the designer invests in the platform. More 

energy results in a faster response; and the fastest response is 

limited by the actuator’s saturations and limits. The other aspect 

that defines the final time is the amplitude of the error in 

regulation (point-to-point) control and the length and speed of 

a trajectory in the tracking case. That means if the error in 

regulation is big, more time is needed and if the error is small, 

less time. 

o The question is how to determine the final time? Using the 

SDRE, without penalization of the final boundary 

condition delivers an infinite-time optimal control solution 

as a function of error and the convergence-time is limited 

to the bound of actuators and tuning of the weighting 

matrices. In that sense, we realize approximately how 

much time we need for a specific task in regulation 

between two set points. 

o After that how to finish the control task faster? Using the 

SDDRE with penalizing the final boundary condition. The 

error at the end of the regulation gets smaller and the 

amplitude of the input signal decreases which shows an 

asymptotic behavior in infinite time controllers. Using the 

finite time approach, the regulation near the end needs to 

speed up and we see a faster response, which leads to a 

shorter finishing time. Matrix 𝐅 plays this role and 

enhances regulation speed. 

It should be noted that in SDDRE closed-loop optimal 

control, at the final time, there is an error but the controller 

equipped with ILC will reduce it, see Fig. 1. The exact final 

time with zero error is possible by open-loop two-point 

boundary value problem [40, 41], etc.; however, using closed-

loop optimal control, the exact value without error is 

impossible. 

As a result, the signal of the SDDRE control law increases 

near the end of the time of operation. The solution to the 

differential Riccati equation, SDDRE, is a little more 

complicated than the SDRE (SDRE is an algebraic matrix 

equation). The more complicated structure was not a limit to the 

application of this method in control of a super-tanker [42], 

aircraft [43], wind energy conversion system [44], helicopter 

[45], etc. 

Lemma 1. The nonlinear system (1) with its performance 

index (2) and necessary conditions based on Assumptions 1 and 
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2 can be stabilized using control law (3), in which 𝐊ss(𝐱(𝑡)) is 

the positive-definite solution to the SDRE (4) [46]. 

Lemma 2. The nonlinear system (1) with its cost function (2) 

and necessary conditions based on Assumptions 1 and 2 can be 

stabilized using control law (3), in which 𝐊(𝐱(𝑡)) is the 

positive-definite solution to the SDDRE (5) with the final 

condition 𝐊(𝑡f) = 𝐅 [33]. 

Remark 1. The control law can employ a solution to the 

SDRE (4) which generates a steady-state suboptimal gain or the 

SDDRE (5) which releases a time-varying suboptimal gain with 

the benefit of finite-time control. The stability proofs of 

Lemmas 1 and 2 used a conventional Lyapunov function 𝑉 =

𝐱𝑇𝐊𝐱. The stability of the proposed PD-type SDRE and ILC 

law cannot be proved by the common function since it generates 

extra sign indefinite terms that are difficult to analyze: 

𝑉̇ = −𝐱𝑇(𝐊𝐁𝐑−1𝐁𝑇𝐊 + 𝐐)𝐱 + 𝐱𝑇𝐊𝐁𝐇 + 𝐇𝑇𝐁𝑇𝐊𝐱, 

where 𝐇 is a learning part. A different Lyapunov-like function 

has been considered here, stated in Theorem 1. 

The closed-form solution to the SDDRE (5) was reported in 

Sections 3.3.1 and 3.3.2 of Ref. [33]. 

III. SDRE/SDDRE AUGMENTED BY ITERATIVE LEARNING 

A. Regulation 

Consider 𝐪(𝑡) ∈ ℝ𝑁 as a generalized coordinate vector of an 

arbitrary 𝑁 degree-of-freedom (DoF) mechanical system with 

an equation of motion: 

𝐌(𝐪(𝑡))𝐪̈(𝑡) + 𝐂(𝐪(𝑡), 𝐪̇(𝑡))𝐪̇(𝑡) + 𝐠(𝐪(𝑡)) + 𝐃f𝐪̇(𝑡)

= 𝐮(𝑡), (6) 

where 𝐌(𝐪(𝑡)): ℝ𝑁 → ℝ𝑁×𝑁 is an inertia matrix, 

[𝐂(𝐪(𝑡), 𝐪̇(𝑡))𝐪̇(𝑡)]: ℝ𝑁 → ℝ𝑁 includes Coriolis and 

centrifugal terms, 𝐠(𝐪(𝑡)): ℝ𝑁 → ℝ𝑁 is a gravity vector, 𝐃f ∈

ℝ𝑁×𝑁 is a positive-diagonal matrix (including viscous friction, 

drag, etc.) and 𝐮(𝑡) ∈ ℝ𝑁 is an input vector consisting of 

𝐹𝑖(𝑡) (N) for force or 𝜏𝑖(𝑡) (Nm) for torque. 

Property 1. The inertia matrix 𝐌(𝐪(𝑡)) is a symmetric 

positive-definite matrix such that 𝐌1 ≤ 𝐌(𝐪(𝑡)) ≤ 𝐌2 where 

𝐌1, 𝐌2 ∈ ℝ𝑁×𝑁 are constant symmetric positive definite 

matrices with the same size of 𝐌(𝐪(𝑡)). 

Property 2. Defining the Coriolis and centrifugal force 

matrix through Christoffel’s symbols, the matrix [𝐌̇(𝐪(𝑡)) −

2𝐂(𝐪(𝑡), 𝐪̇(𝑡))] is skew-symmetric and the following holds 

𝛈𝑇(𝑡)[𝐌̇(𝐪(𝑡)) − 2𝐂(𝐪(𝑡), 𝐪̇(𝑡))]𝛈(𝑡) = 0 where 𝛈(𝑡) ∈ ℝ𝑁. 

A state vector (including generalized coordinates and the 

derivative of that) for the system is regarded as [𝐱(𝑡)]2𝑁×1 =
[𝐪𝑇(𝑡) 𝐪̇𝑇(𝑡)]𝑇, 𝑛 = 2𝑁, and 𝑚 = 𝑁. As a result, the state-

space equation for the representation of the mechanical system 

(6) is formed (leaving gravity out of the state-space equation to 

be compensated by the control law) [39]: 

𝐱̇(𝑡) = 𝐀(𝐱(𝑡))𝐱(𝑡) + 𝐁(𝐱(𝑡))𝐮(𝑡)

= [
𝟎𝑁×𝑁 𝐈𝑁×𝑁

𝟎𝑁×𝑁 −𝐌−1(𝐱)[𝐂(𝐱) + 𝐃f]
] 𝐱(𝑡)

+ [
𝟎𝑁×𝑁

𝐌−1(𝐱)
] 𝐮(𝑡). 

(7) 

The SDRE is augmented by an iterative learning control law, 

for the 𝑖-th learning loop as: 

𝐮𝑖(𝑡) = 𝐮S
𝑖 (𝑡) + 𝐠𝑖(𝐪(𝑡)) + 𝐇𝑖(𝑡), (8) 

where 𝐇𝑖(𝑡) is the learning feedforward term and the feedback 

part is gravity vector plus SDRE/SDDRE (𝐮S(𝑡)) control law 

𝐮S(𝑡) = −𝐑−1(𝐪, 𝐪̇)𝐁𝑇(𝐪, 𝐪̇)𝐊(𝐪, 𝐪̇)[𝐞𝑇, 𝐞̇𝑇]𝑇, (9) 

where 𝐞(𝑡) = 𝐪(𝑡) − 𝐪d and 𝐞̇(𝑡) = 𝐪̇(𝑡) − 𝐪̇d in which 𝐪d and 

𝐪̇d are desired position and velocity of states at the final time. 

The updating term 𝐇𝑖(𝑡) is a predicted feed-forward part. It will 

be computed by an iterative learning law at each loop. 

Assumption 3. The updated term 𝐇𝑖(𝑡) of the training rule 

satisfies the following bound 

‖𝐇𝑖(𝑡)‖2 ≤ 𝑐0 + 𝑐1‖𝐞(𝑡)‖2 + 𝑐2‖𝐞̇(𝑡)‖2, (10) 

with constants  𝑐0, 𝑐1, 𝑐2 > 0 and any positive integer 𝑖. 
Assumption 3 puts constraints on the updating term 𝐇(𝑡) in 

the input law; any kind of actuator is physically limited. The 

input law generates a signal to feed one or more actuators, that 

might be DC motors, a hydraulics valve, a propeller rotor, 

thermo-electric valves, etc. The physical interpretability of 

Assumption 3 could be expressed as an internal bound on a 

learning term. That means 𝐇(𝑡) has a relatively limited 

capability of learning concerning the PD-type counterpart of the 

controller, such that stability is guaranteed during the iterations. 

The gain 𝐊(𝐪(𝑡), 𝐪̇(𝑡)) is a 2𝑁 × 2𝑁 symmetric-positive-

definite matrix, a nonlinear optimal solution to the 

SDRE/SDDRE, partitioned into four square blocks: 

𝐊(𝐪, 𝐪̇) = [

𝐊11(𝐪, 𝐪̇) | 𝐊12(𝐪, 𝐪̇)

− − − − − − | − − − − − −

𝐊12
𝑇 (𝐪, 𝐪̇) | 𝐊22(𝐪, 𝐪̇)

]. (11) 

Considering the special form of 𝐁(𝐱(𝑡)) for the mechanical 

system (7), and using Eq. (11), the control law (9) is changed 

into: 

𝐮S(𝑡) = −𝐗1(𝐪, 𝐪̇)𝐞 − 𝐗2(𝐪, 𝐪̇)𝐞̇, (12) 

where 

[𝐗1(𝐪, 𝐪̇)]𝑁×𝑁 = 𝐑−1(𝐪, 𝐪̇)𝐌−1(𝐪)𝐊12
𝑇 (𝐪, 𝐪̇), (13) 

[𝐗2(𝐪, 𝐪̇)]𝑁×𝑁 = 𝐑−1(𝐪, 𝐪̇)𝐌−1(𝐪)𝐊22(𝐪, 𝐪̇). (14) 

Equation (12) is another representation of SDDRE (9) 

preserving nonlinearity, finite-time, and suboptimal 

characteristics. The matrix 𝐊12(𝐪, 𝐪̇), in (13), is not symmetric 

positive definite, hence 𝐗1(𝐪, 𝐪̇) is not positive definite as well. 

To prove the stability of the controller in Theorem 1, symmetric 

positive definiteness of the gains is necessary. We use a 

transformation to present two sets of symmetric positive 

definite based on the solution to Riccati equation to preserve 
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finite-time characteristics and benefits of the SDDRE and at the 

same time, satisfy the condition for stability proof. The final 

step is to transform the gains (13) and (14), to symmetric 

positive-definite matrices 

𝐊SP(𝐪, 𝐪̇) =
𝐊12(𝐪, 𝐪̇)𝐌−1(𝐪)𝐑−1(𝐪, 𝐪̇)𝐌−1(𝐪)𝐊12

𝑇 (𝐪, 𝐪̇)

‖𝐊12(𝐪, 𝐪̇)𝐌−1(𝐪)‖2

, 

𝐊SD(𝐪, 𝐪̇) =
𝐊22

𝑇 (𝐪, 𝐪̇)𝐌−1(𝐪)𝐑−1(𝐪, 𝐪̇)𝐌−1(𝐪)𝐊22(𝐪, 𝐪̇)

‖𝐊22(𝐪, 𝐪̇)𝐌−1(𝐪)‖2

, 

where multiplying 𝐊12(𝐪, 𝐪̇)𝐌−1(𝐪) and 𝐊22
𝑇 (𝐪, 𝐪̇)𝐌−1(𝐪) 

from left-hand-side makes 𝐊SP(𝐪, 𝐪̇) and 𝐊SD(𝐪, 𝐪̇) 

symmetric-positive-definite gains, leveled by the division to 

norms ‖𝐊12(𝐪, 𝐪̇)𝐌−1(𝐪)‖2 and ‖𝐊22(𝐪, 𝐪̇)𝐌−1(𝐪)‖2 with 

respect. It also reshapes the control law (9) to a new symmetric 

design: 

𝐮S(𝑡) = −𝐊SP(𝐪, 𝐪̇)𝐞 − 𝐊SD(𝐪, 𝐪̇)𝐞̇. (15) 

So, control law (15) is transformed and is not equal to (12) 

and the result of this transformation will be used to cancel two 

terms in the proof of stability in Theorems 1 and 2, using 

𝐪̇𝑇𝐊SP(𝐪, 𝐪̇)𝐞 = 𝐞𝑇𝐊SP(𝐪, 𝐪̇)𝐪̇, which is not possible without 

symmetry of 𝐊SP(𝐪, 𝐪̇). 

Symmetric design and stability analysis: The idea of the 

symmetric design of the SDRE/SDDRE controller is to reach a 

PD-like structure to independently control the error and error 

velocity of a practical system, and analytically prove the 

stability of the novel ILC controller. The design also preserves 

the finite-time control capability of the SDDRE. The new 

structure helps to guarantee the stability of the nonlinear 

equation of motion (6) of a mechanical system. The advantages 

of the symmetric design are the optimality and finite-time 

characteristic of the controller. 

Theorem 1. (Regulation) Consider the nonlinear mechanical 

system dynamics given by (6) satisfying Properties 1 and 2 

together with the SDDRE dynamic-state feedback (8)-(15) 

equipped with the suboptimal gain of Eq. (5) and 𝐑 = (
𝐑0

𝑟(𝑡)
)

−1

, 

𝐑0 = 𝐑0
𝑇 > 0, set through the scaling-factor dynamics as 

𝑟̇ = 𝜌1𝑟

‖2𝛂 −
𝛾̇
𝛾

𝛃‖
2

𝜆min(𝛃)
+ 𝜌2(𝐞, 𝐞̇, 𝑟),      𝑟(0) > ‖𝐑0‖, 

(16) 

with 𝜌1 > 1, any smooth function 𝜌2(𝐞, 𝐞̇, 𝑟) with at most linear 

growth in 𝑟 and 𝛂(𝐪, 𝐪̇), 𝛃(𝐪, 𝐪̇), and 𝛾(𝐪, 𝐪̇) defined along 

with the proof. Then, the error trajectories 𝐞(𝑡) are ultimately 

bounded for any training rule satisfying Assumption 3 for all 

0 ≤ 𝑡 ≤ 𝑡f and any finite final time 𝑡f. 

Proof. In the regulation case, the desired velocity and 

acceleration are zero at the final time, 𝐞̈(𝑡) = 𝐪̈(𝑡), 𝐞̇(𝑡) =
𝐪̇(𝑡) and 𝐞(𝑡) = 𝐪(𝑡) − 𝐪d where 𝐪d is a constant vector. 

Substitution of the iterative control law (8) in the equation of 

motion (6) results in 

𝐌(𝐪)𝐪̈ + [𝐂(𝐪, 𝐪̇) + 𝐃f + 𝐊SD(𝐪, 𝐪̇, 𝑟)]𝐪̇

+ 𝐊SP(𝐪, 𝐪̇, 𝑟)𝐞 = 𝐇. (17) 

To analyze the stability, a Lyapunov-like candidate is 

considered 

𝑉(𝐪, 𝐪̇, 𝑟) =
1

2
{𝐪̇𝑇𝐌(𝐪)𝐪̇ + 𝐞𝑇𝐊SP(𝐪, 𝐪̇, 𝑟)𝐞}. (18) 

It should be noted that Eq. (17) is a non-homogenous second 

order differential equation that is updated in each loop by the 

time-varying term 𝐇. 𝐊SP(𝐪, 𝐪̇, 𝑟) is positive definite based on 

the proposed symmetric structure. Taking time-derivative of 

(18) provides 

𝑉̇(𝐪, 𝐪̇, 𝑟) = 𝐪̇𝑇𝐌(𝐪)𝐪̈ +
1

2
𝐪̇𝑇𝐌̇(𝐪)𝐪̇

+ 𝐞𝑇𝐊SP(𝐪, 𝐪̇, 𝑟)𝐞̇

+
1

2
𝐞𝑇𝐊̇SP(𝐪, 𝐪̇, 𝑟)𝐞, (19) 

and replacing 𝐞̇ = 𝐪̇ and 𝐪̈ from (17) into (19) results in 

𝑉̇(𝐪, 𝐪̇, 𝑟) =
1

2
𝐪̇𝑇{𝐌̇(𝐪) − 2𝐂(𝐪, 𝐪̇)}𝐪̇ − 𝐪̇𝑇[𝐃f + 𝐊SD(𝐪, 𝐪̇, 𝑟)]𝐪̇

− 𝐪̇𝑇𝐊SP(𝐪, 𝐪̇, 𝑟)𝐞 + 𝐞𝑇𝐊SP(𝐪, 𝐪̇, 𝑟)𝐪̇

+
1

2
𝐞𝑇𝐊̇SP(𝐪, 𝐪̇, 𝑟)𝐞 + 𝐪̇𝑇𝐇. 

It can be easily shown that 𝐪̇𝑇𝐊SP(𝐪, 𝐪̇, 𝑟)𝐞 =
𝐞𝑇𝐊SP(𝐪, 𝐪̇, 𝑟)𝐪̇ because 𝐊SP(𝐪, 𝐪̇, 𝑟) is a symmetric matrix and 

that 𝐌̇(𝐪) − 2𝐂(𝐪, 𝐪̇) is a skew-symmetric matrix (Property 2). 

Consequently, the derivative of the Lyapunov-like candidate 

turns into 

𝑉̇(𝐪, 𝐪̇, 𝑟) = −𝐞̇𝑇[𝐃f + 𝐊SD(𝐪, 𝐪̇, 𝑟)]𝐞̇ +
1

2
𝐞𝑇𝐊̇SP(𝐪, 𝐪̇, 𝑟)𝐞

+ 𝐞̇𝑇𝐇, 

in which 

  

𝐊̇SP(𝐪, 𝐪̇, 𝑟)

= {[2
d

d𝑡
(𝐊12𝐌−1)

𝐑0

𝑟
𝐌−1𝐊12

𝑇

+ 𝐊12𝐌−1
d

d𝑡
(

𝐑0

𝑟
) 𝐌−1𝐊12

𝑇 ] ‖𝐊12𝐌−1‖2

−
tr {(𝐊12𝐌−1)𝑇 d

d𝑡
(𝐊12𝐌−1)}

√tr{(𝐊12𝐌−1)𝑇(𝐊12𝐌−1)}
(𝐊12𝐌−1

𝐑0

𝑟
𝐌−1𝐊12

𝑇 )}

/‖𝐊12𝐌−1‖2
2, 

 

and could be rewritten as 

𝐊̇SP(𝐪, 𝐪̇, 𝑟) =
1

𝑟2𝛾
{−𝑟̇𝛃 + 𝑟 (2𝛂 −

𝛾̇

𝛾
𝛃)}, (20) 

where we have defined 

𝛂 ≔
d

d𝑡
(𝐊12𝐌−1)𝐑0𝐌−1𝐊12

𝑇 , 𝛃 ≔ 𝐊12𝐌−1𝐑0𝐌−1𝐊12
𝑇 , 

𝛾 ≔ ‖𝐊12𝐌−1‖2, 𝛾̇ =
tr {(𝐊12𝐌−1)𝑇 d

d𝑡
(𝐊12𝐌−1)}

√tr{(𝐊12𝐌−1)𝑇(𝐊12𝐌−1)}
. 

Recalling the definition of the scaling-factor dynamics given 

in Theorem 1, Eq. (16), the following bound for derivative 
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arises 

𝑉̇(𝐪, 𝐪̇, 𝑟) ≤ −𝐞̇𝑇 [𝐃f +
𝐊̅SD(𝐪, 𝐪̇)

𝑟
] 𝐞̇ −

𝑐3

𝑟
‖𝐞‖2

2

−
𝜌2

2𝑟2𝛾
𝐞𝑇𝛃𝐞 + 𝐞̇𝑇𝐇, 

(21) 

where 𝑐3 is a positive constant, whose existence is guaranteed 

because the 𝜌1-term of (16) dominates 𝑟 (2𝛂 −
𝛾̇

𝛾
𝛃) of (20), 

and where for compactness we have defined     

𝐊̅SD(𝐪, 𝐪̇) ≔ 𝐊SD(𝐪, 𝐪̇, 1) > 0. 

By construction, Eq. (16) is linear in 𝑟(𝑡), as a result, 𝑟(𝑡) is 

not escaping to infinity in finite time, and consequently 𝑟(𝑡) ∈
ℒ∞e for any fixed 𝑡f, which is the case in SDDRE (“e” stands 

for extended space). Therefore, for any training rule satisfying 

Assumption 3, i.e. bounded as in (10) and using Young’s 

inequality, an upper bound for (21) becomes 

𝑉̇(𝐪, 𝐪̇, 𝑟) ≤ −𝑐4‖𝐞‖2
2 − 𝑐5‖𝐞̇‖2

2 +
𝑐0

2

2
, (22) 

where the existence of the positive constants 𝑐4, 𝑐5 is 

guaranteed by the positivity of  𝐊̅SD(𝐪, 𝐪̇) and 𝑐3 > 0. 
Additionally, the free function 𝜌2(𝐞, 𝐞̇, 𝑟) must satisfy the 

constraint 
𝐞𝑇𝛃𝐞

2𝑟2𝛾
 |𝜌2(𝐞, 𝐞̇, 𝑟)| < 𝜆min(𝐃f) ‖𝐞̇‖2

2, e.g. it could be 

set to zero (its role is explained in Remark 2). On the other hand, 

recall that 𝐌(𝐪) is positive definite and 𝑟(𝑡) ∈ ℒ∞e for a fixed 

𝑡f. Thus, for any fixed finite time 𝑡f, the function (18) is positive 

definite, and therefore, there always exists a constant 𝑐 > 0 

such that (22) yields 

𝑉̇(𝐪, 𝐪̇, 𝑟) ≤ −𝑐𝑉(𝐪, 𝐪̇, 𝑟) +
𝑐0

2

2
. (23) 

Finally, from (23) for 𝑉 ≥
𝑐0

2

2𝑐
 then 𝑉̇ ≤ 0 and the ultimate 

boundedness along the trajectories of (17) is guaranteed, for 

0 ≤ 𝑡 ≤ 𝑡f, i.e. 𝐞, 𝐞̇ ∈ ℒ∞𝑒.               ■ 

Corollary 1. Suppose that all the conditions of Theorem 1 

hold. Then, if 𝑐0 = 0 in (10) of Assumption 3, the error 

trajectories 𝐞(𝑡) are uniformly ultimately bounded for all 0 ≤
𝑡 ≤ 𝑡f and any finite final time 𝑡f. 

Remark 2. Notice that, the function 𝜌2(𝐞, 𝐞̇, 𝑟) is not needed 

for the stability proof, and it could be set to zero. This function 

modulates the size of 𝑟(𝑡) in practice. Recall that the 

mechanism of the scaling factor is to grow and dominate the 

undesired nonlinearities. Thus, in practice, it is very important 

to add a stabilizing term to the 𝑟(𝑡) dynamics to modulate its 

size in such a way that we prevent the computer hardware from 

an overflow in digital implementations. In the simulation 

section, we discuss thoroughly this and propose a form for the 

function 𝜌2(𝐞, 𝐞̇, 𝑟) while preserving stability.  

Remark 3. Selection of 𝐑0 and 𝑟(0) defines the performance 

of the system. Regarding the definition of 𝐑(0) = (
𝐑0

𝑟(0)
)

−1

, one 

should note that 𝐑(0) must be defined as the proper selection 

of the input weighting matrix for systems. Large values for 

𝐑(0) result in an improper performance. 𝑟(0) also affects the 

solution to 𝑟(𝑡), and finally, 𝑟(𝑡) must be positive. 

B. Tracking 

Adding and subtracting the desired dynamic to Eq. (6) 

change the equation of motion to (subscript “d” represents 

“desired”): 

[𝐌(𝐪) − 𝐌(𝐪d)](𝐪̈ − 𝐪̈d)

+ [𝐂(𝐪, 𝐪̇) − 𝐂(𝐪d, 𝐪̇d)](𝐪̇ − 𝐪̇d)

+ 𝐠(𝐪) + 𝐃f(𝐪̇ − 𝐪̇d)

= 𝐮 − 𝐒d(𝐪̈d, 𝐪̇d, 𝐪d), (24) 

where 

𝐒d(𝐪̈d, 𝐪̇d, 𝐪d) = 𝐌(𝐪d)𝐪̈d + 𝐂(𝐪d, 𝐪̇d)𝐪̇d + 𝐃f𝐪̇d. (25) 

Defining the error and error velocity vector of the system as 

𝐞(𝑡) = 𝐪(𝑡) − 𝐪d(𝑡) and 𝐞̇(𝑡) = 𝐪̇(𝑡) − 𝐪̇d(𝑡), respectively, 

and substituting ILC law (8) in (24) result in 

𝐌̃(𝐪, 𝐪d)𝐞̈ + [𝐂̃(𝐪, 𝐪̇, 𝐪d, 𝐪̇d) + 𝐃f + 𝐊SD(𝐪, 𝐪̇)]𝐞̇

+ 𝐊SP(𝐪, 𝐪̇)𝐞 = 𝐇 − 𝐒d(𝐪̈d, 𝐪̇d, 𝐪d), (26) 

where 𝐌̃(𝐪, 𝐪d) = 𝐌(𝐪) − 𝐌(𝐪d), and 𝐂̃(𝐪, 𝐪̇, 𝐪d, 𝐪̇d) =
𝐂(𝐪, 𝐪̇) − 𝐂(𝐪d, 𝐪̇d). 

Property 3. The desired dynamic in trajectory tracking is a 

copy of the original mechanical structure, i.e. 𝐌(𝐪) and 

𝐂(𝐪, 𝐪̇). Thus, defining the Coriolis and centrifugal force 

matrix 𝐂(𝐪d, 𝐪̇d) through Christoffel’s symbols, the property 

𝛈𝑇 [𝐌̇̃(𝐪, 𝐪d) − 2𝐂̃(𝐪, 𝐪̇, 𝐪d, 𝐪̇d)] 𝛈 = 0 holds, as in Property 2. 

Assumption 4. The predefined trajectories for tracking, 

𝐪d(𝑡), are uniformly continuous and bounded in 0 ≤ 𝑡 ≤ 𝑡f, 

twice continuously differentiable and with 𝐪̇d(𝑡) and 𝐪̈d(𝑡), 

also bounded. The final time of the trajectory 𝑡f is fixed. 

Theorem 2. (Tracking) Consider the nonlinear dynamics 

represented by (24) in the trajectory tracking case, satisfying 

Properties 1 and 3 together with the SDDRE dynamic-state 

feedback (8)-(15) with the suboptimal gain of Eq. (5) and 𝐑 =

(
𝐑0

𝑟(𝑡)
)

−1

, set through the scaling-factor dynamics (16) with 

same conditions for 𝜌1, 𝜌2(𝐞, 𝐞̇, 𝑟), 𝛂(𝐪, 𝐪̇), 𝛃(𝐪, 𝐪̇), and 

𝛾(𝐪, 𝐪̇) as in Theorem 1. Then, the error vector 𝐞(𝑡) is 

ultimately bounded for any tracking training rule satisfying 

Assumption 3 and for any trajectory under Assumption 4, for 

all 0 ≤ 𝑡 ≤ 𝑡f and any finite final time 𝑡f. 

Proof. The stability proof is very similar to the regulation 

case and hence we provide only the necessary steps. In this case, 

the Lyapunov-like candidate is 

𝑉(𝐪, 𝐪̇, 𝐪d, 𝐪̇d, 𝑟) =
1

2
{𝐞̇𝑇𝐌̃(𝐪, 𝐪d)𝐞̇ + 𝐞𝑇𝐊SP(𝐪, 𝐪̇, 𝑟)𝐞}. (27) 

Taking time-derivative of (27) provides 

𝑉̇(𝐪, 𝐪̇, 𝐪d, 𝐪̇d, 𝑟) = 𝐞̇𝑇𝐌̃(𝐪, 𝐪d)𝐞̈ +
1

2
𝐞̇𝑇𝐌̇̃(𝐪, 𝐪d)𝐞̇

+ 𝐞𝑇𝐊SP(𝐪, 𝐪̇, 𝑟)𝐞̇

+
1

2
𝐞𝑇𝐊̇SP(𝐪, 𝐪̇, 𝑟)𝐞, (28) 
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and replacing 𝐞̈ from (26) into (28) result in 

𝑉̇(𝐪, 𝐪̇, 𝐪d, 𝐪̇d, 𝑟) =
1

2
𝐞̇𝑇 {𝐌̇̃(𝐪, 𝐪d) − 2𝐂̃(𝐪, 𝐪̇, 𝐪d, 𝐪̇d)} 𝐞̇

− 𝐞̇𝑇[𝐃f + 𝐊SD(𝐪, 𝐪̇, 𝑟)]𝐞̇ − 𝐞̇𝑇𝐊SP(𝐪, 𝐪̇, 𝑟)𝐞

+ 𝐞𝑇𝐊SP(𝐪, 𝐪̇, 𝑟)𝐞̇ +
1

2
𝐞𝑇𝐊̇SP(𝐪, 𝐪̇, 𝑟)𝐞 + 𝐞̇𝑇𝐇. 

Invoking Property 3, the derivative becomes 

𝑉̇(𝐪, 𝐪̇, 𝐪d, 𝐪̇d, 𝑟) = −𝐞̇𝑇{𝐃f + 𝐊SD(𝐪, 𝐪̇, 𝑟)}𝐞̇

+
1

2
𝐞𝑇𝐊̇SP(𝐪, 𝐪̇, 𝑟)𝐞 + 𝐞̇𝑇𝐇, (29) 

where definition of 𝐊̇SP(𝐪, 𝐪̇, 𝑟) is similar to (20). Substituting 

the scaling-factor 𝑟̇(𝑡), Eq. (16), into (29) results in 

𝑉̇(𝐪, 𝐪̇, 𝐪d, 𝐪̇d, 𝑟) ≤ −𝐞̇𝑇 {𝐃f +
𝐊̅SD(𝐪, 𝐪̇)

𝑟
} 𝐞̇ −

𝑐3

𝑟
‖𝐞‖2

2

−
𝜌2

2𝑟2𝛾
𝐞𝑇𝛃𝐞 + 𝐞̇𝑇𝐇. 

that is analogous to (21). Therefore, under the trajectory 

boundedness Assumption 4, a similar result follows from (21) 

of Theorem 1, concluding the proof.           ■ 

Remark 4. We would like to underscore that the training 

rules of the regulation and tracking cases are quite different. 

Focusing on Assumption 3, while in the regulation case 𝑐0 = 0 

as considered in Corollary 1, in the tracking case and under 

Assumption 4, the classical training rule in the literature 

satisfies Eq. (25) hence 𝑐1 = 𝑐2 = 0, in Assumption 3. 

IV. LEARNING RULE 

A. Regulation training rule 

The gradient descent method is used to define a training rule 

for updating the iterative learning control 𝐇𝑖(𝑡). Regarding that 

the regulation case seeks the minimum error at the final time, a 

performance index is regarded as 

𝐽LR =
1

2
∑ ‖𝛼𝐇𝑖(𝑡) −

1

𝛼
𝐖𝑖(𝐪, 𝐪̇)‖

2

𝑁I

𝑖=1

, (30) 

where 𝑁I is the total number of iterations,  𝐽LR is convex, 0 <

𝛼 ≪ 1 and 𝐖𝑖(𝐪, 𝐪̇) = −𝐊SP
𝑖 (𝐪, 𝐪̇)[𝐪𝑖−1(𝑡f) − 𝐪d] −

𝐊SD
𝑖 (𝐪, 𝐪̇)[𝐪̇𝑖−1(𝑡f) − 𝐪̇d] in which 𝐪̇d and 𝐪d are desired 

velocity and position of generalized coordinates, respectively; 

𝐪̇𝑖(𝑡f) and 𝐪𝑖(𝑡f) are actual ones at a final time of (𝑖 − 1)-th 

loop since the final error, 𝐪(𝑡f), of the previous loop is 

accessible; 𝐊SP
𝑖 (𝐪, 𝐪̇) and 𝐊SD

𝑖 (𝐪, 𝐪̇) are the same symmetric 

gains in (15). Applying the gradient descent method on (30), the 

training rule is found: 

𝐇𝑖 = 𝐇𝑖−1 − 𝛽R

𝜕𝐽LR

𝜕𝐇𝑖

= 𝐇𝑖−1

− 𝛽R𝛼 {𝛼𝐇𝑖−1(𝑡) −
1

𝛼
𝐖𝑖−1(𝐪, 𝐪̇)}, 

(31) 

in which 0 < 𝛽R < 1 is a constant-scalar training factor for 

regulation (point-to-point motion control). The training rule of 

the regulation, (31), includes the error 𝐞(𝑡f) and error velocity 

𝐞̇(𝑡f) in 𝐖𝑖−1(𝐪, 𝐪̇), therefore the norm of regulation training 

could be considered bounded as ‖𝐇(𝑡)‖2 ≤ 𝑐1̅‖𝐞(𝑡f)‖2 +
𝑐2̅‖𝐞̇(𝑡f)‖2 ≤ 𝑐1‖𝐞(𝑡)‖2 + 𝑐2‖𝐞̇(𝑡)‖2, stated in Assumption 3. 

The gradient descent method converges if 𝛻𝐽LR is Lipschitz 

continuous, the step size is 1 𝐿⁄  where ‖𝛻𝐽LR(𝑣) − 𝛻𝐽LR(𝑤)‖ <
𝐿‖𝑣 − 𝑤‖ and 𝐽LR is bounded from below. The first condition 

for 𝛻𝐽LR = 𝛼𝐇𝑖−1(𝑡) −
1

𝛼
𝐖𝑖−1(𝐪, 𝐪̇) is satisfied since 𝐖(𝐪, 𝐪̇) 

possesses continuously differentiable gains and 𝐇(𝑡) is also a 

time-varying vector that follows 𝐖(𝐪, 𝐪̇). The selection of step 

size is a matter of tuning and will be regarded in simulation. 

The last condition is also satisfied with the convex form of 𝐽LR. 

B. Tracking training rule 

The performance index of the tracking problem is expressed 

based on the non-homogenous part of Eq. (24) as [23]: 

𝐽LT =
1

2
∑‖𝐇𝑖(𝑡) − 𝐒d

𝑖 (𝑡)‖
2

𝑁I

𝑖=1

, (32) 

where 𝐒d
𝑖 (𝑡) is the desired dynamics at 𝑖-th loop, Eq. (25). 

Implementation of the gradient descent method on (32) results 

in the following training rule: 

𝐇𝑖 = 𝐇𝑖−1 − 𝛽T

𝜕𝐽LT

𝜕𝐇𝑖−1
= 𝐇𝑖−1 − 𝛽T{𝐇𝑖−1 − 𝐒d

𝑖−1}, (33) 

in which 0 < 𝛽T < 1 is a constant-scalar training factor for the 

trajectory tracking problem. The training rule of the tracking, 

(33), includes the desired dynamics in which a bounded 

trajectory updates the terms. As a result, the norm of tracking 

training could be considered bounded as ‖𝐇(𝑡)‖2 ≤ 𝑐0, stated 

in Assumption 3. 

Remark 5. Consider the continuous counterpart of the 

training rule evolution, which is defined through the stable 

linear (ordinary differential equation) ODE as 

𝐇̇(𝑡) = −𝛽𝐇(𝑡) + 𝛽𝚽, 0 ≤ 𝑡 ≤ 𝑡f, 

where 𝚽 plays the role of 𝐖𝑖. Thus, for any bounded 𝚽 and 

𝛽 > 0, the solutions to this ODE can be bounded by a positive 

constant 𝛿 as follows 

|𝐇(𝑡f)| ≤ |𝐇(0)| + max
0≤𝑡≤𝑡f

|𝚽| (1 − exp(−𝛽𝑡f))

≤ |𝐇(0)| + max
0≤𝑡≤𝑡f

|𝚽| ≤ 𝛿, 

where |∙| denotes any norm. This means that, if the controller 

can maintain the internal stability at each iteration, then 𝚽 is 

bounded and so is 𝐇(𝑡), which are the results of the Theorems. 

Therefore, coming back to the tracking example 𝚽 reads 𝐒d
𝑖 (𝑡), 

that is bounded by a constant. 

V. SIMULATIONS 

A. Regulation 

Consider a three-DoF spherical manipulator [47]. The 

parameters of the manipulator are presented in Table 1. The 

initial and final points are 𝐴 = (0.7,0,0.7)m and 𝐵 =
(0, −0.4,0.3)m with respect. The final time is 4 seconds and 30 
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iterations are considered. The following control parameters are 

set: 𝜌1 = 1.5, 𝛽 = 0.3, 𝛼 = 0.01, 𝐑0 = 𝐈3×3, 𝑟0 = 1.1 × |𝐑0|, 
𝐐 = 10 × diag(𝟏1×3, 𝟐1×3) and 𝐅 = 5 × 𝐐. The 𝜌2(𝐞, 𝐞̇, 𝑟) 

term is defined by: 

𝜌2(𝐞, 𝐞̇, 𝑟) ≔ −𝜌̅2

2𝛾

1 + 𝐞𝑇𝛃𝐞
𝜆min(𝐃f)‖𝐞̇‖2

2
𝑟 − 𝑟0

𝑟
, (34) 

where 𝑟0: = 𝑟(0) = ‖𝐑0‖2 > 1, 𝜌1 > 1 and 0 < 𝜌̅2 <
27

4
𝑟0

2. 

The simulation results in successful end-effector error 

reduction. The configuration of the manipulator is shown in Fig. 

2-a and the magnified view of the end-effector in Fig. 2-b. The 

end-effector error in Cartesian coordinates is also presented in 

Fig. 3. The end-effector error is defined as 𝐸 ≔

√(𝑥e − 𝑥d)2 + (𝑦e − 𝑦d)2 + (𝑧e − 𝑧d)2, where {𝑥e, 𝑦
e
, 𝑧e}(m) is 

the Cartesian position of the end-effector of the manipulator, and 

{𝑥d, 𝑦
d
, 𝑧d}(m) is the desired one. Here the role of 𝜌̅2 is studied 

in terms of end-effector error. The proposed value is 𝜌̅2 =
27

4
𝑟0

2~8.16. The change in 𝜌̅2 affects error and different values 

were simulated to analyze the trend, presented in Table 2. 

To justify the increase near the end of 𝑟(𝑡), we should 

emphasize that the SDDRE is a differential equation with final 

boundary condition, 𝐊(𝑡f) = 𝐅. So, near the end, we penalize 

the error to increase the precision, by weighting matrix 𝐅. 𝑟(𝑡) 

is a scaling/forcing term that guarantees stability. It manipulates 

the weighting matrix 𝐑 = (
𝐑0

𝑟(𝑡)
)

−1

. So, since the control law 

tries to increase the signal near the end, 𝑟(𝑡) provides the 

balance by increasing the amplitude of 𝐑. As it was explained 

in Remark 2, the nature of 𝑟(𝑡) in Eq. (34) is growing near the 

end of the final time and, hence, the extra 𝜌2 term decreases that 

raises at the end (notice the negative sign of the term). This raise 

at the end directly increases the input weighting matrix 𝐑 =

(
𝐑0

𝑟(𝑡)
)

−1

 near the end of the simulation where the error is 

negligible. This is against the general tuning policy of 

SDRE/SDDRE control design which states: smaller 𝐑 results in 

less error. So, an increase in 𝜌̅2 corrects the tuning. 

TABLE 1. THE PARAMETERS OF THE SPHERICAL MANIPULATOR. 

parameter value unit definition 

𝑑1, 𝑑c1 0.6,0.3 m length and CoM 

𝑎2, 𝑎c2 0.5,0.25 m length and CoM 

𝑎3, 𝑎c3 0.4,0.2 m length and CoM 

𝑚1,2,3, 𝑚p 2,0.25 kg mass of links, load 

𝐷f,1,2,3 0.025 kgm/s viscous friction 

𝐼xx1
, 𝐼yy1

, 𝐼zz1
 

6.25 × 10−4, 6.25

× 10−4, 0.06 
kgm2 

moment of inertia, 

1st link 

𝐼xx2
, 𝐼yy2

, 𝐼zz2
 

0.0417,6.25

× 10−4, 6.25 × 10−4 
kgm2 

moment of inertia, 

2nd link 

𝐼xx3
, 𝐼yy3

, 𝐼zz3
 

0.0267,6.25

× 10−4, 6.25 × 10−4 
kgm2 

moment of inertia, 

3rd link 

TABLE 2. END-EFFECTOR ERROR IN VARIOUS VALUES OF 𝜌̅2 WITH 𝜌1 = 1.5. 

End-effector error (mm) 𝜌̅2 End-effector error (mm) 𝜌̅2 

0.1268 0 0.0127 7 

0.1144 0.5 0.0059 8.16 

0.1026 1 0.0057 10 

0.0629 3 0.0048 50 

Comparative results are presented in Fig. 4. The reason for 

such involved extra 𝜌2 term is because it has the bound 

constraint defined in Theorem 1 to guarantee stability. To see 

the latter, the derivative of the Lyapunov function is illustrated 

in Fig. 4 (b) where it can be seen that is negative semi-definite.  

(a) 

 
(b) 

 
Fig. 2. The configuration of the manipulator; (b) The magnified view of the 

end-effector error reduction. 

 
Fig. 3. End-effector errors in iterations. 

(a) 

 
(b) 

 
Fig. 4. (a) Forcing value to prove stability; (b) The derivative of Lyapunov 

function with different 𝜌̅2. 
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As it was pointed out in Remark 2 the simplest way to define 

this extra term is just 𝜌2 = 0 but in practice, it might be 

necessary to have a trade-off to modulate its size. This 

simulation aims to show the design of the control law based on 

scaling parameter 𝑟(𝑡). A series of simulations were also 

provided to check the capability of the proposed approach in 

various conditions, Fig. 5-a shows the forcing value, and Fig. 

5-b shows the derivative of the Lyapunov function. 

(a) 

 
(b) 

 
Fig. 5. (a) Forcing value; (b) derivative of Lyapunov function; in a series of 
different final times. 

B. Comparison 

To clarify the machinery of the PD-type SDDRE learning 

controller, a comparison has been done. We compare the 

proposed method with a PD-based ILC to highlight the effect 

of finite-time gain; and also, we compare the method with 

SDDRE and PD without learning capability to highlight the 

learning effect on error reduction. The error of the proposed 

method with similar parameters (30 iterations) in Section V-A 

was gained 0.0059mm. If we use simple PD + gravity control 

with 𝐊p = 𝐈3×3 and 𝐊d = 2 × 𝐈3×3 gains and the same ILC 

support, the error will increase to 6.8(mm). Also removing the 

ILC from the control loop, the conventional SDDRE and PD + 

gravity resulted in 23.8(mm) and 93.2(mm) errors, 

respectively. Regarding 4(s) simulation time and 1500mm 

length of the three links, it is hard for the PD to reach the desired 

condition though the ILC improved its performance by 92%. 

So, comparing the results, the role of ILC on the closed-loop 

control is clearer. The ILC reduces the error by each iteration. 

The controllers, SDDRE or PD + gravity could indeed be tuned 

and operate properly, but the power of learning in error 

reduction and feedforward compensation of unpredicted 

situations is really helpful, especially in experiments. 

C. Robustness and uncertainty 

Uncertainty reduces the performance of the proposed 

controller and the ideal situation for the SDRE is to have the 

model as close as possible to the real platform. The source of 

uncertainty might be the friction (which is hard to estimate and 

model), the variation of load, and lack of precision in modeling. 

To assess the performance of the controller, this subsection is 

presented. We provide uncertainty to the controller by a change 

in mass of the load, set on the end-effector of the robot. In this 

scenario, we do not inform the controller about the load, so 

𝑚p = 0, the mass of the load (kg) is zero in the controller, but 

in the system we set 𝑚p = 0.1kg. This increases the error from 

0.0059mm to 1.67mm. Increasing the load more results in 

failure that shows the weakness towards the uncertainty (the 

black dotted line in Fig. 6). 

Remedy. The SDRE could be modified to show robust 

characteristics such as incorporating the bounds of uncertainty 

in the SDC matrices, the addition of correction terms such as 

sliding mode control [48], or using additional features such as 

neural networks [49]. Here we add robustness through the 

definition of an upper bound for load in the controller. The SDC 

matrices will possess 𝑚p,max and the dynamics might have 

another value, lower than the bound 𝑚p ≤ 𝑚p,max. Considering 

𝑚p,max = 1.5 and 𝑚p = 1.2, and also increasing the gains 𝐐 =

100 × diag(𝟏1×3, 𝟐1×3) and 𝐅 = 20 × 𝐐, the end-effector error 

is gained 0.0054mm (the red dashed line in Fig. 6). The same 

uncertainty in friction could be addressed by incorporating the 

bounds in the SDC matrices (the green dashed-dotted line in 

Fig. 6). The higher error in the initial loop for the uncertainty 

simulation is due to more load on the end-effector. We 

emphasize that the focus of the paper is not on robustness and 

this topic deserves more discussions and a thorough 

investigation. 

Robustness of the proposed SDRE + ILC. There are two 

mechanisms adding robustness: learning and dynamic scaling. 

The learning would find larger errors at the final time with 

disturbances, thus forcing a higher correction in the controller 

for the next iteration. However, this would only be possible if 

the core controller maintains the internal stability during each 

iteration, and this is the role of the scaling factor dynamics, 

dominating the mismatches and eventually disturbances. 

 
Fig. 6. Comparison of the results in presence of disturbance ad uncertainty with 

the ideal case. 
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D. Tracking 

The trajectory is a line between 𝐴(0.7,0.3,0.7)m and 

𝐵(−0.651,0.57,0.7)m to be tracked in 3 seconds, with 10 

iterations, using training rule (33). The control gains are 

selected as 𝜌1 = 1.5, 𝜌̅2 = 8.16, 𝛽 = 0.5, 𝛼 = 0.01, 𝐑0 =
0.1 × 𝐈3×3, 𝑟0 = 1.1 × |𝐑0|, 𝐐 = 1000 × diag(𝟏1×3, 𝟎. 𝟓1×3) 

and 𝐅 = 10 × 𝐐. The error reduction of the end-effector is 

presented in Fig. 7. The reduction of error concerning the initial 

one presented a 25mm-to-0.7mm improvement in the 

precision of the tracking. 

  
Fig. 7. Error reduction of the system in trajectory tracking case. 

VI. EXPERIMENT 

The experimental implementation of the ILC and SDDRE 

combination is presented to validate the proposed approach. 

The contribution of this work concerning Ref. [32] is that here 

the ILC augmented with SDRE controller has been 

implemented; nevertheless, in the previous work, only the 

SDRE was tested. For the first series of experiments, a 

stationary platform is selected, Fig. 8. The setup is a variable-

pitch pendulum, rotating around the center-point of the system, 

represented by variable 𝜃(𝑡) (rad). The specifications are 

expressed in Table 3. 

TABLE 3. THE SPECIFICATIONS OF THE VARIABLE-PITCH BENCHMARK [32]. 

Para. value unit description 

𝑙 0.29 m Dist. betw. CoM & rotor shaft 

𝑅 0.135 m radius of propeller 

𝐼𝑦𝑦 9.354 × 103 kg. m2 moment of inertia 

𝑚 0.870 kg total weight of the setup 

𝑘 3.32 × 10−6 N. s2/rad2 lift constant - thrust factor 

 

 
Fig. 8. The variable-pitch pendulum, experimental platform. 

The dynamic model of the rotating system is (𝑚𝑟ctr
2 +

𝐼𝑦𝑦)𝜃̈(𝑡) + 𝑚𝑔𝑟ctr sin 𝜃(𝑡) + 𝐷f𝜃̇(𝑡) = 𝜏𝜃(𝑡), where 𝑟ctr (m) 

is the distance between the center of the pipe and CoM of the 

quadrotor, 𝑚 (kg) is the weight of the setup, 𝑔 = 9.81 (m/s2) 

presents gravity constant, 𝐷f = 0.25 (kgm/s) is the friction and 

𝜏𝜃(N. m) is the input torque. The state vector is chosen as 

𝐱(𝑡) = [𝜃(𝑡), 𝜃̇(𝑡)]
𝑇
 in which 𝜃̇ (rad/s) presents the angular 

velocity of the system around the pipe. Considering the 

dynamics, the state-space representation of the VP is 

𝐱̇(𝑡) = [

𝜃̇(𝑡)

𝜏𝜃(𝑡) − 𝑚𝑔𝑟ctr sin 𝜃(𝑡) − 𝐷f𝜃̇(𝑡)

𝑚𝑟ctr
2 + 𝐼𝑦𝑦

]. 

To implement the algorithm, the SDC parameterization 

matrices are defined 𝐀(𝐱(𝑡))  =

[
0 1

−𝑐1 (1 −
𝑥1

2(𝑡)

6
+ ⋯ ) −𝐷f𝑐2

] , 𝐁 = [
0
𝑐2

], in which 𝑐1 =

𝑚𝑔𝑟ctr

𝑚𝑟ctr
2 +𝐼𝑦𝑦

 and 𝑐2 =
1

𝑚𝑟ctr
2 +𝐼𝑦𝑦

 [32]. 

The system initially was set at rest position on the left-hand 

side of the setup 𝜃(0) = −0.6519(rad), and the final condition 

was set on the equilibrium point. In the regulation case, the 

initial and final velocities were set at zero. The weighting 

matrices were selected as 𝜌1 = 1.5, 𝑟0 = 1.1, 𝑅 = 1, 𝐐 =

[
190 0

0 5
] and 𝐅 = 0.1 × 𝐐. The learning constants are defined 

as 𝛽R = 0.1 and 𝛼 = 0.01. The first diagonal element of the 𝐐 

penalizes the angular position and the second one, the velocity. 

The PWM of the brushless DC motors was working with 66% 

of the power. A number of 250 sampling times were considered 

for the implementation of each trial and 10 learning loops. The 

last learning loop took 6.53(s) to finish the operation, see Fig. 

9. It can be seen that Fig. 9 shows the time-varying sampling 

time during the control loop, in different trials. We are not 

supposed to see any enhancement (concerning the sampling 

time) by the iterations, the average must be in the range, around 

0.03(s). 

The error of the system decreased by learning iterations, 

reduced to zero with 10 loops, Fig. 10. The error was measured 

directly by the optical encoders, installed on the system for 

providing the feedback. The amplitude of the input torque 

increases with each iteration (this will cause an increase at the 

end of servo signals), and the reason is the usual small raise of 

the SDDRE caused by finite-time control. The inputs to the 

servos are also presented in Fig. 11. One of the challenges in 

VP control is the asymmetric motion of the blades in the 

opposite direction which caused the deviation zero blade angle 

in Fig. 11. As a summary, the proposed ILC control with 

nonlinear optimal control structure of the SDDRE in finite-time 

was implemented on the VP experimental benchmark and 

without simplification. The programming was done in 

MATLAB script thanks to the Arduino package. 

left VP rotor 

right VP rotor 

𝜃(𝑡) 

drivers 

encoder 

Arduino MEGA 

2560 
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Fig. 9. Time-varying sampling time of the experiment. 

 
Fig. 10. The error of the system, learning in 10 loops. 

  

Fig. 11. Servo input of the blades, 10 iterations of learning. 

VII. CONCLUSIONS 

This research proposed a combination of iterative control 

with the SDRE/SDDRE controller in a symmetric gain 

structure. The new shape provides the stability proof of the 

controller for a special case of mechanical systems analytically. 

The SDRE controller is a suboptimal controller that shares 

robustness, optimality, systematic structure, and design 

flexibility in the combination with the ILC. The ILC, on the 

other hand, reduces the error in each loop trained by the gradient 

descent method. The advantage of this approach is that the 

learning system is based on a stable optimal controller. The first 

loop of iteration does not endanger the control operation. Each 

consecutive loop enhances performance by reducing the error. 

The proposed controller has been tested on a real prototype. The 

HYFLIERS project requires inspection and maintenance in 

refineries [50]. The safety measurements in refineries are high 

and not all the learning controllers could be tested in the sites. 

So, this type of proposed controller with a stable input law, even 

from the first learning loop, is preferable for such activities. The 

benchmark was subjected to the learning loops and showed 

error reduction caused by the ILC and without simplification. 

This pilot setup prepares the condition for implementation of 

the method on a VP drone for rotation around a pipe. 
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