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Strongly disordered superconductors

Variety of applications

- Parametric amplifiers
- Superconducting quantum bits
- Superconducting nanowire-based single-photon detectors

Fundamental physics

- Superconductor-Insulator Transition
- Metal–Insulator Transition

Sample characterisation

- Sheet resistance R� = ρ/t (at room temperature)
- Ioffe - Regel product kF l
- Electron concentration n

Need for a robust characterization method of the electric
properties of disordered films in the metallic state
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Optical conductivity of metals

Drude model:

σ(ω) = σ′(ω) + iσ′′(ω) =
σ0

1− iω/Γ

σ0 = ne2/mΓ is the DC conductivity, and Γ = 1/τ
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Strongly disordered conductors

Optical conductivity:

σ(ω) =
ne2

mΓ

1

1− iω/Γ
Increasing disorder → Γ increases, σ0 decreases
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Γ =1e+14 (rad/s)

At critical disorder: σ3D(ω → 0, T → 0) = 0
Anderson localization, but σ(ω 6= 0, T → 0) 6= 0
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Quantum correction to conductivity

Weakly disordered metals

σ(ω) = σreg(ω) + δσ(ω)

Normal conductivity:

σreg(ω) ≈ σ0

Quantum correction δσ(ω):

- Weak-localization
- Interaction effects

The same functional form

- 3D: δσ(ω) ∼ √ω
- 2D: δσ(ω) ∼ ln(ω)
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Quantum corrections

Γ =1e+14 (rad/s)

Γ =4e+14 (rad/s)

Γ =8e+14 (rad/s)

Γ =1.6e+15 (rad/s)

Temperature dependence

- 3D: δσ(T ) ∼
√
T

- 2D: δσ(T ) ∼ ln(T )

Generally considered low-temperature phenomena
Theoretically should be present up to ω∗ ∼ Γ
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Transport measurements at low temperatures

Amorphous NbxSi1−x, stoichiometry x - tuning of disorder

Resistivity measuremets from 20mK to 9K:

σ(T ) = σ0 + b
√
T

D.J. Bishop, E. G. Spencer, and R. C. Dynes, Solid State Electron. 38, 73 (1985)
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Transport measurements of MoC

MoC, thickness - tuned disorder

2D weak-localization and e-e interaction effects up to RT

S.

J. Lee et al., PRB 49, 13882 (1994)

σ(T ) = σ0+{αp+(1−F )} ln(T )
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MoC sample preparation

Magnetron sputtered in argon-acetylene atmosphere

Mo - target and sapphire substrates

MoxC1−x; stoichiometry (x) or thickness (t) tuned disorder

Two sets of thin film samples:

1. set: R� from 420 to 720 Ω; fixed t=5 nm, varied x
2. set: R� from 100 to 220 Ω; varied t, fixed x
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Transport measurements

1. set: R� = 420, 500, 590 a 720 Ω
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σ = σ0 + b
√
T ; 3D quantum corrections up to T= 300K

How far do they extend?

The temperature range is limited.

20 / 68



Transport measurements

1. set: R� = 420, 500, 590 a 720 Ω

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10 12 14 16

σ
′ (
T
)

(S
µ
m
−
1
)

√
T (

√
K)

σ = σ0 + b
√
T ; 3D quantum corrections up to T= 300K

How far do they extend?

The temperature range is limited.

21 / 68



Transport measurements

1. set: R� = 420, 500, 590 a 720 Ω

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10 12 14 16

σ
′ (
T
)

(S
µ
m
−
1
)

√
T (

√
K)

σ = σ0 + b
√
T ; 3D quantum corrections up to T= 300K

How far do they extend?

The temperature range is limited.

22 / 68



Transport measurements

1. set: R� = 420, 500, 590 a 720 Ω

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10 12 14 16

σ
′ (
T
)

(S
µ
m
−
1
)

√
T (

√
K)

σ = σ0 + b
√
T ; 3D quantum corrections up to T= 300K

How far do they extend? The temperature range is limited.

23 / 68



Optical measurements

Ideal for study of thin films

Drawback: Interband transitions IR and VIS spectra

Optical transmission measurement

- Normalized conductivity spectrum g(ω) = Z0σ(ω)t

- for thin films: t� c/ω, t� c|g(ω)|/ω, g′, |g′′| . 1

T (ω) ≈ Ts(ω)2

[1 + g′(ω)/(ns + 1)]2 + [g′′(ω)/(ns + 1)]2

- Our experimental frequency range 80-1000 THz

Spectroscopic ellipsometry

- Reflection measurement, evaluation of σ1 and σ2

- Our experimental frequency range 300-810 THz
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Optical transmission spectra

1. set of MoC: R� = 420, 500, 590 a 720 Ω
Smooth transmission spectra
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T (ω) decreases with frequency ω, the opposite is expected
from the Drude model
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Optical conductivity of MoC with R�=720Ω

For interaction effects: Ω =
√
ω2 + (πkBT/~)2

Agreement between 3 data sets, ~Ω ≈ 14 meV up to 4 eV
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Proposed model

Postulate for the σ:

σ′(ω, T ) = σ0

[
1−Q2 +Q2

√
Ω/Γ

]
if Ω < ω∗

σ′(ω, T ) =
σ0

1 + (Ω/Γ)2
if Ω ≥ ω∗

3 parameters:

1. Q - ”Quantumness”
2. Γ - Scattering rate
3. σ0 = ne2/mΓ, whereas σ(0, 0) = σ0(1−Q2)

Fermi liquid theory, for interaction effects:

Ω =
√
ω2 + (πkBT/~)2

Imaginary part σ′′ given by Kramers-Kronig relations

- Contribution of bound electrons to permittivity

σ′′bound(ω) = −ε0(ε∞ − 1)ω, ε∞ = 1.4
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Conductivity σ(ω) fit
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Observation of quantum corrections to conductivity up to
optical frequencies, Phys. Rev. B 100, 241106(R) (2019)
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Smoothed Lorentzian model σ(ω)

Smoothing cups at ω = ω∗- ”tailoring”with 3rd-order
polynomial f(ω) for ω− < ω < ω+, for different ω−,ω+
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Extracted parameters of MoC with R�=720Ω

Lorentz vs. Gaussian

Drude Gaussian
ε∞ 1.0 1.4 1.0 1.4

g0 = Z0σ0d 1.25 1.20 1.32 1.26
Q2 0.66 0.65 0.68 0.67
~Γ (eV) 11.5 10.1 13.6 12.0

n (1023 cm−3) 4.1 3.5 5.1 4.3

Smoothened Lorentzian

~ω− (eV) 3.3 4.1 5.0
g0 = Z0σ0d 1.20 1.20 1.20
Q2 0.65 0.65 0.65
~Γ (eV) 10.4 10.2 10.1

Scatter in σ0, Q, and Γ ≤ 15 %

→ Prolongation procedure is robust
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Characteristic parameters of MoC with R�=720Ω

Q ≈ 0.82± 0.01 strong quantum corrections
→ σ′(0) = (1−Q2)σ0 ≈ σ0/3
→ 3x reduced classical value

~Γ ≈ 11.85± 1.75 eV
→ explains the σ′(ω) ∝ √ω up to 4eV

Normalized conductivity g0 ≈ 1.26± 0.06
=⇒ n = (4.3± 0.8)× 1023 cm−3

→ surprisingly large electron concentration
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Characteristic parameters of MoC with R�=720Ω

Large Γ =⇒ Electronic bands separated by ≤ ~Γ merge

Concentration of Mo nat = 5.1× 1022 cm−3

Valence electron configuration within ±~Γ from εF
Mo: 4d5 5s1 a C: 2s2 2p2

Corresponding electron density
n =10×nat = 5.1× 1023 cm−3, in the range of the
estimated n = (4.3± 0.8)× 1023 cm−3

Absence of interband transitions → Broad electronic band

High Fermi energy εF = 20.65, kF l ≈ 3.5

Similarly, highly disordered NbN n ≈ 4.2× 1023 cm−3

Large n should be a generic property of dirty metals
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Optical conductivity with the 2. set of MoC

Broad range of R� =100, 120, 220, 420, 500, 590 a 720 Ω
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Details of microstructure are not important

The control parameter is the degree of disorder
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Prolongation of optical conductivity

Experimental bandwidth is limited

- Fit depends on the chosen model - not trivial problem

Model independent prolongation of optical conductivity

- Reasonably smooth conductivity without rapid changes and
oscillations in strongly disordered films

- Randomly generated conductivity curves that obey the
Kramers-Kronig relations and fit the experimental data to a
chosen degree

- Prolongation is given by the average of the selected curves
- Can handle noisy data

Numerical extrapolation method for complex conductivity
of disordered metals, S. Kern et al., PRB 103, 134205 (2021)
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Numerical extrapolation method for complex conductivity
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Optical transmission

5 nm MoC with R�=720Ω
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Optical conductivity of NbN

Pulsed laser ablation; Nb-target, N2 atmosphere

Film thickness t=3.5 nm and R�= 655Ω
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Numerical extrapolation of optical conductivity

Pulsed laser ablation; Nb-target, N2 atmosphere
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Conclusion

Observation of quantum corrections to conductivity up to
optical frequencies in highly disordered films

Method to extract σ0, Q a Γ from the combined knowledge
σ′(ω) and σ′′(ω)

Estimation of the magnitude of the quantum correction
δσ′ = −Q2σ0

Numerical extrapolation method for complex conductivity
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