Observation of Quantum Corrections to Conductivity of Disordered MoC and NbN Films up to Optical Frequencies

P. Neilinger¹, S. Kern¹, J. Greguš¹, D. Manca¹, B. Grančič¹, M. Kopčík¹, P. Szabó², P. Samuely², R. Hlubina¹, and M. Grajcar^{1,3}

¹Department of Experimental Physics, Comenius University in Bratislava, Slovakia ²Centre of Low Temperature Physics, IEP SAV, Košice, Slovakia ³Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta, Bratislava, Slovakia

Superconducting hybrids at Extreme, Štrbské pleso 28. 6. 2021

- Variety of applications
 - Parametric amplifiers
 - Superconducting quantum bits
 - Superconducting nanowire-based single-photon detectors

- Variety of applications
 - Parametric amplifiers
 - Superconducting quantum bits
 - Superconducting nanowire-based single-photon detectors
- Fundamental physics
 - Superconductor-Insulator Transition
 - Metal–Insulator Transition

- Variety of applications
 - Parametric amplifiers
 - Superconducting quantum bits
 - Superconducting nanowire-based single-photon detectors
- Fundamental physics
 - Superconductor-Insulator Transition
 - Metal–Insulator Transition
- Sample characterisation
 - Sheet resistance $\mathbf{R}_{\Box} = \rho/t$ (at room temperature)
 - Ioffe Regel product $k_F l$
 - Electron concentration n

- Variety of applications
 - Parametric amplifiers
 - Superconducting quantum bits
 - Superconducting nanowire-based single-photon detectors
- Fundamental physics
 - Superconductor-Insulator Transition
 - Metal–Insulator Transition
- Sample characterisation
 - Sheet resistance $\mathbf{R}_{\Box} = \rho/t$ (at room temperature)
 - Ioffe Regel product $k_F l$
 - Electron concentration n
- Need for a robust characterization method of the electric properties of disordered films in the metallic state

Optical conductivity of metals

Drude model:

$$\sigma(\omega) = \sigma'(\omega) + i\sigma''(\omega) = \frac{\sigma_0}{1 - i\omega/\Gamma}$$

• $\sigma_0 = n e^2 / m \Gamma$ is the DC conductivity, and $\Gamma = 1 / \tau$

Optical conductivity of metals

Drude model:

$$\sigma(\omega) = \sigma'(\omega) + i\sigma''(\omega) = \frac{\sigma_0}{1 - i\omega/\Gamma}$$

• $\sigma_0 = n e^2 / m \Gamma$ is the DC conductivity, and $\Gamma = 1 / \tau$

• Optical conductivity:

$$\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}$$

• Optical conductivity:

$$\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}$$

• Optical conductivity:

$$\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}$$

• Optical conductivity:

$$\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}$$

• Optical conductivity:

$$\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}$$

• At critical disorder: $\sigma_{3D}(\omega \to 0, T \to 0) = 0$ Anderson localization, but $\sigma(\omega \neq 0, T \to 0) \neq 0$

• Optical conductivity:

$$\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}$$

• At critical disorder: $\sigma_{3D}(\omega \to 0, T \to 0) = 0$ Anderson localization, but $\sigma(\omega \neq 0, T \to 0) \neq 0$

Quantum correction to conductivity

Weakly disordered metals

 $\sigma(\omega) = \sigma_{\rm reg}(\omega) + \delta\sigma(\omega)$

• Normal conductivity:

 $\sigma_{\rm reg}(\omega)\approx\sigma_0$

• Quantum correction $\delta\sigma(\omega)$:

- Weak-localization
- Interaction effects
- The same functional form
 - 3D: $\delta\sigma(\omega) \sim \sqrt{\omega}$
 - 2D: $\delta\sigma(\omega) \sim \ln(\omega)$

Temperature dependence

- 3D:
$$\delta\sigma(T) \sim \sqrt{T}$$

- 2D:
$$\delta\sigma(T) \sim \ln(T)$$

Quantum correction to conductivity

Weakly disordered metals

 $\sigma(\omega) = \sigma_{\rm reg}(\omega) + \delta\sigma(\omega)$

• Normal conductivity:

 $\sigma_{\rm reg}(\omega)\approx\sigma_0$

• Quantum correction $\delta\sigma(\omega)$:

- Weak-localization
- Interaction effects
- The same functional form
 - 3D: $\delta\sigma(\omega) \sim \sqrt{\omega}$
 - 2D: $\delta\sigma(\omega) \sim \ln(\omega)$

■ Temperature dependence

- 3D: $\delta\sigma(T) \sim \sqrt{T}$

- 2D:
$$\delta\sigma(T) \sim \ln(T)$$

Generally considered low-temperature phenomena

Quantum correction to conductivity

Weakly disordered metals

 $\sigma(\omega) = \sigma_{\rm reg}(\omega) + \delta\sigma(\omega)$

• Normal conductivity:

 $\sigma_{\rm reg}(\omega)\approx\sigma_0$

• Quantum correction $\delta\sigma(\omega)$:

- Weak-localization
- Interaction effects
- The same functional form
 - 3D: $\delta\sigma(\omega) \sim \sqrt{\omega}$
 - 2D: $\delta\sigma(\omega) \sim \ln(\omega)$

Temperature dependence

- 3D: $\delta\sigma(T) \sim \sqrt{T}$ 2D: $\delta\sigma(T) \sim \ln(T)$

- 2D:
$$\delta\sigma(T) \sim \ln(T)$$

- Generally considered low-temperature phenomena
- Theoretically should be present up to $\omega^* \sim \Gamma$

Transport measurements at low temperatures

- Amorphous $Nb_x Si_{1-x}$, stoichiometry x tuning of disorder
- Resistivity measuremets from 20mK to 9K:

$$\sigma(T) = \sigma_0 + b\sqrt{T}$$

D.J. Bishop, E. G. Spencer, and R. C. Dynes, Solid State Electron. 38, 73 (1985)

Transport measurements of MoC

- \blacksquare MoC, thickness tuned disorder
- \blacksquare 2D weak-localization and e-e interaction effects up to RT

J. Lee et al., PRB 49, 13882 (1994)

$$\sigma(T) = \sigma_0 + \{\alpha p + (1 - F)\} \ln(T)$$

- Magnetron sputtered in argon-acetylene atmosphere
- Mo target and sapphire substrates
- $Mo_x C_{1-x}$; stoichiometry (x) or thickness (t) tuned disorder
- Two sets of thin film samples:
 - 1. set: \mathbf{R}_{\Box} from 420 to 720 Ω ; fixed t=5 nm, varied x
 - **2**. set: \mathbf{R}_{\Box} from 100 to 220 Ω ; varied t, fixed x

• 1. set: $R_{\Box} = 420, 500, 590 a 720 \Omega$

• 1. set: $R_{\Box} = 420, 500, 590 a 720 \Omega$

• $\sigma = \sigma_0 + b\sqrt{T}$; 3D quantum corrections up to T= 300K

■ 1. set: $R_{\Box} = 420, 500, 590 a 720 \Omega$

σ = σ₀ + b√T; 3D quantum corrections up to T= 300K
How far do they extend?

■ 1. set: $R_{\Box} = 420, 500, 590 a 720 \Omega$

σ = σ₀ + b√T; 3D quantum corrections up to T= 300K
How far do they extend? The temperature range is limited.

Ideal for study of thin films

- Ideal for study of thin films
- Drawback: Interband transitions IR and VIS spectra

- Ideal for study of thin films
- Drawback: Interband transitions IR and VIS spectra
- Optical transmission measurement

- Ideal for study of thin films
- Drawback: Interband transitions IR and VIS spectra
- Optical transmission measurement
- Normalized conductivity spectrum $g(\omega) = Z_0 \sigma(\omega) t$

- Ideal for study of thin films
- Drawback: Interband transitions IR and VIS spectra
- Optical transmission measurement
- Normalized conductivity spectrum $g(\omega) = Z_0 \sigma(\omega) t$
- for thin films: $t \ll c/\omega,\, t \ll c|g(\omega)|/\omega,\,g',|g''| \lesssim 1$

$$\mathcal{T}(\omega) \approx \frac{\mathcal{T}_s(\omega)^2}{[1 + g'(\omega)/(n_s + 1)]^2 + [g''(\omega)/(n_s + 1)]^2}$$

- Our experimental frequency range 80-1000 THz

- Ideal for study of thin films
- Drawback: Interband transitions IR and VIS spectra
- Optical transmission measurement
- Normalized conductivity spectrum $g(\omega) = Z_0 \sigma(\omega) t$
- for thin films: $t \ll c/\omega,\, t \ll c|g(\omega)|/\omega,\,g',|g''| \lesssim 1$

$$\mathcal{T}(\omega) \approx \frac{\mathcal{T}_s(\omega)^2}{[1 + g'(\omega)/(n_s + 1)]^2 + [g''(\omega)/(n_s + 1)]^2}$$

- Our experimental frequency range 80-1000 THz
- Spectroscopic ellipsometry
- Reflection measurement, evaluation of σ_1 and σ_2
- Our experimental frequency range 300-810 THz

Optical transmission spectra

- \blacksquare 1. set of MoC: \mathbf{R}_{\Box} = 420, 500, 590 a 720 Ω
- Smooth transmission spectra

 $\blacksquare \ T(\omega)$ decreases with frequency $\omega,$ the opposite is expected from the Drude model

• Agreement between 3 data sets, $\hbar\Omega \approx 14 \text{ meV}$ up to 4 eV

• Postulate for the σ :

$$\begin{split} \sigma'(\omega,T) &= \sigma_0 \left[1 - \mathcal{Q}^2 + \mathcal{Q}^2 \sqrt{\Omega/\Gamma} \right] & \text{if } \Omega < \omega^* \\ \sigma'(\omega,T) &= \frac{\sigma_0}{1 + (\Omega/\Gamma)^2} & \text{if } \Omega \ge \omega^* \end{split}$$

■ 3 parameters:

1. Q - "Quantumness"

2. Γ - Scattering rate

3. $\sigma_0 = ne^2/m\Gamma$, whereas $\sigma(0,0) = \sigma_0(1-Q^2)$

• Fermi liquid theory, for interaction effects:

$$\Omega = \sqrt{\omega^2 + (\pi k_B T/\hbar)^2}$$

Imaginary part σ'' given by Kramers-Kronig relations

- Contribution of bound electrons to permittivity

$$\sigma_{\text{bound}}''(\omega) = -\epsilon_0(\epsilon_\infty - 1)\omega, \ \epsilon_\infty = 1.4$$

Conductivity $\sigma(\omega)$ fit

 Observation of quantum corrections to conductivity up to optical frequencies, Phys. Rev. B 100, 241106(R) (2019)

Smoothed Lorentzian model $\sigma(\omega)$

• Smoothing cups at $\omega = \omega^*$ - "tailoring" with 3^{rd} -order polynomial $f(\omega)$ for $\omega_- < \omega < \omega_+$, for different ω_-, ω_+

Extracted parameters of MoC with $R_{\Box} = 720\Omega$

Lorentz vs. Gaussian

	Drude		Gaussian	
ϵ_{∞}	1.0	1.4	1.0	1.4
$g_0 = Z_0 \sigma_0 d$	1.25	1.20	1.32	1.26
Q^2	0.66	0.65	0.68	0.67
$\hbar\Gamma$ (eV)	11.5	10.1	13.6	12.0
$n \ (10^{23} \ {\rm cm}^{-3})$	4.1	3.5	5.1	4.3

Smoothened Lorentzian

$\hbar\omega_{-} (eV)$	3.3	4.1	5.0
$g_0 = Z_0 \sigma_0 d$	1.20	1.20	1.20
Q^2	0.65	0.65	0.65
$\hbar\Gamma$ (eV)	10.4	10.2	10.1

Extracted parameters of MoC with $R_{\Box} = 720\Omega$

Lorentz vs. Gaussian

	Drude		Gaussian	
ϵ_{∞}	1.0	1.4	1.0	1.4
$g_0 = Z_0 \sigma_0 d$	1.25	1.20	1.32	1.26
Q^2	0.66	0.65	0.68	0.67
$\hbar\Gamma$ (eV)	11.5	10.1	13.6	12.0
$n \ (10^{23} \ {\rm cm}^{-3})$	4.1	3.5	5.1	4.3

Smoothened Lorentzian

$\hbar\omega_{-} (eV)$	3.3	4.1	5.0
$g_0 = Z_0 \sigma_0 d$	1.20	1.20	1.20
Q^2	0.65	0.65	0.65
$\hbar\Gamma$ (eV)	10.4	10.2	10.1

• Scatter in σ_0 , Q, and $\Gamma \leq 15 \%$

 \rightarrow Prolongation procedure is robust

• $Q \approx 0.82 \pm 0.01$ strong quantum corrections $\rightarrow \sigma'(0) = (1 - Q^2)\sigma_0 \approx \sigma_0/3$ $\rightarrow 3x$ reduced classical value

 \rightarrow explains the $\sigma'(\omega) \propto \sqrt{\omega}$ up to 4eV

Q ≈ 0.82 ± 0.01 strong quantum corrections → σ'(0) = (1 - Q²)σ₀ ≈ σ₀/3 → 3x reduced classical value
ħΓ ≈ 11.85 ± 1.75 eV → explains the σ'(ω) ∝ √ω up to 4eV

• Normalized conductivity $g_0 \approx 1.26 \pm 0.06$ $\implies n = (4.3 \pm 0.8) \times 10^{23} \text{ cm}^{-3}$

 \rightarrow surprisingly large electron concentration

• Large $\Gamma \implies$ Electronic bands separated by $\leq \hbar \Gamma$ merge

- Concentration of Mo $n_{\rm at} = 5.1 \times 10^{22} \ {\rm cm}^{-3}$
- Valence electron configuration within $\pm \hbar \Gamma$ from ε_F Mo: 4d⁵ 5s¹ a C: 2s² 2p²
- Corresponding electron density $n = 10 \times n_{\text{at}} = 5.1 \times 10^{23} \text{ cm}^{-3}$, in the range of the estimated $n = (4.3 \pm 0.8) \times 10^{23} \text{ cm}^{-3}$

• Large $\Gamma \implies$ Electronic bands separated by $\leq \hbar \Gamma$ merge

- Concentration of Mo $n_{\rm at} = 5.1 \times 10^{22} \ {\rm cm}^{-3}$
- Valence electron configuration within $\pm \hbar \Gamma$ from ε_F Mo: 4d⁵ 5s¹ a C: 2s² 2p²
- Corresponding electron density $n = 10 \times n_{\text{at}} = 5.1 \times 10^{23} \text{ cm}^{-3}$, in the range of the estimated $n = (4.3 \pm 0.8) \times 10^{23} \text{ cm}^{-3}$

 \blacksquare Absence of interband transitions \rightarrow Broad electronic band

• Large $\Gamma \implies$ Electronic bands separated by $\leq \hbar \Gamma$ merge

- Concentration of Mo $n_{\rm at} = 5.1 \times 10^{22} \ {\rm cm}^{-3}$
- Valence electron configuration within $\pm \hbar \Gamma$ from ε_F Mo: 4d⁵ 5s¹ a C: 2s² 2p²
- Corresponding electron density $n = 10 \times n_{\text{at}} = 5.1 \times 10^{23} \text{ cm}^{-3}$, in the range of the estimated $n = (4.3 \pm 0.8) \times 10^{23} \text{ cm}^{-3}$
- \blacksquare Absence of interband transitions \rightarrow Broad electronic band
- High Fermi energy $\epsilon_F = 20.65, k_F l \approx 3.5$

• Large $\Gamma \implies$ Electronic bands separated by $\leq \hbar \Gamma$ merge

- Concentration of Mo $n_{\rm at} = 5.1 \times 10^{22} \ {\rm cm}^{-3}$
- Valence electron configuration within $\pm \hbar \Gamma$ from ε_F Mo: 4d⁵ 5s¹ a C: 2s² 2p²
- Corresponding electron density $n = 10 \times n_{\text{at}} = 5.1 \times 10^{23} \text{ cm}^{-3}$, in the range of the estimated $n = (4.3 \pm 0.8) \times 10^{23} \text{ cm}^{-3}$
- \blacksquare Absence of interband transitions \rightarrow Broad electronic band
- High Fermi energy $\epsilon_F = 20.65, k_F l \approx 3.5$
- Similarly, highly disordered Nb
N $n\approx 4.2\times 10^{23}~{\rm cm}^{-3}$
- Large n should be a generic property of dirty metals

Optical conductivity with the 2. set of MoC

■ Broad range of R_{\Box} =100, 120, 220, 420, 500, 590 a 720 Ω

- Details of microstructure are not important
- The control parameter is the degree of disorder

• Experimental bandwidth is limited

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity
 - Reasonably smooth conductivity without rapid changes and oscillations in strongly disordered films

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity
 - Reasonably smooth conductivity without rapid changes and oscillations in strongly disordered films
 - Randomly generated conductivity curves that obey the Kramers-Kronig relations and fit the experimental data to a chosen degree

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity
 - Reasonably smooth conductivity without rapid changes and oscillations in strongly disordered films
 - Randomly generated conductivity curves that obey the Kramers-Kronig relations and fit the experimental data to a chosen degree
 - Prolongation is given by the average of the selected curves

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity
 - Reasonably smooth conductivity without rapid changes and oscillations in strongly disordered films
 - Randomly generated conductivity curves that obey the Kramers-Kronig relations and fit the experimental data to a chosen degree
 - Prolongation is given by the average of the selected curves
 - Can handle noisy data

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity
 - Reasonably smooth conductivity without rapid changes and oscillations in strongly disordered films
 - Randomly generated conductivity curves that obey the Kramers-Kronig relations and fit the experimental data to a chosen degree
 - Prolongation is given by the average of the selected curves
 - Can handle noisy data
- Numerical extrapolation method for complex conductivity of disordered metals, S. Kern et al., PRB 103, 134205 (2021)

■ S. Kern et al., Phys. Rev. B **103**, 134205 (2021)

■ S. Kern et al., Phys. Rev. B **103**, 134205 (2021)

■ S. Kern et al., Phys. Rev. B **103**, 134205 (2021)

■ S. Kern et al., Phys. Rev. B **103**, 134205 (2021)

 Numerical extrapolation method for complex conductivity of disordered metals

■ S. Kern et al., Phys. Rev. B **103**, 134205 (2021)

 Numerical extrapolation method for complex conductivity of disordered metals

■ S. Kern et al., Phys. Rev. B **103**, 134205 (2021)

Optical transmission

5 nm MoC with $R_{\Box}=720\Omega$

■ Transmission spectra from 0.5 to 6 eV

Optical transmission

5 nm MoC with $R_{\Box}=720\Omega$

■ Transmission spectra from 0.5 to 6 eV

Optical conductivity of NbN

- \blacksquare Pulsed laser ablation; Nb-target, N2 atmosphere
- Film thickness t=3.5 nm and $R_{\Box} = 655\Omega$

Numerical extrapolation of optical conductivity

Pulsed laser ablation; Nb-target, N₂ atmosphere
Film thickness t=3.5 nm and R_□= 655Ω

Numerical extrapolation of optical conductivity

Pulsed laser ablation; Nb-target, N₂ atmosphere
 Film thickness t=3.5 nm and R_□= 655Ω

Strong deviation from Drude-Lorentz model

- Observation of quantum corrections to conductivity up to optical frequencies in highly disordered films
- Method to extract σ_0 , $Q \in \Gamma$ from the combined knowledge $\sigma'(\omega)$ and $\sigma''(\omega)$
- \blacksquare Estimation of the magnitude of the quantum correction $\delta\sigma' = -\mathcal{Q}^2\sigma_0$
- Numerical extrapolation method for complex conductivity of disordered metals

Thank you for your attention!

Neilinger et al., Phys. Rev. B 100, 241106 (R) (2019)
S. Kern et al., Phys. Rev. B 103, 134205 (2021)