Observation of Quantum Corrections to Conductivity of Disordered MoC and NbN Films up to Optical Frequencies

P. Neilinger¹, S. Kern¹, J. Greguš¹, D. Manca¹, B. Grančič¹, M. Kopčík¹, P. Szabó², P. Samuely², R. Hlubina¹, and M. Grajcar^{1,3}

1Department of Experimental Physics, Comenius University in Bratislava, Slovakia 2^2 Centre of Low Temperature Physics, IEP SAV, Košice, Slovakia ³Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta, Bratislava, Slovakia

Superconducting hybrids at Extreme, Strbské pleso 28. 6. 2021

■ Variety of applications

- Parametric amplifiers
- Superconducting quantum bits
- Superconducting nanowire-based single-photon detectors

- Variety of applications
	- Parametric amplifiers
	- Superconducting quantum bits
	- Superconducting nanowire-based single-photon detectors
- Fundamental physics
	- Superconductor-Insulator Transition
	- Metal–Insulator Transition

- Variety of applications
	- Parametric amplifiers
	- Superconducting quantum bits
	- Superconducting nanowire-based single-photon detectors
- Fundamental physics
	- Superconductor-Insulator Transition
	- Metal–Insulator Transition
- Sample characterisation
	- Sheet resistance $R_{\Box} = \rho/t$ (at room temperature)
	- Ioffe Regel product $k_F l$
	- $-$ Electron concentration n

- Variety of applications
	- Parametric amplifiers
	- Superconducting quantum bits
	- Superconducting nanowire-based single-photon detectors
- Fundamental physics
	- Superconductor-Insulator Transition
	- Metal–Insulator Transition
- Sample characterisation
	- Sheet resistance $R_{\Box} = \rho/t$ (at room temperature)
	- Ioffe Regel product $k_F l$
	- $-$ Electron concentration n
- Need for a robust characterization method of the electric properties of disordered films in the metallic state

Optical conductivity of metals

Drude model:

$$
\sigma(\omega) = \sigma'(\omega) + i\sigma''(\omega) = \frac{\sigma_0}{1 - i\omega/\Gamma}
$$

 $\sigma_0 = ne^2/m\Gamma$ is the DC conductivity, and $\Gamma = 1/\tau$

Optical conductivity of metals

Drude model:

$$
\sigma(\omega) = \sigma'(\omega) + i\sigma''(\omega) = \frac{\sigma_0}{1 - i\omega/\Gamma}
$$

 $\sigma_0 = ne^2/m\Gamma$ is the DC conductivity, and $\Gamma = 1/\tau$

■ Optical conductivity:

$$
\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}
$$

■ Optical conductivity:

$$
\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}
$$

■ Optical conductivity:

$$
\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}
$$

■ Optical conductivity:

$$
\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}
$$

■ Optical conductivity:

$$
\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}
$$

At critical disorder: $\sigma_{3D}(\omega \to 0, T \to 0) = 0$ Anderson localization, but $\sigma(\omega \neq 0, T \rightarrow 0) \neq 0$

■ Optical conductivity:

$$
\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}
$$

At critical disorder: $\sigma_{3D}(\omega \to 0, T \to 0) = 0$ Anderson localization, but $\sigma(\omega \neq 0, T \rightarrow 0) \neq 0$

Quantum correction to conductivity

■ Weakly disordered metals

 $\sigma(\omega) = \sigma_{\text{res}}(\omega) + \delta \sigma(\omega)$

Normal conductivity:

 $\sigma_{\text{reg}}(\omega) \approx \sigma_0$

Quantum correction $\delta\sigma(\omega)$:

- Weak-localization
- Interaction effects
- The same functional form
	- 3D: $\delta \sigma(\omega) \sim \sqrt{\omega}$
	- 2D: δσ(ω) ∼ ln(ω)

Temperature dependence

$$
-3D: \delta\sigma(T) \sim \sqrt{T}
$$

- 2D:
$$
\delta \sigma(T) \sim \ln(T)
$$

Quantum correction to conductivity

■ Weakly disordered metals

 $\sigma(\omega) = \sigma_{\text{reg}}(\omega) + \delta \sigma(\omega)$

Normal conductivity:

 $\sigma_{\rm reo}(\omega) \approx \sigma_0$

Quantum correction $\delta\sigma(\omega)$:

- Weak-localization
- Interaction effects
- The same functional form
	- 3D: $\delta \sigma(\omega) \sim \sqrt{\omega}$
	- 2D: δσ(ω) ∼ ln(ω)

Temperature dependence - 3D: $\delta \sigma(T) \sim \sqrt{T}$ - 2D: δσ(T) ∼ ln(T)

Generally considered low-temperature phenomena

Quantum correction to conductivity

■ Weakly disordered metals

 $\sigma(\omega) = \sigma_{\text{reg}}(\omega) + \delta \sigma(\omega)$

Normal conductivity:

 $\sigma_{\rm reo}(\omega) \approx \sigma_0$

Quantum correction $\delta\sigma(\omega)$:

- Weak-localization
- Interaction effects
- The same functional form
	- 3D: $\delta \sigma(\omega) \sim \sqrt{\omega}$
	- 2D: δσ(ω) ∼ ln(ω)

Temperature dependence - 3D: $\delta \sigma(T) \sim \sqrt{T}$ - 2D: δσ(T) ∼ ln(T)

Generally considered low-temperature phenomena Theoretically should be present up to $\omega^* \sim \Gamma$

Transport measurements at low temperatures

- Amorphous $Nb_xSi_{1−x}$, stoichiometry x tuning of disorder
- Resistivity measuremets from 20mK to 9K:

$$
\sigma(T) = \sigma_0 + b\sqrt{T}
$$

D.J. Bishop, E. G. Spencer, and R. C. Dynes, Solid State Electron. 38, 73 (1985)

Transport measurements of MoC

- MoC, thickness tuned disorder
- \Box 2D weak-localization and *e-e* interaction effects up to RT

J. Lee et al., PRB 49, 13882 (1994)

$$
\sigma(T) = \sigma_0 + \{\alpha p + (1 - F)\}\ln(T)
$$

- Magnetron sputtered in argon-acetylene atmosphere
- Mo target and sapphire substrates
- \blacksquare Mo_xC_{1-x}; stoichiometry (x) or thickness (t) tuned disorder
- Two sets of thin film samples:
	- **■** 1. set: R_{\Box} from 420 to 720 Ω ; fixed t=5 nm, varied x
	- 2. set: R_{\Box} from 100 to 220 Ω ; varied t, fixed x

■ 1. set: R_□ = 420, 500, 590 a 720 Ω

■ 1. set: $R_{\Box} = 420, 500, 590$ a 720 Ω

 $\sigma = \sigma_0 + b\sqrt{T}$; 3D quantum corrections up to T= 300K

■ 1. set: $R_{\Box} = 420, 500, 590$ a 720 Ω

 $\sigma = \sigma_0 + b\sqrt{T}$; 3D quantum corrections up to T= 300K ■ How far do they extend?

■ 1. set: $R_{\Box} = 420, 500, 590$ a 720 Ω

 $\sigma = \sigma_0 + b\sqrt{T}$; 3D quantum corrections up to T= 300K ■ How far do they extend? The temperature range is limited.

 \blacksquare Ideal for study of thin films

- **Ideal for study of thin films**
- Drawback: Interband transitions IR and VIS spectra

- **Ideal for study of thin films**
- Drawback: Interband transitions IR and VIS spectra
- Optical transmission measurement

- Ideal for study of thin films
- **Drawback:** Interband transitions IR and VIS spectra
- **Optical transmission measurement**
- Normalized conductivity spectrum $g(\omega) = Z_0 \sigma(\omega) t$

- Ideal for study of thin films
- **Drawback:** Interband transitions IR and VIS spectra
- **Optical transmission measurement**
- Normalized conductivity spectrum $g(\omega) = Z_0 \sigma(\omega) t$
- for thin films: $t \ll c/\omega$, $t \ll c|g(\omega)|/\omega$, $g', |g''| \lesssim 1$

$$
\mathcal{T}(\omega) \approx \frac{\mathcal{T}_s(\omega)^2}{[1 + g'(\omega)/(n_s + 1)]^2 + [g''(\omega)/(n_s + 1)]^2}
$$

- Our experimental frequency range 80-1000 THz

- Ideal for study of thin films
- **Drawback:** Interband transitions IR and VIS spectra

Optical transmission measurement

- Normalized conductivity spectrum $g(\omega) = Z_0 \sigma(\omega) t$
- for thin films: $t \ll c/\omega$, $t \ll c|g(\omega)|/\omega$, $g', |g''| \lesssim 1$

$$
\mathcal{T}(\omega) \approx \frac{\mathcal{T}_s(\omega)^2}{[1 + g'(\omega)/(n_s+1)]^2 + [g''(\omega)/(n_s+1)]^2}
$$

- Our experimental frequency range 80-1000 THz
- **Spectroscopic ellipsometry**
- Reflection measurement, evaluation of σ_1 and σ_2
- Our experimental frequency range 300-810 THz

Optical transmission spectra

- **1.** set of MoC: $R_{\Box} = 420, 500, 590$ a 720 Ω
- Smooth transmission spectra

 \blacksquare T(ω) decreases with frequency ω , the opposite is expected from the Drude model

For interaction effects: $\Omega = \sqrt{\omega^2 + (\pi k_B T/\hbar)^2}$

For interaction effects: $\Omega = \sqrt{\omega^2 + (\pi k_B T/\hbar)^2}$

For interaction effects: $\Omega = \sqrt{\omega^2 + (\pi k_B T/\hbar)^2}$

Agreement between 3 data sets, $\hbar\Omega \approx 14$ meV up to 4 eV

Postulate for the σ **:**

$$
\begin{array}{rcl}\n\sigma'(\omega, T) & = & \sigma_0 \left[1 - \mathcal{Q}^2 + \mathcal{Q}^2 \sqrt{\Omega/\Gamma} \right] & \text{if } \Omega < \omega^* \\
\sigma'(\omega, T) & = & \frac{\sigma_0}{1 + (\Omega/\Gamma)^2} & \text{if } \Omega \ge \omega^*\n\end{array}
$$

■ 3 parameters:

1. Q - "Quantumness"

2. Γ - Scattering rate

3. $\sigma_0 = ne^2/m\Gamma$, whereas $\sigma(0,0) = \sigma_0(1 - \mathcal{Q}^2)$

 \blacksquare Fermi liquid theory, for interaction effects:

$$
\Omega = \sqrt{\omega^2 + (\pi k_B T/\hbar)^2}
$$

Imaginary part σ'' given by Kramers-Kronig relations

- Contribution of bound electrons to permittivity

$$
\sigma_{\text{bound}}^{\prime\prime}(\omega) = -\epsilon_0(\epsilon_\infty - 1)\omega, \, \epsilon_\infty = 1.4
$$

Conductivity $\sigma(\omega)$ fit

Observation of quantum corrections to conductivity up to \sim optical frequencies, Phys. Rev. B 100, 241106(R) (2019)

Smoothed Lorentzian model $\sigma(\omega)$

Smoothing cups at $\omega = \omega^*$ - "tailoring" with 3rd-order polynomial $f(\omega)$ for ω ₋ $\lt \omega$ $\lt \omega$ ₊, for different ω ₋, ω ₊

Extracted parameters of MoC with $R_{\Box} = 720\Omega$

Lorentz vs. Gaussian

■ Smoothened Lorentzian

Extracted parameters of MoC with $R_{\Box} = 720\Omega$

Lorentz vs. Gaussian

Smoothened Lorentzian

Scatter in σ_0 , \mathcal{Q} , and $\Gamma \leq 15\%$

 \rightarrow Prolongation procedure is robust

 $\mathcal{Q} \approx 0.82 \pm 0.01$ strong quantum corrections $\rightarrow \sigma'(0) = (1 - \mathcal{Q}^2)\sigma_0 \approx \sigma_0/3$ \rightarrow 3x reduced classical value

 $\mathcal{Q} \approx 0.82 \pm 0.01$ strong quantum corrections $\rightarrow \sigma'(0) = (1 - \mathcal{Q}^2)\sigma_0 \approx \sigma_0/3$ \rightarrow 3x reduced classical value $\hbar\Gamma \approx 11.85 \pm 1.75$ eV \rightarrow explains the $\sigma'(\omega) \propto \sqrt{\omega}$ up to 4eV

 $\Omega \approx 0.82 \pm 0.01$ strong quantum corrections $\rightarrow \sigma'(0) = (1 - \mathcal{Q}^2)\sigma_0 \approx \sigma_0/3$ \rightarrow 3x reduced classical value $\hbar\Gamma \approx 11.85 \pm 1.75$ eV \rightarrow explains the $\sigma'(\omega) \propto \sqrt{\omega}$ up to 4eV Normalized conductivity $q_0 \approx 1.26 \pm 0.06$ $\implies n = (4.3 \pm 0.8) \times 10^{23}$ cm⁻³ \rightarrow surprisingly large electron concentration

Large $\Gamma \implies$ **Electronic bands separated by** $\leq \hbar \Gamma$ **merge**

- Concentration of Mo $n_{\text{at}} = 5.1 \times 10^{22} \text{ cm}^{-3}$
- Valence electron configuration within $±\hbar\Gamma$ from ε_F Mo: $4d^5$ 5s¹ a C: $2s^2$ $2p^2$
- Corresponding electron density
	- $n = 10 \times n_{\text{at}} = 5.1 \times 10^{23} \text{ cm}^{-3}$, in the range of the estimated $n = (4.3 \pm 0.8) \times 10^{23}$ cm⁻³

Large $\Gamma \implies$ **Electronic bands separated by** $\leq \hbar \Gamma$ **merge**

- Concentration of Mo $n_{\text{at}} = 5.1 \times 10^{22} \text{ cm}^{-3}$
- Valence electron configuration within $±\hbar\Gamma$ from ε_F Mo: $4d^5$ 5s¹ a C: $2s^2$ $2p^2$
- Corresponding electron density $n = 10 \times n_{\text{at}} = 5.1 \times 10^{23} \text{ cm}^{-3}$, in the range of the estimated $n = (4.3 \pm 0.8) \times 10^{23}$ cm⁻³

Absence of interband transitions \rightarrow Broad electronic band

Large $\Gamma \implies$ **Electronic bands separated by** $\leq \hbar \Gamma$ **merge**

- Concentration of Mo $n_{\text{at}} = 5.1 \times 10^{22} \text{ cm}^{-3}$
- Valence electron configuration within $±\hbar\Gamma$ from ε_F Mo: $4d^5$ 5s¹ a C: $2s^2$ $2p^2$
- Corresponding electron density $n = 10 \times n_{\text{at}} = 5.1 \times 10^{23} \text{ cm}^{-3}$, in the range of the estimated $n = (4.3 \pm 0.8) \times 10^{23}$ cm⁻³
- Absence of interband transitions \rightarrow Broad electronic band
- High Fermi energy $\epsilon_F = 20.65$, $k_F l \approx 3.5$

Large $\Gamma \implies$ **Electronic bands separated by** $\leq \hbar \Gamma$ merge

- Concentration of Mo $n_{\text{at}} = 5.1 \times 10^{22} \text{ cm}^{-3}$
- Valence electron configuration within $±\hbar\Gamma$ from ε_F Mo: $4d^5$ 5s¹ a C: $2s^2$ $2p^2$
- Corresponding electron density $n = 10 \times n_{\text{at}} = 5.1 \times 10^{23} \text{ cm}^{-3}$, in the range of the estimated $n = (4.3 \pm 0.8) \times 10^{23}$ cm⁻³
- Absence of interband transitions \rightarrow Broad electronic band
- High Fermi energy $\epsilon_F = 20.65$, $k_F l \approx 3.5$
- Similarly, highly disordered NbN $n \approx 4.2 \times 10^{23}$ cm⁻³
- **Large** n should be a generic property of dirty metals

Optical conductivity with the 2. set of MoC

Broad range of R \Box =100, 120, 220, 420, 500, 590 a 720 Ω $\overline{\mathcal{A}}$

- Details of microstructure are not important
- The control parameter is the degree of disorder

\blacksquare

 Experimental bandwidth is limited

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity
	- Reasonably smooth conductivity without rapid changes and oscillations in strongly disordered films

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity
	- Reasonably smooth conductivity without rapid changes and oscillations in strongly disordered films
	- Randomly generated conductivity curves that obey the Kramers-Kronig relations and fit the experimental data to a chosen degree

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity
	- Reasonably smooth conductivity without rapid changes and oscillations in strongly disordered films
	- Randomly generated conductivity curves that obey the Kramers-Kronig relations and fit the experimental data to a chosen degree
	- Prolongation is given by the average of the selected curves

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity
	- Reasonably smooth conductivity without rapid changes and oscillations in strongly disordered films
	- Randomly generated conductivity curves that obey the Kramers-Kronig relations and fit the experimental data to a chosen degree
	- Prolongation is given by the average of the selected curves
	- Can handle noisy data

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity
	- Reasonably smooth conductivity without rapid changes and oscillations in strongly disordered films
	- Randomly generated conductivity curves that obey the Kramers-Kronig relations and fit the experimental data to a chosen degree
	- Prolongation is given by the average of the selected curves
	- Can handle noisy data
- Numerical extrapolation method for complex conductivity of disordered metals, S. Kern et al., PRB 103, 134205 (2021)

■ S. Kern et al., Phys. Rev. B 103, 134205 (2021)

■ S. Kern et al., Phys. Rev. B 103, 134205 (2021)

■ S. Kern et al., Phys. Rev. B 103, 134205 (2021)

■ S. Kern et al., Phys. Rev. B 103, 134205 (2021)

■ S. Kern et al., Phys. Rev. B 103, 134205 (2021)

■ S. Kern et al., Phys. Rev. B 103, 134205 (2021)

Optical transmission

■ 5 nm MoC with R \Box =720Ω

Transmission spectra from 0.5 to 6 eV

Optical transmission

■ 5 nm MoC with R \Box =720Ω

Transmission spectra from 0.5 to 6 eV

Optical conductivity of NbN

Pulsed laser ablation; Nb-target, N₂ atmosphere Film thickness t=3.5 nm and R $_{\Box}$ = 655 Ω

Numerical extrapolation of optical conductivity

Pulsed laser ablation; Nb-target, N₂ atmosphere Film thickness t=3.5 nm and R $_{\Box}$ = 655 Ω

Numerical extrapolation of optical conductivity

Pulsed laser ablation; Nb-target, N₂ atmosphere Film thickness t=3.5 nm and $R_{\Box} = 655\Omega$

Strong deviation from Drude-Lorentz model \mathbb{R}^3

- Observation of quantum corrections to conductivity up to optical frequencies in highly disordered films
- Method to extract σ_0 , \mathcal{Q} a Γ from the combined knowledge $\sigma'(\omega)$ and $\sigma''(\omega)$
- **Estimation of the magnitude of the quantum correction** $\delta \sigma' = -Q^2 \sigma_0$
- Numerical extrapolation method for complex conductivity of disordered metals

Thank you for your attention!

Neilinger et al., Phys. Rev. B 100, 241106 (R) (2019) S. Kern et al., Phys. Rev. B 103, 134205 (2021)