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Optical conductivity

Drude model

σ(ω) = σ′(ω) + iσ′′(ω) =
σ0

1− iω/Γ

σ0 = ne2/mΓ is the DC conductivity, and Γ = 1/τ
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Strongly disordered conductors

Optical conductivity:

σ(ω) =
ne2

mΓ

1

1− iω/Γ
Increasing disorder → Γ increases, σ0 decreases
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At critical disorder: σ3D(ω → 0, T → 0) = 0
Anderson localization, but σ(ω 6= 0, T → 0) 6= 0
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Quantum correction to conductivity

Weakly disordered metals

σ(ω) = σreg(ω) + δσ(ω)

Normal conductivity:

σreg(ω) ≈ σ0

Quantum correction δσ(ω):

- Weak-localization
- Interaction effects

The same functional form

- 3D: δσ(ω) ∼ √ω
- 2D: δσ(ω) ∼ ln(ω)
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Γ =8e+14 (rad/s)

Γ =1.6e+15 (rad/s)

Temperature dependence

- 3D: δσ(T ) ∼
√
T

- 2D: δσ(T ) ∼ ln(T )

Generally considered low-temperature phenomena
Theoretically should be present up to ω∗ ∼ Γ
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Transport measurements of MoC at low temperatures

MoC, thickness - tuned disorder

2D weak-localization and e-e interaction effects up to RT

S.

J. Lee et al., PRB 49, 13882 (1994)

σ(T ) = σ0 +{αp+(1−F )} ln(T )

”... extending the weak localization

idea up to room temperature to

interpret our data may be

controversial.”
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MoC sample preparation

Magnetron sputtered in argon-acetylene atmosphere

Mo - target and sapphire substrates

Sample characterisation - sheet resistance R� = ρ/t

MoxC1−x; stoichiometry tuned disorder - acetylene flow
rate

Two sets of 5 nm thin samples:

1. set: R� from 420 to 720 Ω/�
2. set: R� from 390 to 3900 Ω/�
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Transport measurements

1. set: R� = 420, 500, 590 a 720 Ω/�
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σ = σ0 + b
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T ; 3D quantum corrections up to T= 300K

How far do they extend?
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Optical measurements

Ideal for study of thin films

Optical transmission measurement

- Normalized conductivity spectrum g(ω) = Z0σ(ω)t

- for thin films: t� c/ω, t� c|g(ω)|/ω, g′, |g′′| . 1

T (ω) ≈ Ts(ω)2

[1 + g′(ω)/(ns + 1)]2 + [g′′(ω)/(ns + 1)]2

- Our experimental frequency range 80-1000 THz

Spectroscopic ellipsometry

- Reflection measurement, evaluation of σ1 and σ2

- Our experimental frequency range 300-810 THz
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Optical transmission spectra

1. set of MoC: R� = 420, 500, 590 a 720 Ω/�
Smooth transmission spectra
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T (ω) decreases with frequency ω/2π
- The opposite is expected from Drude model
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Optical conductivity of MoC with R�=720Ω/�

For interaction effects: Ω =
√
ω2 + (πkBT/~)2

Agreement between 3 data sets, ~Ω ≈ 14 meV up to 4 eV
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Proposed model

Postulate for the σ:

σ′(ω, T ) = σ0

[
1−Q2 +Q2

√
Ω/Γ

]
if Ω < ω∗

σ′(ω, T ) =
σ0

1 + (Ω/Γ)2
if Ω ≥ ω∗

- Imaginary part σ′′ given by Kramers-Kronig relations

3 parameters:

1. Q - ”Quantumness”
2. Γ - Scattering rate
3. σ0 = ne2/mΓ, whereas σ(0, 0) = σ0(1−Q2)

Fermi liquid theory, for interaction effects:

Ω =
√
ω2 + (πkBT/~)2
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Conductivity σ(ω) fit
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Observation of quantum corrections to conductivity up to
optical frequencies, Phys. Rev. B 100, 241106(R) (2019)
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Conductivity σ(ω) of second set

2.set of MoC samples R� from 390 to 3900 Ω/�

0 1 2 3 4 5 6 7√
Ω (
√
eV )

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
g
′ ,g
′′

390 Ω

500 Ω

560 Ω

660 Ω

1380 Ω

3900 Ω

Fit function:

g1(ω, T ) = e−(Ω/Γ)2
+Q2

(√
Ω/Γ− 1

)
e(−ΛΩ/Γ)2

32 / 47



Conductivity σ(ω) of second set

2.set of MoC samples R� from 390 to 3900 Ω/�

0 1 2 3 4 5 6 7√
Ω (
√
eV )

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
g
′ ,g
′′

390 Ω

500 Ω

560 Ω

660 Ω

1380 Ω

3900 Ω

Fit function:

g1(ω, T ) = e−(Ω/Γ)2
+Q2

(√
Ω/Γ− 1

)
e(−ΛΩ/Γ)2

33 / 47



Conductivity σ(ω) of second set

Second set of samples R� from 390 to 3900 Ω/�

0 1 2 3 4 5 6 7√
Ω (
√
eV )

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
g
′ ,g
′′

390 Ω

500 Ω

560 Ω

660 Ω

1380 Ω

3900 Ω

Fit function:

g1(ω, T ) = e−(Ω/Γ)2
+Q2

(√
Ω/Γ− 1

)
e(−ΛΩ/Γ)2

34 / 47



Fit parameters

Rs[Ω/�] g0 Q2 Γ[eV] Λ

390 1.35 0.35 12.1 1.85

500 1.32 0.46 12.3 1.54

560 1.31 0.58 12.2 1.74

660 1.22 0.64 12.3 1.92

1380 1 0.83 13.4 3.08

2240 0.96 0.89 15.0 3.39

3900 0.83 0.95 15.2 3.66

Increased disorder =⇒ higher value of Q

σ′(T → 0, ω → 0) = σ0(1−Q2)

For Q → 1; σ′(T → 0, ω → 0)→ 0

- Metal - Insulator transition is approached
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Prolongation of optical conductivity

Experimental bandwidth is limited

- Fit depends on the chosen model - not trivial problem

Model independent prolongation of optical conductivity

Numerical extrapolation method for complex conductivity
of disordered metals, S. Kern et al., PRB 103, 134205 (2021)

- Randomly generated conductivity curves that obey the
Kramers-Kronig relations and fit the experimental data to a
chosen degree

- Prolongation is given by the average of the selected curves
- Reasonably smooth conductivity without rapid changes and

oscillations - fulfilled in strongly disordered (MoC) films
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Prolongation of optical conductivity

Numerical extrapolation method for complex conductivity
of disordered metals
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Conclusion

Optical conductivity of MoC films; Rs ∈ 〈390, 3900〉Ω/�
Transport and optical measurements

Observed quantum corrections to conductivity up to
optical frequencies

Parameters σ0, Q and Γ were extracted

Appropriate for the study of Metal-Insulator transition

Utilized a numerical extrapolation method for complex
conductivity of disordered metals
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