Study of optical conductivity of highly disordered MoC films by spectroscopic ellipsometry

P. Neilinger^{1,2}, S. Kern¹, D. Manca¹, and M. Grajcar^{1,2}

¹ Department of Experimental Physics, Comenius University in Bratislava, Slovakia ²Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta, Bratislava, Slovakia

APCOM 2021, Štrbské pleso, 24. 6. 2021

Optical conductivity

Drude model

$$
\sigma(\omega) = \sigma'(\omega) + i\sigma''(\omega) = \frac{\sigma_0}{1 - i\omega/\Gamma}
$$

 $\sigma_0 = ne^2/m\Gamma$ is the DC conductivity, and $\Gamma = 1/\tau$

Optical conductivity

Drude model

$$
\sigma(\omega) = \sigma'(\omega) + i\sigma''(\omega) = \frac{\sigma_0}{1 - i\omega/\Gamma}
$$

 $\sigma_0 = ne^2/m\Gamma$ is the DC conductivity, and $\Gamma = 1/\tau$

■ Optical conductivity:

$$
\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}
$$

■ Optical conductivity:

$$
\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}
$$

■ Optical conductivity:

$$
\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}
$$

■ Optical conductivity:

$$
\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}
$$

■ Optical conductivity:

$$
\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}
$$

At critical disorder: $\sigma_{3D}(\omega \to 0, T \to 0) = 0$ Anderson localization, but $\sigma(\omega \neq 0, T \rightarrow 0) \neq 0$

■ Optical conductivity:

$$
\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}
$$

At critical disorder: $\sigma_{3D}(\omega \to 0, T \to 0) = 0$ Anderson localization, but $\sigma(\omega \neq 0, T \rightarrow 0) \neq 0$

Quantum correction to conductivity

■ Weakly disordered metals

 $\sigma(\omega) = \sigma_{\text{res}}(\omega) + \delta \sigma(\omega)$

Normal conductivity:

 $\sigma_{\text{reg}}(\omega) \approx \sigma_0$

Quantum correction $\delta\sigma(\omega)$:

- Weak-localization
- Interaction effects
- The same functional form
	- 3D: $\delta \sigma(\omega) \sim \sqrt{\omega}$
	- 2D: δσ(ω) ∼ ln(ω)

Temperature dependence

$$
-3D: \delta\sigma(T) \sim \sqrt{T}
$$

- 2D:
$$
\delta \sigma(T) \sim \ln(T)
$$

Quantum correction to conductivity

■ Weakly disordered metals

 $\sigma(\omega) = \sigma_{\rm res}(\omega) + \delta \sigma(\omega)$

Normal conductivity:

 $\sigma_{\rm reo}(\omega) \approx \sigma_0$

Quantum correction $\delta\sigma(\omega)$:

- Weak-localization
- Interaction effects
- The same functional form
	- 3D: $\delta \sigma(\omega) \sim \sqrt{\omega}$
	- 2D: δσ(ω) ∼ ln(ω)

Temperature dependence - 3D: $\delta \sigma(T) \sim \sqrt{T}$ - 2D: δσ(T) ∼ ln(T)

Generally considered low-temperature phenomena

Quantum correction to conductivity

■ Weakly disordered metals

 $\sigma(\omega) = \sigma_{\text{reg}}(\omega) + \delta \sigma(\omega)$

Normal conductivity:

 $\sigma_{\rm reo}(\omega) \approx \sigma_0$

Quantum correction $\delta\sigma(\omega)$:

- Weak-localization
- Interaction effects
- The same functional form
	- 3D: $\delta \sigma(\omega) \sim \sqrt{\omega}$
	- 2D: δσ(ω) ∼ ln(ω)

Temperature dependence - 3D: $\delta \sigma(T) \sim \sqrt{T}$ - 2D: δσ(T) ∼ ln(T)

Generally considered low-temperature phenomena Theoretically should be present up to $\omega^* \sim \Gamma$

Transport measurements of MoC at low temperatures

- MoC, thickness tuned disorder
- \Box 2D weak-localization and *e-e* interaction effects up to RT

J. Lee et al., PRB 49, 13882 (1994)

$$
\sigma(T) = \sigma_0 + \{\alpha p + (1 - F)\}\ln(T)
$$

Transport measurements of MoC at low temperatures

- MoC, thickness tuned disorder
- \Box 2D weak-localization and *e-e* interaction effects up to RT

J. Lee et al., PRB 49, 13882 (1994)

$$
\sigma(T) = \sigma_0 + \{\alpha p + (1 - F)\}\ln(T)
$$

"... extending the weak localization idea up to room temperature to interpret our data may be controversial."

- **Magnetron sputtered in argon-acetylene atmosphere**
- \blacksquare Mo target and sapphire substrates
- Sample characterisation sheet resistance $R_{\Box} = \rho/t$
- \blacksquare Mo_xC_{1−x}; stoichiometry tuned disorder acetylene flow rate
- Two sets of 5 nm thin samples:
	- 1. set: R \sqcap from 420 to 720 Ω/\square
	- 2. set: R_{\Box} from 390 to 3900 Ω/\Box

Transport measurements

■ 1. set: R $□$ = 420, 500, 590 a 720 Ω/ $□$

Transport measurements

■ 1. set: R_□ = 420, 500, 590 a 720 Ω/\Box

 $\sigma = \sigma_0 + b\sqrt{T}$; 3D quantum corrections up to T= 300K

Transport measurements

■ 1. set: R_□ = 420, 500, 590 a 720 Ω/\Box

 $\sigma = \sigma_0 + b\sqrt{T}$; 3D quantum corrections up to T= 300K ■ How far do they extend?

 \blacksquare Ideal for study of thin films

- \blacksquare Ideal for study of thin films
- **Optical transmission measurement**

- Ideal for study of thin films
- **Optical transmission measurement**
- Normalized conductivity spectrum $g(\omega) = Z_0 \sigma(\omega) t$

- Ideal for study of thin films
- **Optical transmission measurement**
- Normalized conductivity spectrum $g(\omega) = Z_0 \sigma(\omega) t$
- for thin films: $t \ll c/\omega$, $t \ll c|g(\omega)|/\omega$, $g', |g''| \lesssim 1$

$$
\mathcal{T}(\omega) \approx \frac{\mathcal{T}_s(\omega)^2}{[1 + g'(\omega)/(n_s+1)]^2 + [g''(\omega)/(n_s+1)]^2}
$$

- Ideal for study of thin films
- **Optical transmission measurement**
- Normalized conductivity spectrum $g(\omega) = Z_0 \sigma(\omega) t$
- for thin films: $t \ll c/\omega$, $t \ll c|g(\omega)|/\omega$, $g', |g''| \lesssim 1$

$$
\mathcal{T}(\omega) \approx \frac{\mathcal{T}_s(\omega)^2}{[1 + g'(\omega)/(n_s+1)]^2 + [g''(\omega)/(n_s+1)]^2}
$$

- Our experimental frequency range 80-1000 THz

- Ideal for study of thin films
- **Optical transmission measurement**
- Normalized conductivity spectrum $g(\omega) = Z_0 \sigma(\omega) t$
- for thin films: $t \ll c/\omega$, $t \ll c|g(\omega)|/\omega$, $g', |g''| \lesssim 1$

$$
\mathcal{T}(\omega) \approx \frac{\mathcal{T}_s(\omega)^2}{[1 + g'(\omega)/(n_s+1)]^2 + [g''(\omega)/(n_s+1)]^2}
$$

- Our experimental frequency range 80-1000 THz
- Spectroscopic ellipsometry
- Reflection measurement, evaluation of σ_1 and σ_2
- Our experimental frequency range 300-810 THz

Optical transmission spectra

- **1.** set of MoC: $R_{\Box} = 420, 500, 590$ a 720 Ω/\Box
- Smooth transmission spectra

- $T(\omega)$ decreases with frequency $\omega/2\pi$
- The opposite is expected from Drude model

For interaction effects: $\Omega = \sqrt{\omega^2 + (\pi k_B T/\hbar)^2}$

For interaction effects: $\Omega = \sqrt{\omega^2 + (\pi k_B T/\hbar)^2}$

Agreement between 3 data sets, $\hbar\Omega \approx 14$ meV up to 4 eV

Postulate for the σ **:**

$$
\begin{array}{rcl}\n\sigma'(\omega, T) & = & \sigma_0 \left[1 - \mathcal{Q}^2 + \mathcal{Q}^2 \sqrt{\Omega/\Gamma} \right] & \text{if } \Omega < \omega^* \\
\sigma'(\omega, T) & = & \frac{\sigma_0}{1 + (\Omega/\Gamma)^2} & \text{if } \Omega \ge \omega^*\n\end{array}
$$

- Imaginary part σ'' given by Kramers-Kronig relations
- 3 parameters:
	- 1. Q "Quantumness"
	- 2. Γ Scattering rate
	- 3. $\sigma_0 = ne^2/m\Gamma$, whereas $\sigma(0,0) = \sigma_0(1 \mathcal{Q}^2)$
- **Fermi liquid theory, for interaction effects:**

$$
\Omega = \sqrt{\omega^2 + (\pi k_B T/\hbar)^2}
$$

Conductivity $\sigma(\omega)$ fit

Observation of quantum corrections to conductivity up to $\mathcal{L}_{\mathcal{A}}$ optical frequencies, Phys. Rev. B 100, 241106(R) (2019)

Conductivity $\sigma(\omega)$ of second set

■ 2.set of MoC samples R_□ from 390 to 3900 Ω/\square

Conductivity $\sigma(\omega)$ of second set

■ 2.set of MoC samples R_□ from 390 to 3900 Ω/\square

 \blacksquare Fit function:

$$
g_1(\omega,T) = e^{-(\Omega/\Gamma)^2} + Q^2 \left(\sqrt{\Omega/\Gamma} - 1\right) e^{(-\Lambda\Omega/\Gamma)^2}
$$

33 / 47

Conductivity $\sigma(\omega)$ of second set

Second set of samples R_{\Box} from 390 to 3900 Ω/\Box

 \blacksquare Fit function:

$$
g_1(\omega,T) = e^{-(\Omega/\Gamma)^2} + Q^2 \left(\sqrt{\Omega/\Gamma} - 1\right) e^{(-\Lambda\Omega/\Gamma)^2}
$$

34 / 47

Increased disorder =⇒ higher value of Q

Increased disorder =⇒ higher value of Q

$$
\bullet \sigma'(T \to 0, \omega \to 0) = \sigma_0(1 - Q^2)
$$

■ Increased disorder \implies higher value of Q

$$
\bullet \sigma'(T \to 0, \omega \to 0) = \sigma_0(1 - Q^2)
$$

For $Q \to 1$; $\sigma'(T \to 0, \omega \to 0) \to 0$

■ Increased disorder \implies higher value of Q

$$
\bullet \sigma'(T \to 0, \omega \to 0) = \sigma_0(1 - Q^2)
$$

- For $Q \to 1$; $\sigma'(T \to 0, \omega \to 0) \to 0$
- Metal Insulator transition is approached

Experimental bandwidth is limited

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity
- Numerical extrapolation method for complex conductivity of disordered metals, S. Kern et al., PRB 103, 134205 (2021)
	- Randomly generated conductivity curves that obey the Kramers-Kronig relations and fit the experimental data to a chosen degree

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity
- Numerical extrapolation method for complex conductivity of disordered metals, S. Kern et al., PRB 103, 134205 (2021)
	- Randomly generated conductivity curves that obey the Kramers-Kronig relations and fit the experimental data to a chosen degree
	- Prolongation is given by the average of the selected curves

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity
- Numerical extrapolation method for complex conductivity of disordered metals, S. Kern et al., PRB 103, 134205 (2021)
	- Randomly generated conductivity curves that obey the Kramers-Kronig relations and fit the experimental data to a chosen degree
	- Prolongation is given by the average of the selected curves
	- Reasonably smooth conductivity without rapid changes and oscillations - fulfilled in strongly disordered (MoC) films

Numerical extrapolation method for complex conductivity of disordered metals

■ S. Kern et al., Phys. Rev. B 103, 134205 (2021)

- \blacksquare Optical conductivity of MoC films; R_s ∈ $\langle 390, 3900 \rangle$ Ω/ \Box
- Transport and optical measurements
- Observed quantum corrections to conductivity up to optical frequencies
- **Parameters** σ_0 **, Q and Γ** were extracted
- **Appropriate for the study of Metal-Insulator transition**
- Utilized a numerical extrapolation method for complex conductivity of disordered metals

Thank you for your attention

Neilinger et al., Physical Review B100, 241106 (R) (2019) S. Kern et al., Phys. Rev. B 103, 134205 (2021)