Study of optical conductivity of highly disordered MoC films by spectroscopic ellipsometry

P. Neilinger^{1,2}, S. Kern¹, D. Manca¹, and M. Grajcar^{1,2}

¹Department of Experimental Physics, Comenius University in Bratislava, Slovakia
²Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta, Bratislava, Slovakia

APCOM 2021, Štrbské pleso, 24. 6. 2021

Optical conductivity

Drude model

$$\sigma(\omega) = \sigma'(\omega) + i\sigma''(\omega) = \frac{\sigma_0}{1 - i\omega/\Gamma}$$

• $\sigma_0 = n e^2 / m \Gamma$ is the DC conductivity, and $\Gamma = 1 / \tau$

Optical conductivity

Drude model

$$\sigma(\omega) = \sigma'(\omega) + i\sigma''(\omega) = \frac{\sigma_0}{1 - i\omega/\Gamma}$$

• $\sigma_0 = n e^2 / m \Gamma$ is the DC conductivity, and $\Gamma = 1 / \tau$

• Optical conductivity:

$$\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}$$

• Optical conductivity:

$$\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}$$

• Optical conductivity:

$$\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}$$

• Optical conductivity:

$$\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}$$

• Optical conductivity:

$$\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}$$

• At critical disorder: $\sigma_{3D}(\omega \to 0, T \to 0) = 0$ Anderson localization, but $\sigma(\omega \neq 0, T \to 0) \neq 0$

• Optical conductivity:

$$\sigma(\omega) = \frac{ne^2}{m\Gamma} \frac{1}{1 - i\omega/\Gamma}$$

• At critical disorder: $\sigma_{3D}(\omega \to 0, T \to 0) = 0$ Anderson localization, but $\sigma(\omega \neq 0, T \to 0) \neq 0$

Quantum correction to conductivity

Weakly disordered metals

 $\sigma(\omega) = \sigma_{\rm reg}(\omega) + \delta\sigma(\omega)$

• Normal conductivity:

 $\sigma_{\rm reg}(\omega)\approx\sigma_0$

• Quantum correction $\delta\sigma(\omega)$:

- Weak-localization
- Interaction effects
- The same functional form
 - 3D: $\delta\sigma(\omega) \sim \sqrt{\omega}$
 - 2D: $\delta\sigma(\omega) \sim \ln(\omega)$

Temperature dependence

- 3D:
$$\delta\sigma(T) \sim \sqrt{T}$$

- 2D:
$$\delta\sigma(T) \sim \ln(T)$$

Quantum correction to conductivity

Weakly disordered metals

 $\sigma(\omega) = \sigma_{\rm reg}(\omega) + \delta\sigma(\omega)$

• Normal conductivity:

 $\sigma_{\rm reg}(\omega)\approx\sigma_0$

• Quantum correction $\delta\sigma(\omega)$:

- Weak-localization
- Interaction effects
- The same functional form
 - 3D: $\delta\sigma(\omega) \sim \sqrt{\omega}$
 - 2D: $\delta\sigma(\omega) \sim \ln(\omega)$

■ Temperature dependence

- 3D: $\delta\sigma(T) \sim \sqrt{T}$

- 2D:
$$\delta\sigma(T) \sim \ln(T)$$

Generally considered low-temperature phenomena

Quantum correction to conductivity

Weakly disordered metals

 $\sigma(\omega) = \sigma_{\rm reg}(\omega) + \delta\sigma(\omega)$

• Normal conductivity:

 $\sigma_{\rm reg}(\omega)\approx\sigma_0$

• Quantum correction $\delta\sigma(\omega)$:

- Weak-localization
- Interaction effects
- The same functional form
 - 3D: $\delta\sigma(\omega) \sim \sqrt{\omega}$
 - 2D: $\delta\sigma(\omega) \sim \ln(\omega)$

■ Temperature dependence

- 3D: $\delta\sigma(T) \sim \sqrt{T}$ 2D: $\delta\sigma(T) \sim \ln(T)$

- 2D:
$$\delta\sigma(T) \sim \ln(T)$$

- Generally considered low-temperature phenomena
- Theoretically should be present up to $\omega^* \sim \Gamma$

Transport measurements of MoC at low temperatures

- \blacksquare MoC, thickness tuned disorder
- \blacksquare 2D weak-localization and e-e interaction effects up to RT

J. Lee et al., PRB 49, 13882 (1994)

$$\sigma(T) = \sigma_0 + \{\alpha p + (1 - F)\} \ln(T)$$

Transport measurements of MoC at low temperatures

- \blacksquare MoC, thickness tuned disorder
- \blacksquare 2D weak-localization and e-e interaction effects up to RT

J. Lee et al., PRB 49, 13882 (1994)

$$\sigma(T) = \sigma_0 + \{\alpha p + (1 - F)\} \ln(T)$$

"... extending the weak localization idea up to room temperature to interpret our data may be controversial."

- Magnetron sputtered in argon-acetylene atmosphere
- Mo target and sapphire substrates
- Sample characterisation sheet resistance $\mathbf{R}_{\Box}=\rho/t$
- $Mo_x C_{1-x}$; stoichiometry tuned disorder acetylene flow rate
- Two sets of 5 nm thin samples:
 - 1. set: R_{\Box} from 420 to 720 Ω/\Box
 - 2. set: R_{\Box} from 390 to 3900 Ω/\Box

Transport measurements

• 1. set: $R_{\Box} = 420, 500, 590 \text{ a } 720 \ \Omega/\Box$

Transport measurements

• 1. set: $R_{\Box} = 420, 500, 590 \text{ a } 720 \ \Omega/\Box$

• $\sigma = \sigma_0 + b\sqrt{T}$; 3D quantum corrections up to T= 300K

Transport measurements

• 1. set: $R_{\Box} = 420, 500, 590 \text{ a } 720 \ \Omega/\Box$

σ = σ₀ + b√T; 3D quantum corrections up to T= 300K
How far do they extend?

Ideal for study of thin films

- Ideal for study of thin films
- Optical transmission measurement

- Ideal for study of thin films
- Optical transmission measurement
- Normalized conductivity spectrum $g(\omega) = Z_0 \sigma(\omega) t$

- Ideal for study of thin films
- Optical transmission measurement
- Normalized conductivity spectrum $g(\omega) = Z_0 \sigma(\omega) t$
- for thin films: $t \ll c/\omega,\, t \ll c |g(\omega)|/\omega,\,g',|g''| \lesssim 1$

$$\mathcal{T}(\omega) \approx \frac{\mathcal{T}_s(\omega)^2}{[1 + g'(\omega)/(n_s + 1)]^2 + [g''(\omega)/(n_s + 1)]^2}$$

- Ideal for study of thin films
- Optical transmission measurement
- Normalized conductivity spectrum $g(\omega) = Z_0 \sigma(\omega) t$
- for thin films: $t \ll c/\omega,\, t \ll c|g(\omega)|/\omega,\,g',|g''| \lesssim 1$

$$\mathcal{T}(\omega) \approx \frac{\mathcal{T}_s(\omega)^2}{[1 + g'(\omega)/(n_s + 1)]^2 + [g''(\omega)/(n_s + 1)]^2}$$

- Our experimental frequency range 80-1000 THz

- Ideal for study of thin films
- Optical transmission measurement
- Normalized conductivity spectrum $g(\omega) = Z_0 \sigma(\omega) t$
- for thin films: $t \ll c/\omega,\, t \ll c|g(\omega)|/\omega,\,g',|g''| \lesssim 1$

$$\mathcal{T}(\omega) \approx \frac{\mathcal{T}_s(\omega)^2}{[1 + g'(\omega)/(n_s + 1)]^2 + [g''(\omega)/(n_s + 1)]^2}$$

- Our experimental frequency range 80-1000 THz
- Spectroscopic ellipsometry
- Reflection measurement, evaluation of σ_1 and σ_2
- Our experimental frequency range 300-810 THz

Optical transmission spectra

- 1. set of MoC: $R_{\Box} = 420, 500, 590 a 720 \Omega/\Box$
- Smooth transmission spectra

- $T(\omega)$ decreases with frequency $\omega/2\pi$
- The opposite is expected from Drude model

• Agreement between 3 data sets, $\hbar\Omega \approx 14 \text{ meV}$ up to 4 eV

• Postulate for the σ :

$$\begin{array}{lll} \sigma'(\omega,T) &=& \sigma_0 \left[1 - \mathcal{Q}^2 + \mathcal{Q}^2 \sqrt{\Omega/\Gamma} \right] & \mbox{if } \Omega < \omega^* \\ \sigma'(\omega,T) &=& \frac{\sigma_0}{1 + (\Omega/\Gamma)^2} & \mbox{if } \Omega \ge \omega^* \end{array}$$

- Imaginary part σ'' given by Kramers-Kronig relations
- 3 parameters:
 - 1. Q "Quantumness"
 - 2. Γ Scattering rate

3.
$$\sigma_0 = ne^2/m\Gamma$$
, whereas $\sigma(0,0) = \sigma_0(1-Q^2)$

• Fermi liquid theory, for interaction effects:

$$\Omega = \sqrt{\omega^2 + (\pi k_B T/\hbar)^2}$$

Conductivity $\sigma(\omega)$ fit

 Observation of quantum corrections to conductivity up to optical frequencies, Phys. Rev. B 100, 241106(R) (2019)

Conductivity $\sigma(\omega)$ of second set

• 2.set of MoC samples R_{\Box} from 390 to 3900 Ω/\Box

Conductivity $\sigma(\omega)$ of second set

• 2.set of MoC samples R_{\Box} from 390 to 3900 Ω/\Box

■ Fit function:

$$g_1(\omega, T) = e^{-(\Omega/\Gamma)^2} + Q^2 \left(\sqrt{\Omega/\Gamma} - 1\right) e^{(-\Lambda\Omega/\Gamma)^2}$$

33 / 47

Conductivity $\sigma(\omega)$ of second set

• Second set of samples R_{\Box} from 390 to 3900 Ω/\Box

■ Fit function:

$$g_1(\omega, T) = e^{-(\Omega/\Gamma)^2} + Q^2 \left(\sqrt{\Omega/\Gamma} - 1\right) e^{(-\Lambda\Omega/\Gamma)^2}$$

34/47

$\mathbf{R}_s[\Omega/\Box]$	\mathbf{g}_0	\mathbf{Q}^2	$\Gamma[\mathbf{eV}]$	Λ
390	1.35	0.35	12.1	1.85
500	1.32	0.46	12.3	1.54
560	1.31	0.58	12.2	1.74
660	1.22	0.64	12.3	1.92
1380	1	0.83	13.4	3.08
2240	0.96	0.89	15.0	3.39
3900	0.83	0.95	15.2	3.66

• Increased disorder \implies higher value of Q

$\mathbf{R}_s[\Omega/\Box]$	\mathbf{g}_0	\mathbf{Q}^2	$\Gamma[\mathbf{eV}]$	Λ
390	1.35	0.35	12.1	1.85
500	1.32	0.46	12.3	1.54
560	1.31	0.58	12.2	1.74
660	1.22	0.64	12.3	1.92
1380	1	0.83	13.4	3.08
2240	0.96	0.89	15.0	3.39
3900	0.83	0.95	15.2	3.66

• Increased disorder \implies higher value of Q

•
$$\sigma'(T \to 0, \omega \to 0) = \sigma_0(1 - Q^2)$$

$\mathbf{R}_s[\Omega/\Box]$	\mathbf{g}_0	\mathbf{Q}^2	$\Gamma[eV]$	Λ
390	1.35	0.35	12.1	1.85
500	1.32	0.46	12.3	1.54
560	1.31	0.58	12.2	1.74
660	1.22	0.64	12.3	1.92
1380	1	0.83	13.4	3.08
2240	0.96	0.89	15.0	3.39
3900	0.83	0.95	15.2	3.66

 \blacksquare Increased disorder \implies higher value of Q

•
$$\sigma'(T \to 0, \omega \to 0) = \sigma_0(1 - Q^2)$$

 \blacksquare For $\mathbf{Q} \rightarrow 1; \, \sigma'(T \rightarrow 0, \omega \rightarrow 0) \rightarrow 0$

$\mathbf{R}_s[\Omega/\Box]$	\mathbf{g}_0	\mathbf{Q}^2	$\Gamma[\mathbf{eV}]$	Λ
390	1.35	0.35	12.1	1.85
500	1.32	0.46	12.3	1.54
560	1.31	0.58	12.2	1.74
660	1.22	0.64	12.3	1.92
1380	1	0.83	13.4	3.08
2240	0.96	0.89	15.0	3.39
3900	0.83	0.95	15.2	3.66

 \blacksquare Increased disorder \implies higher value of Q

•
$$\sigma'(T \to 0, \omega \to 0) = \sigma_0(1 - Q^2)$$

- $\bullet \ {\rm For} \ {\bf Q} \to 1; \, \sigma'(T \to 0, \omega \to 0) \to 0$
- Metal Insulator transition is approached

• Experimental bandwidth is limited

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity
- Numerical extrapolation method for complex conductivity of disordered metals, S. Kern et al., PRB 103, 134205 (2021)
 - Randomly generated conductivity curves that obey the Kramers-Kronig relations and fit the experimental data to a chosen degree

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity
- Numerical extrapolation method for complex conductivity of disordered metals, S. Kern et al., PRB 103, 134205 (2021)
 - Randomly generated conductivity curves that obey the Kramers-Kronig relations and fit the experimental data to a chosen degree
 - Prolongation is given by the average of the selected curves

- Experimental bandwidth is limited
- Fit depends on the chosen model not trivial problem
- Model independent prolongation of optical conductivity
- Numerical extrapolation method for complex conductivity of disordered metals, S. Kern et al., PRB 103, 134205 (2021)
 - Randomly generated conductivity curves that obey the Kramers-Kronig relations and fit the experimental data to a chosen degree
 - Prolongation is given by the average of the selected curves
 - Reasonably smooth conductivity without rapid changes and oscillations fulfilled in strongly disordered (MoC) films

 Numerical extrapolation method for complex conductivity of disordered metals

■ S. Kern et al., Phys. Rev. B 103, 134205 (2021)

- Optical conductivity of MoC films; $\mathbf{R}_s \in \langle 390, 3900 \rangle \Omega / \Box$
- Transport and optical measurements
- Observed quantum corrections to conductivity up to optical frequencies
- Parameters σ_0 , \mathcal{Q} and Γ were extracted
- Appropriate for the study of Metal-Insulator transition
- Utilized a numerical extrapolation method for complex conductivity of disordered metals

Thank you for your attention

Neilinger et al., Physical Review B100, 241106 (R) (2019)
 S. Kern et al., Phys. Rev. B 103, 134205 (2021)