

Complex conductivity of strongly disordered thin MoC superconducting films

Martin Baránek¹, Pavol Neilinger^{1,2}, Daniel Manca¹, Miroslav Grajcar^{1,2}

¹ Department of Experimental Physics, Comenius University, Mlynská dolina F1, 84248, Bratislava, Slovakia ² Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511, Bratislava, Slovakia

This work was supported by the Slovak Research and Development Agency under the contract APVV-16-0372, APVV-18-0358 and by the QuantERA grant SiUCs, by SAS-MTVS

Superconductivity

- Disordered superconductors
 - \circ High sheet resistance \rightarrow high kinetic inductance L_k
 - Suppressed T_c
 - Deviation from BCS theory

- $\sigma = \sigma_1 i\sigma_2$
- Complex conductivity for Dynes superconductors [1] with Dynes parameter Γ

$$\frac{\sigma_1}{\sigma_n} = \frac{2}{\hbar\omega} \int_{\Delta}^{\infty} [f(E) - f(E + \hbar\omega)] g_1(E) dE + \frac{1}{\hbar\omega} \int_{\Delta - \hbar\omega}^{-\Delta} [1 - 2f(E + \hbar\omega)] g_1(E) dE$$

$$\frac{\sigma_2}{\sigma_n} = \frac{2}{\hbar\omega} \int_{\max(\Delta - \hbar\omega, -\Delta)}^{\Delta} [f(E) - f(E + \hbar\omega)] g_2(E) dE$$

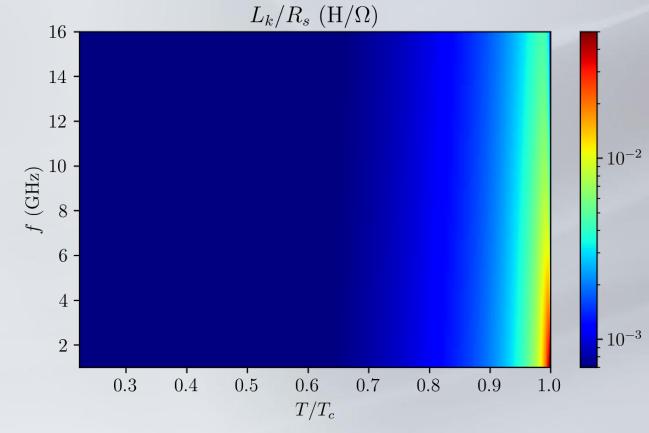
$$g_1 = ig_2 = \left(1 + \frac{\Delta^2}{E(E + \hbar\omega)}\right) N_S(E) N_S(E + \hbar\omega)$$

Kinetic inductance

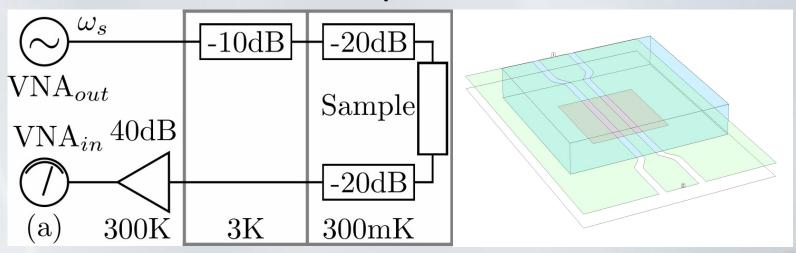
• Kinetic inductance L_k (σ) dependent on $\sigma(T, Tc(\Delta_0), \Gamma/\Delta_0, \omega)$

$$L_k(\omega, T, T_c, \Gamma) = \frac{\sigma_2}{\omega(\sigma_1^2 + \sigma_2^2)}$$

Proportional to R_s

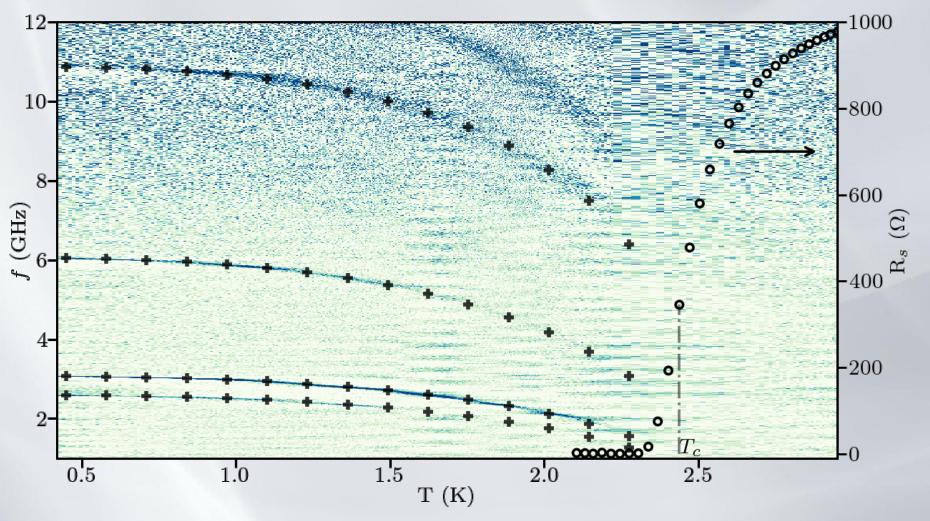


Experiment



- Flip-chip transmission line spectroscopy
- Vector Network Analyzer 1-12 GHz frequency range
- Temperatures down to ~ 360mK
- Samples thin MoC films on sapphire substrate, varied disorder

Transmission spectrum $R_s = 970\Omega$



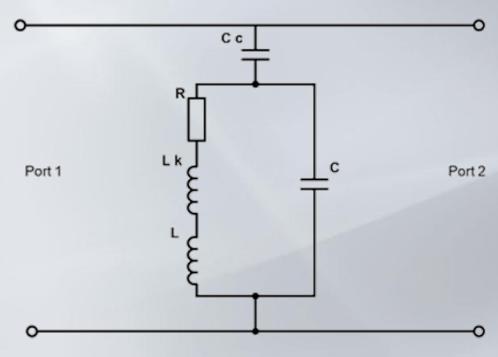
• Resonances in transmission spectra, up to T_c

Lumped LC resonance circuit model

$$\omega_n^r(T) = \frac{1}{\sqrt{(L_k + L_n)C_n}} = \frac{\omega_n^{(0)}}{\sqrt{1 + g_n L_k(\omega, T, \Delta, \Gamma)}}$$

ullet Geometry-given resonance frequency: $\omega_n^{(0)}$

Temperature dependence - kinetic inductance dominated



Results

- Resulting fit parameters T_c^{spec}, Γ^{spec}/Δ₀
 - Correspond with Scanning tunneling spectroscopy
 - Correspond with DC R-T measurements

Sample	Rs [Ω]	T _{cDC} [K]	T _c ^{spec} [K]	Γ ^{STS} /Δ ₀	$\Gamma^{ m spec}/\Delta_0$
В	212	7.04	7.02	0.03	0
С	565	4.85	5.11	0.2	0.2
D	974	2.44	2.52	0.44	0.5

- Numerical simulations
 - Qualitative agreement
 - Current density eigenmodes of MoC film

