Development and analysis of the new hashing algorithm based on block cipher
Creators
- 1. Al-Farabi Kazakh National University; Institute of Information and Computational Technologies
- 2. Institute of Information and Computational Technologies
Description
This paper proposes the new hash algorithm HBC-256 (Hash based on Block Cipher) based on the symmetric block cipher of the CF (Compression Function). The algorithm is based on the wipe-pipe construct, a modified version of the Merkle-Damgard construct. To transform the block cipher CF into a one-way compression function, the Davis-Meyer scheme is used, which, according to the results of research, is recognized as a strong and secure scheme for constructing hash functions based on block ciphers. The symmetric CF block cipher algorithm used consists of three transformations (Stage-1, Stage-2, and Stage-3), which include modulo two addition, circular shift, and substitution box (four-bit S-boxes). The four substitution boxes are selected from the “golden” set of S-boxes, which have ideal cryptographic properties.
The HBC-256 scheme is designed to strike an effective balance between computational speed and protection against a preimage attack. The CF algorithm uses an AES-like primitive as an internal transformation.
The hash image was tested for randomness using the NIST (National Institute of Standards and Technology) statistical test suite, the results were examined for the presence of an avalanche effect in the CF encryption algorithm and the HBC-256 hash algorithm itself. The resistance of HBC-256 to near collisions has been practically tested.
Since the classical block cipher key expansion algorithms slow down the hash function, the proposed algorithm is adapted for hardware and software implementation by applying parallel computing. A hashing algorithm was developed that has a sufficiently large freedom to select the sizes of the input blocks and the output hash digest. This will make it possible to create an almost universal hashing algorithm and use it in any cryptographic protocols and electronic digital signature algorithms
Files
Development and analysis of the new hashing algorithm based on block cipher.pdf
Files
(729.5 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:d698c08b02d15be30d3ec9e3cfc57e13
|
729.5 kB | Preview Download |
Additional details
References
- Teeluck, R., Durjan, S., Bassoo, V. (2020). Blockchain Technology and Emerging Communications Applications. Security and Privacy Applications for Smart City Development, 207–256. doi: https://doi.org/10.1007/978-3-030-53149-2_11
- Chen, J., Gan, W., Hu, M., Chen, C.-M. (2021). On the construction of a post-quantum blockchain for smart city. Journal of Information Security and Applications, 58, 102780. doi: https://doi.org/10.1016/j.jisa.2021.102780
- Dworkin, M. J. (2015). SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. NIST. doi: https://doi.org/10.6028/nist.fips.202
- X 5057-2:2003 (ISO/IEC 10118-2:2000). Available at: http://kikakurui.com/x5/X5057-2-2003-01.html
- The SM3 Cryptographic Hash Function. Available at: https://tools.ietf.org/id/draft-oscca-cfrg-sm3-02.html
- DSTU 7564:2014. Information Technologies. Cryptographic Data Security. Hash function. Available at: http://online.budstandart.com/ru/catalog/doc-page?id_doc=66229
- Kim, D.-C., Hong, D., Lee, J.-K., Kim, W.-H., Kwon, D. (2015). LSH: A New Fast Secure Hash Function Family. Lecture Notes in Computer Science, 286–313. doi: https://doi.org/10.1007/978-3-319-15943-0_18
- GOST 34.11-2018. Information technology. Cryptographic data security. Hash-function. Available at: https://docs.cntd.ru/document/1200161707
- STB 34.101.77-2020. Informatsionnye tekhnologii i bezopasnost'. Kriptograficheskie algoritmy na osnove sponge-funktsii. Vzamen STB 34.101.77-2016. Available at: http://www.apmi.bsu.by/assets/files/std/bash-spec24.pdf
- Zou, J., Dong, L. (2018). Cryptanalysis of the Round-Reduced Kupyna. Journal of Information Science and Engineering, 34 (3), 733–748. doi: https://do.org/10.6688/JISE.201805_34(3).0010
- Chowdhury, A. R., Chatterjee, T., DasBit, S. (2014). LOCHA: A Light-weight One-way Cryptographic Hash Algorithm for Wireless Sensor Network. Procedia Computer Science, 32, 497–504. doi: https://doi.org/10.1016/j.procs.2014.05.453
- Tchórzewski, J., Jakóbik, A., Iacono, M. (2021). An ANN-based scalable hashing algorithm for computational clouds with schedulers. International Journal of Applied Mathematics and Computer Science, 31 (4), 697–712. doi: https://doi.org/10.34768/amcs-2021-0048
- Mondal, A., Mitra, S. (2016). TDHA: A Timestamp Defined Hash Algorithm for Secure Data Dissemination in VANET. Procedia Computer Science, 85, 190–197. doi: https://doi.org/10.1016/j.procs.2016.05.210
- Bao, Z., Dinur, I., Guo, J., Leurent, G., Wang, L. (2020). Generic Attacks on Hash Combiners. Journal of Cryptology, 33 (3), 742–823. doi: https://doi.org/10.1007/s00145-019-09328-w
- Andreeva, E., Mennink, B., Preneel, B. (2015). Open problems in hash function security. Designs, Codes and Cryptography, 77 (2-3), 611–631. doi: https://doi.org/10.1007/s10623-015-0096-0
- Naito, Y. (2012). Blockcipher-Based Double-Length Hash Functions for Pseudorandom Oracles. Lecture Notes in Computer Science, 338–355. doi: https://doi.org/10.1007/978-3-642-28496-0_20
- Bao, Z., Ding, L., Guo, J., Wang, H., Zhang, W. (2020). Improved Meet-in-the-Middle Preimage Attacks against AES Hashing Modes. IACR Transactions on Symmetric Cryptology, 318–347. doi: https://doi.org/10.46586/tosc.v2019.i4.318-347
- Nandi, M., Paul, S. (2010). Speeding Up the Wide-Pipe: Secure and Fast Hashing. Lecture Notes in Computer Science, 144–162. doi: https://doi.org/10.1007/978-3-642-17401-8_12
- A study on hash functions for cryptography (2002). SANS Institute. Available at: https://www.giac.org/paper/gsec/3294/study-hash-functions-cryptography/105433
- Al-Kuwari, S., Davenport, J., Bradford, R. (2011). Cryptographic Hash Functions: Recent Design Trends and Security Notions. IACR. Available at: https://eprint.iacr.org/2011/565.pdf
- Denton, B., Adhami, R. (2012). Modern Hash Function Construction. Available at: https://www.researchgate.net/publication/267298547_Modern_Hash_Function_Construction
- Hosoyamada, A., Yasuda, K. (2018). Building Quantum-One-Way Functions from Block Ciphers: Davies-Meyer and Merkle-Damgård Constructions. Advances in Cryptology – ASIACRYPT 2018, 275–304. doi: https://doi.org/10.1007/978-3-030-03326-2_10
- Preneel, B., Govaerts, R., Vandewalle, J. (1993). Hash functions based on block ciphers: a synthetic approach. Lecture Notes in Computer Science, 368–378. doi: https://doi.org/10.1007/3-540-48329-2_31
- Manuel, S., Sendrier, N. (2007). XOR-Hash: A Hash Function Based on XOR. In WEWRC '07.
- Vergili, I., Yucel, M. D. (2001). Avalanche and Bit Independence Properties for the Ensembles of Randomly Chosen n×x S-Boxes. Turkish Journal of Electrical Engineering & Computer Sciences, 9 (2), 137–145. Available at: https://journals.tubitak.gov.tr/elektrik/issues/elk-01-9-2/elk-9-2-3-0008-1.pdf
- Mulyarchik, K. S. (2013). Lavinnyy effekt v algoritmakh shifrovaniya na osnove diskretnykh khaoticheskikh otobrazheniy. Doklady BGUIR, 6 (76), 86–91. Available at: https://libeldoc.bsuir.by/bitstream/123456789/1592/1/Mulyarchik_Lavinniy.PDF
- Dobrovolsky, Y., Prokhorov, G., Hanzhelo, M., Hanzhelo, D., Trembach, D. (2021). Development of a hash algorithm based on cellular automata and chaos theory. Eastern-European Journal of Enterprise Technologies, 5 (9 (113)), 48–55. doi: https://doi.org/10.15587/1729-4061.2021.242849
- Kapalova, N., Khompysh, A., Arici, M., Algazy, K. (2020). A block encryption algorithm based on exponentiation transform. Cogent Engineering, 7 (1), 1788292. doi: https://doi.org/10.1080/23311916.2020.1788292
- Algazy, K. T., Babenko, L. K., Biyashev, R. G., Ishchukova, E. A., Kapalova, N. A., Nysynbaeva, S. E., Smolarz, A. (2020). Differential Cryptanalysis of New Qamal Encryption Algorithm. International Journal of Electronics and Telecommunications, 4, 647–653. doi: https://doi.org/10.24425/ijet.2020.134023
- Lamberger, M., Mendel, F., Rijmen, V., Simoens, K. (2011). Memoryless near-collisions via coding theory. Designs, Codes and Cryptography, 62 (1), 1–18. doi: https://doi.org/10.1007/s10623-011-9484-2
- Maram, B., Gnanasekar, J. M. (2016). Evaluation of Key Dependent S-Box Based Data Security Algorithm using Hamming Distance and Balanced Output. TEM Journal, 5 (1), 67–75. doi: https://dx.doi.org/10.18421/TEM51-11
- Biyashev, R. G., Kalimoldayev, M. N., Nyssanbayeva, S. E., Kapalova, N. A., Dyusenbayev, D. S., Algazy, K. T. (2018). Development and analysis of the encryption algorithm in nonpositional polynomial notations. Eurasian Journal of Mathematical and Computer Applications, 6 (2), 19–33. doi: https://doi.org/10.32523/2306-6172-2018-6-2-19-33
- Saarinen, M.-J. O. (2012). Cryptographic Analysis of All 4 × 4-Bit S-Boxes. Lecture Notes in Computer Science, 118–133. doi: https://doi.org/10.1007/978-3-642-28496-0_7
- Kosta, B. P., Sanyasi, P. (2021). Design and Implementation of a Strong and Secure Lightweight Cryptographic Hash Algorithm using Elliptic Curve Concept: SSLHA-160. International Journal of Advanced Computer Science and Applications, 12 (2). doi: https://doi.org/10.14569/ijacsa.2021.0120279
- Kapalova, N. A., Nysanbaeva, S. E. (2008). Analiz statisticheskikh svoystv algoritma generatsii psevdosluchaynykh posledovatel'nostey. Mater. X Mezhdunar. nauch.-prakt. konf. Informatsionnaya bezopasnost'. Ch. 2. Taganrog: Izd-vo TTI YuFU, 169–172.
- Ivanov, M. A. Khesh-funktsii. Teoriya, primenenie i novye standarty (chast' 1). Available at: https://docplayer.com/28902735-Hesh-funkcii-teoriya-primenenie-i-novye-standarty-chast-1.html
- Kumar, M., Dey, D., Pal, S. K., Panigrahi, A. (2017). HeW: AHash Function based on Lightweight Block Cipher FeW. Defence Science Journal, 67 (6), 636. doi: https://doi.org/10.14429/dsj.67.10791
- Bussi, K., Dey, D., Mishra, P. R., Dass, B. K. (2019). MGR Hash Functions. Cryptologia, 43 (5), 372–390. doi: https://doi.org/10.1080/01611194.2019.1596995