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Abstract—Colorectal cancer is responsible for the most cancer
deaths after lung cancer. It has been well-established that early
detection and removal of polyps can prevent colorectal cancer.
It is therefore essential that automated polyp detection has
the highest sensitivity and precision possible in order to detect
the most cases and prevent unnecessary treatment. We present
a deep learning model based on YOLOv3 that was trained
to detect polyps. Training made use of the 39308 images of
78 polyps and 393 completely healthy images from the SUN
database. The model was subsequently validated using both
the public CVC-clinic and ETIS-Larib datasets containing both
standard defintion (SD) and high definition (HD) images. The
per-image polyp detection sensitivity(precision) was calculated
as 91.5(96.6)% and 86.5(94.2)% for the CVC-clinic and Etis-
Larib datasets, respectively. These results represent the best-
known performance in the validation datasets in comparison with
the results of a recent review.

Index Terms—Colonoscopy, Polyp Detection, Artificial Intelli-
gence, Deep Learning, YOLOv3

I. INTRODUCTION

Colonoscopy is an exam used to detect changes and anoma-
lies in the large intestine (colon) and rectum. It is also regarded
as the gold-standard screening test [1]–[3] for colorectal cancer
(CRC) and it prevents approximately two-thirds of deaths
on the left side of the colon [4]. CRC, which arises from
precancerous polyps, is the second leading cause of death in
the United States [5]. The National Polyp Study showed that
70%-90% of CRCs are preventable with colonoscopies and
complete removal of polyps. Approximately, 85% of interval
cancers arise from missed polyps or incompletely removed
polyps during colonoscopy [6].

The benefit of colonoscopy for the prevention of CRC
relies on the adenoma detection rate. Manual examination
by a gastroenterologist currently stands as the first choice
for quality measures in screening colonoscopy. However, the
detection rates of gastroenterologists vary from 7% to 53%.
It is estimated that every 1% increase in detection rate lowers
the risk of interval colorectal cancers by 3%–6% [7]. It is
necessary to introduce new accurate strategies to increase the
polyp detection rate during colonoscopy.

Computer-aided image analysis has the potential to improve
polyp detection and attracts widespread attention. In several

studies, it shows the promise to reduce the possible missed
polyps. It has been reported that one-fourth of neoplastic
polyps may be missed on colonoscopy [8] and that more than
half of post-colonoscopy CRC may arise from these missed
lesions [9]. Moreover, with automatic systems, the polyp
detection process is less time-expensive and less resource-
consuming. Despite significantly higher polyp detection rate,
no improvement in detection of advanced colonic lesions,
especially large and significant adenomas or serrated polyps,
has been seen with automatic systems and remains a challenge
[10].

Recently, Artificial Intelligence (AI) has been reported
to speed-up and automate medical image analysis obtaining
promising results. Deep learning is the main contributor of
the rise in AI in a wide range variety field of application
including Computer Vision, Natural Language Processing and
medical image analysis [11]. In deep learning approaches,
typically a convolution neural network (CNN) is used in order
to extract relevant features. The deep learning model often
created using transfer learning from a generalised model. In
practice, this means that the model has been trained to classify
accurately thousands of non-medical images, with a subset
of the so-called backobone network refined on the smaller
medical image dataset of the use case in question [12].

Advances in transfer learning in years have greatly in-
creased the ability of deep-learning methods to be used in
combination with smaller datasets, which is of particular
interest for medical imaging where dataset sizes are limited
by the number of patients examined subject to the relevant
exclusion criteria [13]. Automatic polyp detection has been
an active topic for the past years with the utilization of AI,
but the performance levels are far from that of the expert
gastroenterologist [14]–[16]. The large datasets present for
polyp detection provide not only an important means to create
models to detect polyps and prevent CRC, but will also provide
solid foundations for future transfer learning to use cases
in which endoscopy data is not so prevalent, namely cancer
regrowth detection and active monitoring [17].

We present a deep-earning algorithm for the automatic
detection of polyps during colonoscopy based on transfer



learning of a pre-trained YOLOv3 model [18], which has
previously shown promise in the analysis of endoscopic imag-
ing to detect colonic perforation [19] and indeed polyps [20].
We trained our system with one public colonoscopy database
and validated the algorithm with two independent datasets.
Our results are then compared against the current state-of-the-
art [10].

II. DATASETS AND METHODOLOGY

A. Training Dataset

The training dataset used was from Showa University and
Nagoya University, referred to as the SUN Colonoscopy
Video Database. They used a high-definition endoscope (CF-
HQ290ZI and CF-H290ECI; Olympus, Tokyo, Japan), and
all colonoscopies were recorded by a high-definition (1008×
1158) video recorder (IMH-10; Olympus). Also, all patients
were older than 18 years. In total, there were 99 patients with
100 polyps registered. The database contains 49,136 polyp
frames [21]. Diagnosis details of the database are summarized
in TABLE I.

TABLE I
SUN COLONOSCOPY DATABASE DETAILS

Pathological Diagnosis Num Location Num
Hyperplastic polyp 7 Right 47

Sessile serrated lesion 4 Left 44
Low grade adenoma 82 Rectum 8

Traditional serrated adenoma 2 - -
High grade adenoma 4 - -
Invasive carcinoma 1 - -

B. Test Dataset B: CVC-clinic Database

The CVC-ClinicDB database includes 612 standard defini-
tion still images of 384× 288, arising from 29 polyp-positive
sequences [22]. In total, there are 646 polyps presented. All
the images were acquired from Hospital Clinic of Barcelona,
Barcelona, Spain and using an Olympus Q160AL/Q165L
colonoscope. The ground truth for each polyp was provided
with the format of segmentation masks (see Table II).

C. Test Dataset C: ETIS-Larib Database

The ETIS-Larib is a polyp database that contains 196 high-
definition still images with a resolution of 1225 × 964 of
44 different polyps from 34 sequences [23]. Overall, there
are 44 examples of different polyps presented in sizes and
viewpoints. Some images have two or three polyps, making the
total number of polyp appearances 208. The ground truth was
provided in the form of the segmentation mask (see Table II).

TABLE II
DATABASE SUMMARY

Database Use Resolution Patients Image(polyp)
SUN train 1008 × 1158 99 49136 HD

CVC-ClinicDB test 384 × 288 23 612 SD
ETIS-Larib test 1225 × 966 - 196 HD

D. AI Algorithm

To develop the AI algorithm, we used YOLOv3 without
any structural modification. Darknet53 [24] is chosen as the
backbone given that it is more performant than Darknet19 but
still more efficient than ResNet101 and ResNet152. Darknet53
uses 3×3 and 1×1 convolutional layers. It contains in total
53 layers [18]. First, images are scaled to an input shape of
416 × 416 with 3 channels. After the feature extraction with
Darknet53, the original image is converted into a feature map
with a size 13 × 13. These feature maps are combined again
to make two additional feature maps with sizes of 26 × 26
and 52× 52. In other words, detection is performed on three
levels, such that the feature map is transmitted to the two
adjacent scales using up-sampling twice. For the first level,
the high-resolution and low-level features are obtained. For
the second level, the features are the combination of the 2×
up-sampled features from the first level and the features from
the earlier layer via a residual skip connection. Similarly,
for the third level, the low-resolution and high-level features
are the combination of the 2× up-sampled features from
the second level and the earlier layer. On each feature map,
each cell predicts three bounding boxes by means of three
anchor boxes, finally selecting the most suitable bounding
boxes. Three scales were selected to the targets of different
sizes, which can now detect different sizes of targets. This is
depicted in Figure 1.
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Fig. 1. Visualization of YOLOv3 Structure; red and yellow lines represent
two-fold up-sampling.

The YOLOv3 was pre-trained with Common Object in
Context (COCO) Image collection with over 118000 images
[25]. The input image size is (416,416,3). Data augmentation is
used. In order to balance the dataset, only polyps with fewer
images (less than 250) were augmented. The augmentation
strategies includes shifting, rotation, vertical or horizontal flip-
ping, distortion, color jittering and different noises (including
Gaussian noise, speckle and pepper&salt). In order to improve
the performance of the model, 393 healthy images without
polyps are added and they are not augmented. We used Adam
[26] as the optimizer. The initial learning rate is 1×10−4. The
learning rate went down during training process to 1 × 10−8

we set L2 normalization for each layer. Early stopping was
applied and patience equals 10 epochs.

E. Statistical analysis

We adopted one commonly accepted statistical method for
evaluation the algorithm [27]. If the prediction of algorithm is



on a ground-truth polyp, then it is a true positive (TP) and only
one positive case will be taken into consideration no matter
how many predictions fall on the same polyp. The absence
of a positive detection on an actual polyp is considered as
one false negative (FN). If there is any detection label on a
polyp-absence area, it is counted as false positive (FP). The
per-image-sensitivity (S) or recall is defined as TP/(TP +
FN), precision (P) or positive predictive power is defined as
TP/(TP + FP ). We also make use of the F1 score, defined
as:

2 ∗ (S ∗ P )

S + P
,

and F2 score, defined as:

5 ∗ (S ∗ P )

S + 4 ∗ P
.

For evaluation, the sensitivity and precision of the model
can be different depending on the confidence threshold to
further adjust region of interests with various objectiveness
score. Here, we adopted threshold 0.3 as used by Wittenberg
et al. [28].

III. RESULTS AND DISCUSSION

The test results for CVC-clinic database and ETIS-Larib
Database are in TABLE III and TABLE IV, where our work
is compared against the current state-of-the-art [10]. Figures
2 and 4 show examples of polyps including different sizes
and morphology that were successfully detected. Figures 3
and 5 show examples of polyps including different sizes and
morphology that were not successfully detected.

TABLE III
COMPARISON OF POLYP DETECTION PERFORMANCES ON CVC-CLINIC

DATABASE

Studies Model
TP
(n)

FN
(n)

FP
(n)

S
(%)

P
(%)

F1
(%)

F2
(%)

Ours YOLOv3 591 55 21 91.5 96.6 94 93
Wang et al. 2018 [29] SegNet 570 76 42 88.2 93.1 91 89

TABLE IV
COMPARISON OF POLYP DETECTION PERFORMANCES ON ETIS-LARIB

DATABASE

Studies Model
TP
(n)

FN
(n)

FP
(n)

S
(%)

P
(%)

F1
(%)

F2
(%)

Ours YOLOv3 180 28 11 86.5 94.2 90.2 88.0
Ahmad et al. 2019 [30] - - - - 91.6 75.3 88 88
Shin Y. et al. 2018 [31] Inception Resnet 167 41 26 80.3 86.5 82 82
Qadir et al. 2021 [32] MDeNetplus 180 28 28 86.5 86.1 86.3 86.5
Liu et al. 2019 [20] YOLOV3 120 88 37 57.7 76.4 65.8 60.7

For CVC-Clinic database, even though the resolution lower
than the training dataset, we showed both higher sensitiv-
ity and precision than the state-of-the-art. The resolution of
feeding images is not an issue for our algorithm, which is
the case for Wang et al. [29]. For Etis-Larib database, our
model exhibits better precision than the study of Qadir et
al. [32] and higher precision but lower sensitivity than Ahmad
et al. [30]. It can be the case that high precision comes with

Fig. 2. True Positive cases of CVC-clinic DB. The red bounding box
represents the prediction from our algorithm; the green area is the ground
Truth.

Fig. 3. False Positive and False Negative cases of CVC-clinic DB.The red
bounding box represents the prediction from our algorithm; the green area is
the ground Truth.

the cost of low sensitivity therefore the F1 score becomes
a necessary metric which combines sensitivity and precision.
For both datasets, our F1 scores are better than the state-of-
the-art. The detection results of study from Liu et al. [20]
in Table IV, which also used the pretrained YOLOv3 model,
are significantly lower than ours. There are several reasons
to explain our improved performance. First, we have a large
training dataset, which contains more images than other studies
[20], [28], [29]. Second, we also augmented more than 10000

Fig. 4. True Positive cases of Etis-Larib DB.The red bounding box represents
the prediction from our algorithm; the green area is the ground Truth.

Fig. 5. False Positive and False Negative cases of Etis-Larib DB.The red
bounding box represents the prediction from our algorithm; the green area is
the ground Truth.



images with multiple augmentation methods and data balance
strategy without uniformly augmenting all the polyps. Third,
we enlarged our input size to 416×416 instead of 192×192 in
Misawa, Masashi, et al [21]. Larger input size can feed more
necessary information into the network. Fourth, our model
was pre-trained with the COCO dataset described previously.
In addition, our use of the Adam optimizer [26] instead of
stochastic gradient descent and our use of a decaying learning
rate could also be factors allowing us to achieve a better-
performing model.

However, the system does have a few limitations. First, the
algorithm is restricted to detect polyps in colonoscopy images
but not taught to detect lesions outside the colon or in other
examination formats. Second, the algorithm was trained to
discriminate between normal mucosa and colonic polyps, but
it is difficult to identify other intestinal content, see Figures 3
and 5. Third, the algorithm may miss small, flat and distant
polyps. It is worthwhile to collect a large test dataset with
various polyps and one independent healthy dataset given that
most lumen are healthy in real clinical settings. In general, a
more representative test dataset would be beneficial.

IV. CONCLUSION

We have presented an automatic polyp-detection algorithm
based on YOLOv3. The detector has shown better performance
than the current state-of-the-art. The results indicate that the
ability of the algorithm to track polyps may be comparable to
that of a skilled endoscopist. The high per-image-sensitivity
could provide endoscopists with valuable visual assistance.
Meanwhile, high precision is necessary to filter out false
positive cases for endoscopists. Our model demonstrates per-
formance that will not only provide a useful clinical tool, but
also a solid starting point for further transfer learning to other
colonoscopy endpoints such as cancer regrowth detection.
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